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Abstract: The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade
material in gas turbines were investigated by the sonic resonance method in the temperature interval
between room temperature and 1300 ◦C. Elastic constants at such high temperatures are needed to
model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as
well as during technical accidents which may happen in service (overheating). High reliability of
the results was achieved using specimens of different crystallographic orientations, exciting various
vibration modes as well as precise measurement of the material density and thermal expansion
required for modeling the resonance frequencies by finite element method. Combining the results
measured in this work and literature data the elastic constants of the γ- and γ′-phases were predicted.
This prediction was supported by measurement of the temperature dependence of the γ′-fraction.
All data obtained in this work are given in numerical or analytical forms and can be easily used for
different scientific and engineering calculations.

Keywords: nickel-base superalloys; single-crystals; characterization; elastic constants

1. Introduction

Blades of the hot section of gas turbines operate under severe service conditions
including high temperatures, different mechanical loads, and an aggressive environment.
In order to achieve the required service properties, the blades are solidified as single-
crystals of nickel-base superalloys [1,2]. The excellent mechanical properties of nickel-base
superalloys at high temperatures are provided by their two phase microstructure: The
γ-solid solution of nickel strengthened by the γ′-precipitates, a phase on the base of the
intermetallic compound Ni3Al. Single-crystal blades are critical structural components of a
gas turbine which determine the efficiency and reliability of the whole assembly. Therefore,
the lifetime of turbine blades has to be reliably predicted by rigorous engineering calcula-
tions, which includes modeling the mechanical behavior of a blade material. Two types of
mechanical models can be applied for this purpose: The models treating a blade material
as a homogeneous continuum [3–5] and the advanced physically-based models explicitly
considering the two phase γ/γ′-microstructure of nickel-base superalloys [6–10]. In partic-
ular, models of the last type have been developed to predict microstructural evolutions at
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high temperatures like rafting [6,7,9,10]. Both types of models require numerous material
parameters, the first models at a macroscopic level, that is the parameters of a material as
a whole, and the second models at a microscopic level, that is separately the parameters
of the constituent γ- and γ′-phases. This set of mechanical parameters also includes the
characteristics of elasticity, which in the case of cubic crystals of nickel-base superalloys is
described by three elastic constants, usually by the elastic stiffnesses c11, c12, and c44.

It is important to adequately characterize the elastic properties of nickel-base superal-
loys because they are highly anisotropic. For example, in [11] the elastic properties of the
single-crystal superalloy GS6F were reported. It was found that at room temperature (RT),
the Zener factor of anisotropy A = 2 c44/(c11 − c12) is equal to about 2.5, while Young’s
modulus Ex and shear modulus Gxy change by a factor of about 2.2 depending on x- and y-
directions with minimum for E〈001〉 and G〈011〉〈011〉, and maximum for E〈111〉 and G〈001〉〈hk0〉,
(G〈001〉〈hk0〉, is independent of 〈hk0〉). The most anisotropic characteristic is Poisson’s ratio
νxy, which even inverts its sign changing from the maximum value ν〈011〉〈100〉= +0.65 to the
minimum value ν〈011〉〈011〉= −0.06 [12]. A detailed analysis of the extreme values of the
Poisson ratio of cubic crystals can be found in [13].

Under normal service conditions, the maximum operating temperature of blade ma-
terial does not exceed 1150 ◦C, therefore the elastic constants of nickel-base superalloys
are usually measured at temperatures up to this limit [13–17]. However, in some specific
cases, the elastic constants at higher temperatures are needed. One such case is modeling
technical accidents when the blade material can experience a short γ′-solvus overheat-
ing [18]. Another case is modeling hot isostatic pressing (HIP) [19,20] which is performed
in a temperature window between the γ′-solvus and solidus where the strengthening
γ′-phase is totally dissolved and therefore the superalloy is very soft [21]. Such modeling
activities need elastic constants at temperatures up to about 1300 ◦C. Therefore, the first
objective of our work was measuring the macroscopic elastic constants of the single-crystal
nickel-base superalloy CMSX-4 in a temperature interval between RT and 1300 ◦C.

