Supplementary Information

	Ash		Sewage sludge		L 1000		P 750		P 800		P 850		P 900		P 950		P 1000	
	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD	mean	SD
									mg/l	kg								
Mn	5260	45	121	2	2340	17	2010	22	2190	7	2100	9	2030	2	2020	15	2130	13
Мо	16.3	3.5	6.4	1.2	n.d.		9.1	2.6	11.0	0.5	11.2	3.4	7.6	3.3	10.8	2.2	9.8	1.2
Sb	16.3	1.4	4.0	0.8	n.d.		14.3	2.5	11.0	0.1	7.9	0.9	6.5	0.7	6.9	0.1	7.3	0.9
Sn	100.7	8.8	10.0	0.9	n.d.		67.3	2.5	68.7	1.2	63.6	5.5	57.7	1.5	60.9	1.4	48.6	2.1
Ti	3400	2	1440	22	3980	27	3380	22	3680	26	3600	1	3530	6	3560	6	3810	95
Zr	245	11.6	95	0.8	n.d.		161	1.9	182	2.3	187	16.7	174	1.8	178	0.4	188	2.3

Table S1: Element mass fractions of sewage sludge ash, sewage sludge and samples from lab-scale and pilot-scale experiments (L 1000 = lab scale experiment at 1000 °C, P 750 - P 1000 = pilot-scale experiments at 750-1000 °C, SD = standard deviation, in triplicates), n.d.=not determined)

Table S2 Element mass balance for matrix and trace elements at different set temperatures (measured temperature in kiln is 15-25 °C lower) for the pilot-scale experiment. Elements are sorted in categories "remain in solid" and "removal via gas phase" depending on temperature. Element mass balance is calculated on element mass fractions (table 1) and weights of SSA (5000 g) and SS (1000 g) in starting material mixtures (8000 g) and product (5930-6804 g).

	Temperature												
	750 °C 800 °C		850 °C	850 °C 900 °C		С	2 950 °C			1000 °C			
Starting 8000 g													
Product 6804 g		6539 g		6350 g		6370 g		6500 g		5929 g			
remain in solid													
Al	91 ±	2	$93 \pm$	3	$90 \pm$	2	87 ±	3	$88 \pm$	2	84	±	4
Ca	99 ±	1	$103 \pm$	1	96 ±	1	94 ±	1	96 ±	1	93	±	2
Fe	$117 \pm$	3	124 ±	3	$118 \pm$	3	$113 \pm$	3	$115 \pm$	3	110	±	3
К	123 ±	6	$118 \pm$	7	$112 \pm$	7	$111 \pm$	7	$109 \pm$	8	103	±	7
Mg	101 ±	1	$102 \pm$	1	97 ±	1	99 ±	1	$98 \pm$	1	95	±	1
Р	$88 \pm$	3	$91 \pm$	5	87 ±	6	$84 \pm$	6	$85 \pm$	7	80	±	7
Si	113 ±	15	$106 \pm$	14	$112 \pm$	15	$122 \pm$	19	$109 \pm$	14	93	±	14
Cu	4 ±	8	-2 ±	8	4 ±	11	6 ±	8	6 ±	8	12	±	8
Mn	-9 ±	2	-14 ±	1	-6 ±	1	-3 ±	1	-5 ±	2	-1	±	2
Ti	-8 ±	1	-12 ±	1	-7 ±	0	-5 ±	0	-8 ±	0	-6	±	3
Zn	11 ±	2	3 ±	3	3 ±	9	$13 \pm$	2	9 ±	3	15	±	2
Zr	17 ±	5	10 ±	4	$10 \pm$	12	$16 \pm$	4	12 ±	4	15	±	4
removal via gas phase													
As	98 ±	21	95 \pm	13	97 ±	19	$85 \pm$	12	77 ±	11	69	±	10
Cd	90 ±	4	$89 \pm$	7	76 ±	4	76 ±	2	71 ±	4	46	±	3
Мо	70 ±	57	$81 \pm$	21	$81 \pm$	48	$55 \pm$	99	80 \pm	37	66	±	31
Pb	96 ±	5	$83 \pm$	5	69 ±	5	72 ±	6	80 \pm	5	68	±	5
Sb	114 ±	21	$84 \pm$	8	$59\pm$	25	$48 \pm$	31	52 ±	13	51	±	29
Sn	89 ±	9	87 ±	8	79 ±	12	72 ±	8	77 ±	8	56	±	9

temperature [°C]								
set	measured							
750	757							
800	773							
850	822							
900	887							
950	937							
1000	990							

Table S3: Mean temperature at the hottest temperature zone of the kiln (mean temperature of measuring points at 1000 mm, 1200 mm and 1400 mm length) compared to set temperature.

Fig. S1: Temperature profile in material bed over the length of the rotary kiln in operation during steady state conditions.