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ABSTRACT Spot welding is a crucial process step in various industries. However, classification of spot
welding quality is still a tedious process due to the complexity and sensitivity of the test material, which
drain conventional approaches to its limits. In this article, we propose an approach for quality inspection of
spot weldings using images from laser thermography data. We propose data preparation approaches based
on the underlying physics of spot-welded joints, heated with pulsed laser thermography by analyzing the
intensity over time and derive dedicated data filters to generate training datasets. Subsequently, we utilize
convolutional neural networks to classify weld quality and compare the performance of different models
against each other.We achieve competitive results in terms of classifying the different welding quality classes
compared to traditional approaches, reaching an accuracy of more than 95 percent. Finally, we explore the
effect of different augmentation methods.

INDEX TERMS Active thermal imaging, laser thermography, spot-welded joints, convolutional neural
network, classification, data preprocessing.

I. INTRODUCTION
Spot welding plays a major role in joining technologies,
especially in the automotive industry. Traditional methods
to assure the quality of spot-welded joints include random
and periodic destructive tests like torsion testing or man-
ual destructive testing, where the specimen has to be cut
in half to be investigated. These methods are tedious and
destroy the sample. Non-destructive testing methods (NDT)
reduce the costs of quality assurance and imply an opti-
mization of the method of spot welding, since every joint
could be checked, and therefore the number of spot-welded
joints could be reduced. In this article, we will utilize both
methods as well but will specify data preparation methods
specifically for thermography data. More precisely, laser
thermography has been used where heat is generated on the
sample surface by laser excitation. A thermal camera captures
the subsequent heat flow on the sample surface and generates
thermal images as NDT data basis. Our data acquisition
approach is contactless and, very importantly, requires access
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to the weld from one side only, making it proficient for
in-situ quality inspection. In post-processing, we consider
the underlying physics such as the heat distribution and
the temporal component of thermal images, which provide
more information about the specimen. For improved feature
visualization, we apply preprocessing steps presented in [1].

The main contributions of this work are the following:
• Proposal of CNN-based welding quality assessment
method to classify welding quality from thermal images
that are not distinguishable by human vision inspection.

• Proposal of methods to generate a feasible training
dataset from thermal images by analyzing the underlying
physics and generating filters accordingly.

• Evaluation of different data augmentation methods and
their effect on thermal datasets.

• Performance evaluation of three State-of-the-Art neural
network architectures.

The paper is structured as follows. Sec. II begins with the
theoretical foundations utilized in our approach. The method-
ology including the overall concept and the implementation
of each module, is presented in Sec III. Sec. IV presents the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 48303

https://orcid.org/0000-0001-5263-4687
https://orcid.org/0000-0001-9929-2186
https://orcid.org/0000-0001-7679-9697
https://orcid.org/0000-0002-7749-1333
https://orcid.org/0000-0002-5967-2448
https://orcid.org/0000-0001-7535-141X


L. Kästner et al.: Classification of Spot-Welded Joints in Laser Thermography Data Using CNNs

results and discussion. Finally, Sec. V will give a conclusion
and outlook.