As mentioned above, the advanced physically-based models for the mechanical behav-
ior of single-crystal nickel-base superalloys require microscopic elastic constants separately
for the γ- and γ′-phases. Knowledge of these microscopic parameters is also of academic
interest, namely for understanding the phenomenon of rafting the initially cuboidal γ′-
precipitates that occurs in superalloy under high temperature creep conditions. This
phenomenon was first considered by Tien and Copley [22] and then investigated in many
publications, e.g., analytically by Pineau [23] or by means of transmission electron mi-
croscopy (TEM) by Svetlov et al. [24]. Nabarro [25] reviewed available publications on
rafting and proposed the “elastic concept for rafting”, which predicts the direction of
γ′-rafting depending on the sign of the product m × δ, where δ is the misfit of γ- and
γ′-lattice spacing and m is the misfit of the elastic moduli of the γ- and γ′-phases. Nabarro
defined m as:

m =
(Mp −Mm)

0.5 (Mp + Mm)
(1)

where M = c11 − c12. From here and below we will use the superscripts “m” and “p”
respectively for the γ-matrix and γ′-precipitates. According to this elastic concept for
rafting during creep under uniaxial 〈001〉 tensile loading the γ′-phase forms rafts normal
to load axis (N-rafting) if m× δ < 0 and rafts parallel to load axis (P-rafting) if m× δ > 0.
N-rafting is usually observed in Ni-base alloys where δ < 0 [26,27], while P-rafting is often
observed in Co-base alloys where δ > 0 [28,29]. Many experimental efforts were made to
clarify the sign of m for nickel-base superalloys [16,30–34]. However, until now there is
no full agreement about this point in the literature. Therefore, the second objective of this
work is the prediction of the elastic properties of the γ- and γ′-phases of CMSX-4 as well as
sign(m).

The determination of the macroscopic and microscopic elastic constants requires
certain material parameters, such as the density and temperature dependencies of thermal
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expansion and volume fraction of γ′-phase. Therefore, the third objective of this work was
the precise measurements of these characteristics for superalloy CMSX-4.

2. Materials and Methods
2.1. Investigated Specimens

The investigated material was the single-crystal nickel-base superalloy CMSX-4 [35]
developed by Cannon-Muskegon, Muskegon, USA and is widely used as blade material
for aircraft jet engines and land-based gas turbines. The single-crystals of different crystal-
lographic orientations were solidified by Doncasters Precision Castings (DPC), Bochum,
Germany, and were fully heat treated and used for different experiments performed in this
work. For measurement of the elastic constants, 3 plate-shaped, rectangular specimens
were cut by spark erosion. The plate-shaped beams were 3 mm thick, 8 mm wide, and 80
mm long, and had the following orientations: 1st beam-axial [001] with side faces (100) and
(010); 2nd beam-axial [011] with wide and narrow side faces respectively (100) and (011);
and 3rd beam-axial [111] with wide and narrow side faces respectively (211) and (011). The
exact crystallographic orientations (Euler angles) of the specimens were measured by two
methods: X-ray diffraction (XRD), the Laue method, and by a metallographic method, as
described in ([2] chapter 4.4). The metallographic method is based on an analysis of the
orientation of dendritic structure visualized on the specimen surface by macro etching. An
advantage of this method is that the orientation can be examined across the entire surface
of the specimen. As was shown in [21], the difference between the results of XRD and the
metallographic method is within 1–3◦, which is comparable with the misorientation of
subgrains in “technical single-crystals” of nickel-base superalloys, see e.g., [36,37].

2.2. Measurement of Elastic Constants

The elastic constants of heat treated CMSX-4 have been determined by the sonic
resonance (SR) method developed by Förster [38]. The principle of the SR method and its
application to isotropic materials is described in detail in the ASTM E1875 standard [39].
The SR-measurements have been performed under vacuum in a testing device Elastotron
2000 HTM, Reetz, Berlin, Germany at temperatures between 24 ◦C and 1300 ◦C. The holding
times varied from 5 min to 20 min depending on the temperature. A special measurement
temperature was 1280 ◦C because it is the γ′-solvus temperature of CMSX-4. Therefore, at
1280 ◦C and 1300 ◦C the elastic constants of the γ-matrix of CMSX-4 were measured.