II. BACKGROUND
A. RELATED WORKS
Among popular NDT methods for quality inspection of
welded material are ultrasonic testing, X-Ray tomography
[2], acoustic emission testing and laser thermography. X-Ray
has been considered as a reliable approach to assess the
welding quality. Kar et al. [3] used X-Ray tomography
to study the porosity of welded joints and to assess the
quality. Patil et al. [4] investigated weld defects using X-Ray
radiography and found that the X-Ray method could reveal
more defects compared to a visual inspection. While X-Ray
approaches are a commonly used NDTmethod, the necessary
radiation protection is a major limitation, thus it cannot
be easily applied for in-situ inspection. In addition, X-Ray
computer tomography is expensive compared to other NDT
methods such as ultrasound or thermography. Furthermore,
the wave’s penetration degree is limited, especially with
multi-layered material thus could not be applied to detect
small defects as observed by Duchene et al. [5]. As an
alternative, ultrasonic approaches are being increasingly con-
sidered. Yu et al. [6] proposed an approach which employed
high order ultrasonic waves to detect damages in welded
joints and thus could enhance the detection sensitivity to
detect small weld flaws. Tabatabaeipour et al. [7] proposed
an immersion ultrasonic testing method by observing the
backscattered energy C-Scan images. Papanikolaou et al. [8]
used ultrasonic testing as NDT method to inspect various
parameters such as the chemical compositions or mechanical
properties of the specimen to determine the weariness of
specimen. The researchers conclude enhanced results using
ultrasound testing, compared to visual testing and liquid
penetration testing. Acoustic approaches on the other hand,
utilize ultrasonic waves at a much higher frequency and have
been employed by a variety of work. Shrama et al. [9] applied
acoustic emission to inspect welded joints for damages. They
conducted a variety of tests and conclude an enhancement in
understanding of damage mechanism for early maintenance.
Kubit et al. [10] utilized acoustic microscopy to evaluate the
joint quality. Despite its increased sensitivity, the setup and
operation is very complex. Active thermography, on the other
hand, emanates in recent times as a method, which allows
contactless, fast and reliable testing, at cheaper operation
costs than e.g. computer tomography. The feasibility of spot
weld inspection based on thermography was theoretically
examined in [11]. In [12], the researchers could already
show that thermography is a robust alternative and can be
calibrated using X-Ray methods. A non-destructive testing
approach based on laser thermography was proposed by
Jonietz et al. [1], where the researchers could detect impor-
tant metrics of quality like the welding diameter by applying
active thermography in transmission and reflection. However,
the quality of the spot-welded joints could not be assessed in
detail.

Convolutional neural networks (CNNs) have achieved
remarkable results in computer vision for tasks such as
anomaly detection and classification, thus gaining immense
popularity in NDT research in recent years. Cruz et al. [13]
used CNNs to detect defects in ultrasound testing. Works
by [14], [15] and [16] use CNNs to detect welding defects
within X-Ray images and show performance enhancements.
For instance, Wang et al. [15] used a RetinaNet-based CNN
architecture to detect and classify three different types of
defects inside X-Ray images. Zhang et al. [17] presented a
weld defect detection on X-Ray images based on CNNs. The
researchers achieve satisfying results in detecting features
relevant for quality assessment. However, since the X-Ray
approach is based on the transmission of radiation through
the spot-welded joint, it is only possible with access from
both sides. Janssens et al. [18] explored the usage of a
deep neural network on infrared thermal images to monitor
machine health by detecting fault conditions from moving
machine components. The researchers conclude a significant
performance boost when applying CNNs and that relevant
regions could be identified and visualized to detect potential
failures. Nasiri et al. [19] used CNNs to detect six conditions
in thermal images of cooling tubes. Similar to our work,
Yang et al. [20] used a Faster-RCNN-based architecture to
visualize defects inside metal plates inducted with heat.
They analyse the heat distribution and propose an improved
Faster-RCNN architecture to visualize and detect the cracks.
Dung et al. [21] explored the effect of CNNs on welded
joints on gusset plates and conclude its feasibility when using
transfer learning and data augmentation.

In contrast to the above mentioned references, our work
deals with laser thermography data in reflection configuration
which is, due to the associated simple integration and low
costs, highly attractive for industrial applications. Moreover,
in this work, we study the underlying physics based on laser
thermography data to avoid the use of redundant data and to
generate more useful data by means of suitable data augmen-
tation techniques before applying CNNs.

B. THEORETICAL FOUNDATIONS
The data analyzed in this contribution has been acquired using
laser thermography. The theoretical description of the thermal
radiation components and emissivity corrections is described
in this chapter

Fig. 1 illustrates our setup for a theoretical understanding
of the IR radiant flux used in our experiments. The radiant
flux 8 (SI unit: Watt) is a common quantity to describe the
intensity level of the IR radiation. Fig. 1 shows the IR radia-
tion components as detected by the IR camera in the measure-
ment environment: Direct radiation from the ambient envi-
ronment (8ambient), environmental radiation reflected from
the surface of our investigated specimen (8reflect), as well
as radiation from the measurement path between specimen
and our measurement device (8path), which is caused by the
atmospheric absorbers (e.g., air, humidity, CO2). All these
disturbing quantities (summed up in the following as 8env)
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FIGURE 1. Sketch for theoretical understanding of IR radiant flux in our
experiments. The IR camera receives different IR radiation components
(red arrows), whereas the direct component from the specimen is given
as a blue arrow. The schematic of the cross section through a welding
joint is given on top in gray color.

are detrimental for our measurement since we are interested
in measuring the radiant flux of the specimen 8specimen.
In addition, we do not know the exact emissivity ε of our
specimen that indicates how much radiation it emits com-
pared to an ideal heat radiator, i.e. a black body (BB). These
conditions, lead to the following total radiant flux8tot during
our measurements for every pixel:

8tot
= 8env

+8specimen

= 8env
+ ε8BB. (1)

The emissivity ε is a unit-less scalar with ε ∈ [0, 1]. Accord-
ing to Stefan-Boltzmann law, the radiant flux 8 depends
on the temperature (8 ∝ T 4). During a thermographic
measurement we can rewrite 8BB to 8BB

T (t) and before the
measurement, we can write 8BB

T0
with T0 standing for the

room temperature and T (t) considering the temporal heating
given by laser illumination (t > 0). Assuming constant envi-
ronmental conditions and temperature-independent optical
quantities of the specimen, 8env

T0
≈ 8env

T (t) and ε remain the
same during the experiment. The environmental disturbances
8env could be therefore removed if we consider the radiant
flux difference8tot

T (t)−8
tot
T0
. Further, the unknown emissivity

ε can be removed by considering a normalized radiant flux
difference(8tot

T (t)−8
tot
T0
)/(8tot

T (tnorm)
−8tot

T0
) where tnorm refers

to another time after the sample is cooled down to a tem-
perature T (tnorm) > T0. For more detailed explanations we
refer to [1]. In this contribution we utilized this method to
generate a noise-free dataset without any uncertainties due
to the emissivity. Please note that in this approach we have
to calculate with the temperature dependent radiant flux (as
measured with the IR camera) and not with the temperature
(calculated inside the IR camera based on a previous cali-
bration) itself. Moreover, using Stefan-Boltzmann law is an
approximation, since the IR camera is sensitive in a restricted
spectral range only.

III. METHODOLOGY
After describing the underlying physics and theoretical foun-
dations of our data, in this section, we will present the

methods that we used for data acquisition and processing in
our proposed quality assessment use case.

A. DATA DESCRIPTION
In our experiment, we perform pulsed thermography using
a rectangular shaped homogeneous laser illumination over
the whole area of interest. Therefore, we can calculate
the 2D solution (referring to the two spatial dimensions
x and y, see Fig. 1) for the homogeneous heat diffusion
equation for a 2D heating source in reflection configuration
(z = 0) by [22]:

T (x, y, t) = T0 +
Q/A

ρcp
√
παt

e−
(x+y)2
4αt

·

(
1+ 2

∞∑
n=1

Rne−
(nL)2
αt

)
(2)

whereby Q describes the absorbed radiation energy from the
laser, A the illuminated area, t the time, ρ the material density,
cp the specific heat capacity of the material, α the diffusivity,
R the thermal reflectivity (material to air), n the number of
reflections of the so-called thermal wave and L the thickness
of the plate. The given temperature evolution refers to an ideal
sheet infinitely extended in the plane and an infinitely short
heating impulse. For the actual specimen and experimental
setup, we can only get a first impression on how the temper-
ature evolves and concentrate on the transient signal contrast
in the dataset caused by the geometry of the specimen. Fig. 1
shows that the value for L differs since the specimen consists
of two steel sheets welded together by a spot-welded joint.
This means that, according to eq. (2), the solution for the heat
diffusion equation in the area of the spot-welded joint works
with L = L2 whereas the region outside the spot-welded
joint works with L = L1. Fig. 2 (b) shows also the main
difference of the heat flow visually (red - high temperature,
blue - low temperature). Since we are measuring in reflection
configuration (IR camera and laser on the same side of the
specimen), we observe a hot rim outside the spot-welded
joint region since the heat is accumulated. On the other hand,
we observe a cold spot in the middle since the heat diffuses
through the spot-welded joint towards the other steel sheet.
Therefore, a good connection should serve for an evident con-
trast between the region inside and outside the spot-welded
joint.