The frequency spectra of different flexural and torsional vibration modes were reg-
istered in the range between 1 kHz and 70 kHz. Harmonics of the orders between 4th
and 7th were excited depending on the vibration mode, the specimen orientation, and
temperature. Figure 1 shows an example of the lower parts (1–20 kHz) of the frequency
spectra measured for the [001] beam of CMSX-4 at 24 and 1300 ◦C.

An interpretation of the resonance frequency peaks is possible by solving the eigen-
value problem for free dynamic vibrations with given elastic constants. For example, the
computed resonance modes for the [001] specimen at 24 ◦C are shown in Figure 2. Note
that at 24 ◦C, the 6th resonance peak is due to the first torsional mode, while at 1300 ◦C the
first torsional mode corresponds to the 7th peak (see Figure 1).

In the case of isotropic materials, closed-form solutions for the eigenfrequencies can
be applied to estimate the elastic constants from the resonance peaks (see e.g., [39]). Since
shear and bending modes are generally coupled for anisotropic materials, sufficiently
accurate analytical estimates of the eigenfrequencies are not available for arbitrary oriented
crystals. Therefore, in this work the eigenfrequencies have been calculated by finite element
analysis (FEA, see, e.g., [40]) and with the Abaqus FE code [41].
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Figure 1. Lower parts (1–20 kHz) of frequency spectra measured from the [001] beam of CMSX-4 
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computed eigenfrequencies. The mesh can be also seen in Figure 2. The unknown elastic 
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Figure 1. Lower parts (1–20 kHz) of frequency spectra measured from the [001] beam of CMSX-4 at
24 and 1300 ◦C. T-torsional peaks, and Y- and X-flexural peaks.
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Figure 2. The first six resonance modes of the [001] beam at 24 ◦C.

The Lanczos solver of Abaqus has been applied to compute the eigenfrequencies of
the freely oscillating beams. A mesh made of 3 × 8 × 80 = 1920 quadratic elements (20
nodes, Abaqus type C3D20) was found to ensure a relative accuracy better than 5 × 10–4

for the computed eigenfrequencies. The mesh can be also seen in Figure 2. The unknown
elastic constants {pi} = {c11, c12, c44 } were determined by minimizing the sum R(pi) of
the squares of the deviations between measured and calculated peak frequencies (Least
Square Method), that is,

R(pi) =
3

∑
s=1

1
2 Ns

Ns

∑
n=1

(
f FE
sn (pi)− f Exp

sn

f Exp
sn

)2

(2)

where Ns is the number of considered resonance modes for the specimen s, f Exp
sn the nth

measured resonance frequency of the same specimen, and f FE
sn (pi) is the corresponding

computed eigenfrequency. It should be stressed that the three tested specimens are con-
sidered in the sum of the deviations in Equation (2). The use of specimens of different
orientations as well as a large number of vibration modes is necessary to improve the
reliability of the results. However, with increasing order and temperature the identification
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of the resonance peaks becomes increasingly uncertain, which in practice limits the number
of available experimental resonance frequencies. As a rule, all resonance peaks up to
the first torsional mode have been taken into account in the objective function R(pi). In
accordance, the first 6 or 7 modes and the first 4 modes have been considered in the case of
the [001] specimen, respectively in the case of the [011] and [111] specimens. An exception
was the [011] specimen at 1300 ◦C, for which the 4th resonance peak could not be identified
with certainty.

To assess the reliability of these results, the influence of imprecisions concerning
the specimen orientations was investigated by applying perturbations to the specimen
orientations. More specifically, additional rotations of 2◦ around a random axis were
applied to each specimen. It was found that such perturbations induced an average relative
error equal to 0.5% for c44, 2% for c11, and 4% for c12.

2.3. Measurement of Material Density and Thermal Expansion

The calculation of the resonance frequencies needs the material density ρ(T) at in-
vestigated temperatures. Therefore, the density of CMSX-4 at RT and the linear thermal
expansion (LTE) εT(T) were carefully measured. The density ρ(RT) was measured by
the Archimedes method, i.e., weighting the specimen in air and water. The specimens
for density measurement were machined in cylindrical shape with a diameter of 18 mm,
length of 45 mm, and a mass of about 100 g. Such massive specimens with a small ratio
surface/volume are preferable for density measurements. To avoid gas bubbles attach-
ing to the specimen surface during measurements in liquid, the corners of the cylinders
were rounded and the surface polished very carefully. During the measurements, the
temperature of air and water varied within±0.1 ◦C. The precision balance used, a Sartorius
R160D, has an accuracy of 0.01 mg. The measurements gave the following density value
ρ(23 ◦C) = 8.72 ± 0.01 g/cm3.

The LTE of CMSX-4 was measured under vacuum in a dilatometer DL 1500, Ul-
vac Sinku-Riko, Japan in the temperature range between 20 and 1310 ◦C. The measured
dependence εT(T) shown in Figure 3 is well approximated by Equation (3):

εT(T) = a + b T + c exp(d T), (3)

where a = −6.66 × 10−4; b = 1.24 × 10−5, ◦C−1; c = 1.34 × 10−4, and d = 3.28 × 10−3, ◦C−1.
The γ′-solvus temperature of CMSX-4 determined by a kink point in the curve εT(T) was
found to be TS = 1280 ± 2 ◦C, see insert in Figure 3. The temperature change of density was
calculated as ρ(T) = ρ(RT)/[1 + εT(T)]

3. Raw data for εT(T) are given in Appendix A.

Figure 3. Thermal expansion of CMSX-4. The red solid line is the measured dilatometric curve and
the black dashed line is the approximation with Equation (3). Kink of the dilatometric curve shown
in the insert indicates the γ′-solvus temperature of CMSX-4 equal to 1280 ◦C.
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2.4. Measurement of the Temperature Dependence of γ′-Volume Fraction

In this work the elastic constants of the γ′-phase were predicted using those of the
γ-matrix and γ/γ′-compound. These calculations need reliable data for the temperature
dependence of the γ′-volume fraction of CMSX-4 f p(T). Different methods are applied to
measure the γ′-volume fraction in nickel-base superalloys, namely: Scanning electron mi-
croscopy (SEM) of the γ/γ′-microstructure [42,43], chemical extraction of the γ′-phase [44],
XRD [44], electron probe X-ray microanalysis (EPMA) of the compositions of γ- and γ′-
phases in TEM [45,46], measurement of the alloy electrical resistivity [47], and others.
However, nearly all these methods do not provide reliable results with an acceptable
accuracy. For example, in [45,46] f p(RT) was measured in CMSX-4 by the same method,
EPMA in TEM, but the reported results significantly differ, 68 vol.% in [45] and 78 vol.%
in [46]. In our opinion the most reliable method to measure f p is SEM analysis of the
specimens with the pre-rafted coarse γ/γ′-microstructure, as applied in [48,49]. Therefore,
this method was used in this work. In order to form such a pre-rafted γ/γ′-microstructure,
a [001] single-crystal of CMSX-4 was aged under creep conditions at a low temperature,
900 ◦C, under low stress, 170 MPa, for a very long time, 6400 h. This creep test resulted
in a pre-rafted coarse γ/γ′-microstructure without a noticeable creep strain, see the 1st
SEM image (at 900 ◦C) inserted in Figure 4. During pre-rafting, the width of the γ-channels
w increased from about 50 nm to about 180 nm, as measured in [50]. It should be men-
tioned that according to the literature data [46,47] and the results of our investigations,
the γ′-fraction in CMSX-4 at temperatures below 850–900 ◦C is nearly equal to that at RT,
f p(900 ◦C) = f p(RT). The pre-rafted specimen was cross cut into several pieces which
were heated up to different temperatures between 950 ◦C and 1250 ◦C, and held for 1 h (at
950–1100 ◦C) or 0.5 h (at 1150–1250 ◦C) in order to reach the equilibrium γ′-fraction. Then
the high temperature γ/γ′-microstructure was frozen by water quenching. The quenched
specimens were longitudinally cut along (100) crystallographic plane (perpendicular to
the γ′-rafts) and prepared for SEM where the final step of fine polishing was performed
with colloidal silica. Chemical etching was avoided to exclude the etching artefacts. The
specimens were observed in a scanning electron microscope FEG-SEM GEMINI 1530 VP,
LEO, Germany in backscattered electron (BSE) mode. A total of 12 BSE images were taken
from every specimen and processed using the image processing program ImageJ [51]. The
results are presented graphically in Figure 4 as circles as well as numerically in Table 1. The
vertical error bars show the standard error of the mean value, which varies between 1 and
2 vol.% depending on the temperature. The red solid line is an analytical approximation. It
was assumed that f p(T) = f p(RT) = 74 vol.% at temperatures T below T0 = 850 ◦C while
at temperatures T between T0 and TS = 1280 ◦C is described by