In the following, we are working with intensities In,p ∈
RNt , where Nt designates the number of time stamps which
is equal to the number of measured thermal images (ther-
mograms) in a thermal film sequence. These intensities refer
to the radiant flux of the thermal radiation as measured by
the InSb-based detector of the IR camera and converted to
digits using an analog-to-digital converter. Thus, in this work,
the intensity values in a thermal image are given by digits
pixelwise representing the measured radiant flux in x (n ∈
{1, . . . ,Nx}) and y (p ∈ {1, . . . ,Ny}).
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FIGURE 2. (a) Metallography of one of our specimens after applying
resistance spot-welding. (b) Data acquisition setup. The specimen,
consisting of two welded metal sheets, is heated up with active laser
thermography. The heat distribution over time is measured with the IR
camera. The diameter of the spot-welded joints is around 4-8 mm.

B. EXPERIMENTAL SETUP AND DATA ACQUISITION
Our dataset was collected from specimens that were made
using an electric welding system, see Fig. 2. These specimens
consist of two resistance spot-welded hot-dip galvanized
micro alloyed steel sheets HX340LAD [23] (zinc layer is
approximately 7.5µm on each side), respectively, which are
typically used in automotive industry and have a thickness
of 1mm. The resistance spot-welding has been performed
using a welding current of 7.5 kA, a pressure of 3.5 kN, and
a welding time of 240ms using an electrical spot welding
machine. According to the procedure for the determination
of the electrode life [24], more than 1600 spot weldings have
been performed. After approximately 1000 welds, the elec-
trode life has been reached and started to produce unreliable
spot-welded joints. We tested 115 welds using thermogra-
phy starting from weld no. 1510. As reference, we applied
destructive chisel testing according to [25]. The setup for
data acquisition is illustrated in Fig. 2 (a). We used active
laser thermography for all tested specimens and captured
250 frames over time, which results in a film for every test
object visualizing the spatial heat distribution for each time
step. The laser radiation was switched on for a duration of
one second at 500W, illuminating a square-shaped area of
19 × 19mm2. The thermal images were measured with an
IR camera (InSb detector, sensitive between 3.7 − 5.3µm,
frame rate: 40Hz, spatial resolution varied between 62.5 and
133µm/pixel). The utilized fiber-coupled laser emits in the
near infrared range (940 nm) and is therefore not interfering
with the detector range of the IR camera. The laser heats up
the specimen with a spot-welded joint. As can be observed
in Fig. 2, the challenge of our thermal dataset is the simi-
larity of the raw infrared data for different quality classes,

which is not distinguishable by human visual inspection.
For instance, it is hard to classify between image 1612 and
1587 or 1533 and 1548, despite their different classes. The
features specifying each class are not evident, which causes
common feature extractors like CNNs to struggle with. One
that account, we explore ways to generate feasible datasets
out of utilizing the underlying physics of the laser thermog-
raphy process described in the previous chapter.

C. DATA FILTERING
One of the aspects of this work is to explore how to pro-
cess the normalized intensity data described in the previous
section (see section III-A) to provide reliable predictions
using CNNs. Therefore, we study different filters and their
effect on the performance of the CNN.We only extract certain
images defining a filtered set S ifilt ⊂ S = {1, . . . ,Nt } with
the cardinality |S ifilt| = Nfilt < Nt . 8 can be replaced by
In,p, referring to eq. (1), and further it can be described by

a 1D array with In,p ∈ RNt and I =

 I1,1 . . . I1,Ny
. . . . . . . . .

INx ,1 . . . INx ,Ny

 ∈
RNx×Ny×Nt , so that we can describe the filtered data by:

Fi = Inormn,p [S ifilt] (3)

whereby Fi represents a subset of the whole measured dataset
with the specified intensity values defined in Table 1 so that
Fi denotes a filtered dataset. Inormn,p stands for the normalized
intensity difference as similarly described for the radiant
flux in section II-B. Thus, the filters are defined based on
intensity values of the films. These filters can lead to pos-
itive effects as we are investigating a dynamic temperature
behaviour over time. Extracting only frames with significant
changes in their amplitude, e.g. while heating or beginning
of cooling phase, allows for more evident features within
the datasets. The intensity is calculated by using the average
value of all pixels in the image. Fig. 4 (upper right corner)
illustrates the intensity and gradient values referring to the
temperature-time diagram as well as marked areas of filters
and resulting datasets. For the generation of our final results,
we use a combination of different filtered sets which yields
(Fi, Fj, . . . , Fn) whereby i, j, n ∈ {1, . . . , 12} and Fi, Fj,
Fn designate different filtered datasets according to Table 1.
In total, we define 12 different filtered datasets for the whole
film each representing a different status of heating to investi-
gate the effects of certain areas of the intensity curve on the
performance of the CNN. The image counts of each dataset
before and after augmentation are listed in Table 1 as (before
|| after). The applied augmentation methods are described in
the next section.

D. DATA AUGMENTATION
It is well-known in data science that data augmentation tech-
niques such as scaling, rotation and flipping yields a better
data basis for the application of CNNs. We first filter the data
to obtain a set F ∈ RNfilt and then augment F yielding a new
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FIGURE 3. (a) Classification of welding quality. Specimens for the three different quality classes and their respective normalized thermal image are
shown. It is evident that the classes appear similar. For instance, it is hard to classify between image #1612 and #1587. (b) Destructive testing as
reference method to assure the quality of the spot-welded joints using hammer and chisel.

FIGURE 4. Data engineering workflow with exemplary filters illustrated in the data filtering section.

TABLE 1. Image count for datasets.

set Faug
∈ RNaug :

F aug
= [M1(F), . . . ,Mk (F),C1(F), . . . ,Cl(F)] (4)

where M1, . . . , Mk : RNfilt → RNaug,k are coordinate trans-
formations and C1, . . . , Cl : RNfilt → RNaug,l represent
color transformations which change the intensity values of
a pixel within a film. More specifically, in this work we

use k = l = 3 by employing following data augmentation
techniques:{
M1/2/3, for horizontal (1)/ vertical flip (2)/ rotation (3)
C1/2/3, for PCA-Color/ hue& saturation/ illumination

(5)

E. DATA LABELING
Three classes are to be considered for classification: good,
bad and medium. Fig. 3 (a) describes the labeling benchmark
on which the data labeling is based. This benchmark was
created with destructive testing using the standardized chisel
testing [25] by destroying the specimen and inspecting the
welding quality visually by a human expert (s. Fig. 3 (b)).
As a result, each image in our dataset contains a label stating
whether it has good (standard spot weld diameter), bad (stick
weld, i.e. no or only minimum actual spot weld) or medium
(undersized weld nugget leading to a weak mechanical joint)
welding quality.

F. NEURAL NETWORK DESIGN
The data engineering steps previously discussed enable us
to generate a feasible dataset with evident features for a
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convolutional neural network to robustly assess the welding
quality. An important aspect of our data is that the frames
starting approximately from frame 100 (after the cooling
down phase) immediately become similar to each other and
are not distinguishable. Since the areas of interest only con-
tain 7-12 frames, a long short-term memory (LSTM) based
approach which considers the temporal dependency would
not deliver the desired results. The incorporation of recurrent
neural networks was not considered because of the domi-
nance of similar-looking frames which compromised nearly
80 percent of the film. Furthermore, the dynamics of our
dataset is too low with only small changes visible between
the frames. However, our observations also find that espe-
cially for the relevant areas like the maximum intensity area,
the features will get evident for each class. Based on these
considerations, a Faster-RCNN based 2D convolutional net-
work is employed which will analyze one dedicated frame of
the film, to make the prediction. Our architecture is based on
the original Faster-RCNN [26] with modified input to match
our thermal data and a ResNet101 as a backbone network.
The architecture is visualized in Fig. 5. The input image is one
frame of the reprocessed thermal film and has three channels
of size 131 × 146 × 3. As a backbone network, the ResNet-
101 is employed. After passing the backbone network, feature
maps are generated, which are passed through the region
proposal network. Subsequently, for each region proposal,
a bounding box regressor and a softmax classifier is applied
to detect and locate the defects. The architecture is illustrated
in Fig. 5.

FIGURE 5. Architecture of our neural network.