f p(T0 ≤ T ≤ TS) = f p(RT)×
[

1−
(

T − T0

TS − T0

)n]N

, (4)

where n = 2.635 and N = 0.651.
It is seen from Figure 4 that in the temperature range 850–1050 ◦C the results of this

work are in agreement with the results measured in [46] by EPMA in TEM (blues squares).

Table 1. The γ′-volume fraction f p as a function of temperature, vol. %.

T, ◦C 900 950 1000 1050 1100 1150 1200 1250 1280

f p 74.0 72.3 70.5 68.9 60.1 54.0 43.4 22.8 0
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Figure 4. The γ′-volume fraction in CMSX-4 as a function of temperature. Blue squares and a blue
dashed line—measured by electron probe X-ray microanalysis (EPMA) in transmission electron
microscopy (TEM) in [46] (averaged for two deliveries of CMSX-4), and the red circles and red solid
line (approximation with Equation (4))—in this work. Inserts are SEM images of the pre-rafted
γ/γ′-microstructures quenched from investigated temperatures.

3. Results
3.1. Temperature Dependence of Elastic Constants of Superalloy CMSX-4

The components of the elastic stiffness {c11, c12, c44 } of superalloy CMSX-4 deter-
mined with Equation (2) at temperatures between 24 ◦C and 1300 ◦C are given in Table 2.
The temperature dependencies of cij and other characteristics of elasticity are presented
graphically in Figure 5. For simplicity, we will use the following notations: E001 =
E〈001〉, G001 = G〈001〉〈hk0〉, and ν001 = ν〈001〉〈hk0〉 (G〈001〉〈hk0〉 and ν〈001〉〈hk0〉 are independent
of 〈hk0〉).

Table 2. Temperature dependence of elastic stiffnesses cij of CMSX-4, GPa.

T, ◦C 24 200 400 600 800 1000 1100 1200 1250 1280 1300

c11 250 243 236 227 218 199 193 189 186 185 185
c12 161 158 155 152 150 141 144 149 152 154 156
c44 129 123 117 110 102 93 87 79 74 70 69

It is seen from Figure 5a that the elastic moduli E001 and G001 = c44 monotonically
decrease with the temperature (elastic softening), which is a general trend for elastic solids.
However, some elastic characteristics show a remarkable increase. Namely, the Zener factor
of anisotropy A strongly increases with the temperature, from about 2.9 at RT to about
4.7 at 1300 ◦C, and Poisson’s ratio ν001 respectively from about 0.39 to about 0.47. That is,
ν001 approaches the maximum value of 0.5 possible at 〈001〉 orientation similar to that for
elastically isotropic solids. This limitation follows from Equation (5) for the bulk modulus
B in which the value becomes infinite at ν001 = 0.5. This increase of ν001 with temperature
results in a specific temperature change of B. In the temperature range RT–1000 ◦C, B
decreases due to a decrease of E001 but at higher temperatures, it slightly increases due to
an accelerated increase of ν001.