IV. RESULTS AND DISCUSSION
A. FILTERS EVALUATION
We trained the CNN with different datasets generated by
applying the filters introduced in section III. Furthermore,
the positional data augmentation techniques M1,M2,M3
defined in Sec. III were applied: The images were hori-
zontally and vertically flipped and rotated with a random
value between −90 and 90 degrees. Since the heat diffusion
is pointsymmetric, these positional changes will not affect
the original information of the frame. Fig. 6 illustrates the
accuracies for the different datasets, each representing an

FIGURE 6. Accuracies of different intensity areas. The red curve is the
average intensity curve of all films on which the filters are defined. The
bars represent the according models’ accuracies. Depending on the test
dataset, the accuracy vary due to the more evident features of specific
areas.

intensity area. We used the mean Average Precision (mAP) as
evaluation metric, which indicates the classification probabil-
ity of a correct result for a bounding box overlap of 50 percent
to the groundtruth label (intersection over union = 0.5). The
average of the accuracies for all three classes were calcu-
lated. The highest accuracy is observed when using frames
at large intensity values to train. However, using the same
frames within smaller chunks of data, results in a signifi-
cantly decreased performance. On that account, the effect
of a combined dataset is explored by combining multiple
filters as well as using the whole dataset for training. An evi-
dent accuracy boost can be observed while using the filtered
dataset F10 with images from frames of maximum intensity.
However, it is noticeable that the smaller datasets fromwithin
the same area of intensity (F2,F3,F4) result in significantly
worse accuracies compared to the combined dataset (F10).
This observation is also evident when combining the datasets
of frames 100 to 250, when the specimen is in its cool
down stage. The results, albeit being already bad with only
30-40 percent accuracy, gain a small boost to 42 percent
accuracywhen being combined. However, since the specimen
state at the end of a film is already cooled down completely,
the visual differences between frames perish. Thus, the results
are in line with our theoretical statements from chapter II.
Therefore, they should not be considered when training the
CNN as the similarity of the training data affects the per-
formance of the CNN in a negative way. Overall, we could
improve accuracy by 6 percent when specifying filters which
consider frames from the maximum intensity area of the film
(F10 compared to F11). Interestingly, using the whole film
does not decrease the accuracy significantly. As expected,
areas at the end of the film will result in imprecise results
with an accuracy of 40 percent.

Fig. 7 showcases the detections of the two best achieving
models resulting from dataset F10 and F11. While most test
films could be classified correctly, there are some cases,
in which the F11 model gives a wrong prediction while the
F10 model could classify it correctly.
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FIGURE 7. Performance comparison between different models. The upper
row of the film results showcases the detection for three different films
of model F11, which were classified falsely while the lower row shows the
detections of the same frames of model F10 which were classified
correctly.

B. DATA AUGMENTATION EVALUATION
To evaluate the impact of data evaluationmethods, we applied
different positional as well as color augmentations as defined
in Sec. III. The results are depicted in Fig. 8. For the color
augmentation, the brightness and contrast saturation and
PCA-Color was changed with a random value each.

FIGURE 8. Impact of different augmentation methods on combined
datasets (F10, F11, F12).

The accuracy could be improved when using the positional
augmentations compared to the dataset without augmentation
techniques applied. This is more evident in the datasets F10
and F11. Since the heat diffusion is pointsymmetric, posi-
tional changes like rotation or flipping will not falsify the
information inside the images. As expected, color augmenta-
tions affect the accuracy in a negative way for the datasets F10
and F11. Notably, the effect was not as evident as assumed.
It is most evident in the area of maximum intensity, where
the color augmentation decreased the accuracy. The area at
the beginning of the cooling phase experiences a performance
increase even when using color augmentation. This indicates
a potential boost when using color augmentation due to the
similar intensity values at later stages of the cooling down
stage. The observed decrease in accuracy at stages where the
intensity value is high, is due to the more evident spatial dif-
ferences between frames, which a color augmentation would
only disturb.

FIGURE 9. Detection results for class ‘good’.

FIGURE 10. Detection results for class ‘medium’.

C. COMPARISON WITH OTHER CNN ARCHITECTURES
The dataset generated when applying F10 has resulted
in robust performance. Based on this, we evaluated two
additional network architectures, namely Retina Net and
Cascade-RCNN. Furthermore, we evaluated the classifica-
tion accuracy for the three different classes ‘good’, ‘medium’
and ‘bad’. Retina contains an additional focal loss function
[27] while Cascade-RCNN employs an additional network
as cascade layer [28]. Table 2 lists relevant metrics of our
training for all different approaches. Fig. 9 to 11 illustrate
the predictions. The error rate metric indicates how many
of the predictions were correct and wrong, respectively, with
over 90 percent precision. For the average precision metric,
we averaged the values of all correct predictions for the
different classes. Each bounding box gives a likelihood of
the class being predicted, e.g. a value of 0.94 denotes that
the probability of the class is 94 percent. Faster-RCNN and
Cascade-RCNN achieve the highest average precision. Espe-
cially for the classes ‘good’ and ‘bad’, over 95 and 94 percent
are achieved, respectively. The accuracy and error rates are
indicating a stable and reliable prediction for all models.
Cascade-RCNN is achieving the best results. A 97 percent
accuracy for the class ‘good’ and 93 percent for the class
‘bad’ is achieved. As expected, the performance is worse for
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TABLE 2. Evaluation metrics for different architectures. Error rate metric indicates what percentage of all predictions were false. AP metric denotes
average likelihood of correct predictions.

FIGURE 11. Detection results for class ‘bad’.

the prediction of the class ‘medium’. Hence, Faster-RCNN
achieves a 63 percent accuracy, while Cascade-RCNN
achieves an accuracy of 65 percent. The flawed accuracy
is due to several reasons: films for the class medium were
represented the least with only 17 percent. Thus, the imbal-
ance between the different classes bad and good compared to
medium, leads to a poor performance. Furthermore, the class
‘medium’ is generally hard to visually distinguish from the
classes ‘good’ and ‘bad’. Remarkably, RetinaNet perform
worst in all metrics. This could be attributed to the fact that
generally, the welding spots are hard to detect and classify
because, even with preprocessing, features are blurry due to
the unordered heat distribution throughout the whole image.
This makes it hard for classifiers to spot relevant regions.
This is enhanced by the fact, that one-stage-detectors rely on
one step rather than incorporating an additional region pro-
posal network. Furthermore, large objects are known to cause
difficulties for one stage detectors. In our case, the object
compromises almost 80 percent of the whole image,
which might be another reason why RetinaNet performed
worse.

V. CONCLUSION
Classifying the quality of spot weldings is a tedious pro-
cess in industries due to the lack of reliable and robust,
non-destructive inspection methods. Common approaches
analyze weldings using hand engineered features. Neural
networks bear the potential to automate the process and
learn relevant features to assess the quality. In this work,
we have explored the effect of thermal dataset preparation
to generate feasible training datasets for CNNs. Therefore,

we take underlying theoretical physical foundations into
account and analyzed the intensity value of spot-welded joints
after pulsed laser thermography. Based on these observations,
we proposed data filters and explored their effect on the per-
formance of the CNN. Overall, we could achieve an accuracy
of 95 percent in classifying the quality of welds, which moti-
vates not to apply destructive testing methods. Our approach
utilizes data generated with laser thermography, which is a
cheaper alternative and can be easily applied in-situ, contrary
to X-Ray approaches. Additionally, it can be applied for a
non-contact inspection, opposing to conventional ultrasonic
approaches. We demonstrated an enhancement by 6 percent
when applying our defined data filters, which are based on
the maximum intensity area of the film. An important aspect
is that smaller data chunks are not sufficient, even with data
augmentation, to deliver robust results, and a dataset covering
multiple frames is always to be preferred. We also demon-
strate the efficiency of different augmentation methods on
different areas along the intensity curve. Color augmentation
is especially useful for the cooling stage, when the data
is similar, while positional augmentation like rotation and
flipping can boost accuracy at the earlier stages. Further steps
include the modification and optimization of the used neural
networkmodels with physics-based optimizers to detect more
complex anomalies and improved preprocessing to increase
image quality. Additionally, we aspire to employ the detection
in the frequency domain, which potentially could deliver
enhanced results in terms of computational performance and
accuracy.
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