B =
E001

3(1− 2 ν001)
(5)

c11 =
E001(1− ν001)

(1 + ν001)(1− 2 ν001)
(6)
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c12 =
E001 ν001

(1 + ν001)(1− 2 ν001)
(7)

The temperature changes of elastic stiffnesses c11 and c12 are also non-monotonous.
From Table 2 and Figure 5 it follows that c11 decreases from 250 GPa at RT to 185 GPa at
1250 ◦C, but then remains constant. c12 changes similarly to B, by first decreasing from
161 GPa at RT to about 141 GPa at 1000 ◦C, but then increases to about 156 GPa at 1300 ◦C.
The reason for the similar temperature dependencies of B, c11, and c12 becomes clear from
the comparison of their relationships with ν001, see Equations (5)–(7). All these relationships
include a divisor (1− 2 ν001). Therefore, when ν001 approaches 0.5 the values of B and c12
increase, while c11 remains nearly constant.
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γ′-solvus temperature 1280 ◦C.

A remarkable feature of the measured temperature dependencies of elastic character-
istics is that at the γ′-solvus temperature Ts = 1280 ◦C, most of them exhibit a change of
slope, see Figure 5b. The reason for that is a transition from a two-phase state γ/γ′ to a
single γ-phase state. Therefore, the elastic constants measured at 1280 ◦C and above it, at
1300 ◦C, correspond to the γ-matrix of the superalloy CMSX-4. These results will be used
below for an estimation of the elastic properties of γ- and γ′-phases.

For an analysis of the temperature dependence of the elastic properties of CMSX-
4 and its analytical approximation, it is reasonable to select three independent elastic
characteristics which monotonically change with a temperature up to TS. The usually used
elastic stiffnesses cij are obviously not suitable for this analysis because their temperature
dependencies are non-monotonous, as mentioned above. However a good alternative for
that are the elastic compliances sij related with cij by Equations (8)–(10):

s11 =
c11 + c12

(c11 − c12)(c11 + 2 c12)
, (8)

s12 = − c12

(c11 − c12)(c11 + 2 c12)
, (9)

s44 =
1

c44
. (10)

Note that the Formulas (8) and (9) are invariant relative to sij ↔ cij substitution. Figure 6a
shows the temperature change of {s11, s12, s44 } calculated with the data of Table 2 and
Equations (8)–(10). It is seen that they monotonically increase in the temperature range
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between RT and TS. In this temperature interval, sij = f (T) can be well fitted with a sum
of linear and exponential functions of T, as defined by:

sij = a + b T + c exp(d T), (11)Crystals 2021, 11, x FOR PEER REVIEW 10 of 19 
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The fitted parameters a, b, c, and d are given in Table 3.

Table 3. Fitted parameters of Equation (11) for CMSX-4.

Elastic Compliances of Superalloy CMSX-4

sij, GPa−1 a, 10−3 GPa−1 b, 10−6 GPa−1 ◦C−1 c, 10−6 GPa−1 d, 10−6 ◦C−1

s11 7.90 2.58 2.10 6.71
−s12 3.08 1.17 0.886 6.84
s44 7.68 2.30 2.11 5.82

It is seen in Figure 6a that the temperature dependencies of elastic compliances
sij = f (T) of CMSX-4 are well fitted by Equation (11) and the approximating curves cross
the experimental dots nearly in the middle. Taking the inverse version of Formulas (8)–(10)
for the sij → cij conversion, the temperature dependencies of elastic stiffnesses cij = f (T)
were calculated, see Figure 6b. It is seen that the calculated curves cij(T) correctly predict
the temperature change of elastic stiffnesses as well.

3.2. Temperature Dependence of Elastic Constants of the Matrix Alloy

As was mentioned above, at the γ′-solvus temperature 1280 ◦C and above, at 1300 ◦C,
we actually measured the elastic properties of the γ-matrix of CMSX-4. Therefore, com-
bining these results with those measured in [16] in the temperature range RT–800 ◦C for
a γ-alloy compositionally similar to the matrix of CMSX-4, one can evaluate the elastic
properties of γ-matrix over the entire temperature range. In order to fit these combined
results, Equation (11) was used again, which showed high reliability when applied to
CMSX-4. The fitted parameters a, b, c, and d for the matrix are given in Table 4.
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Table 4. Fitted parameters of Equation (11) for the γ-matrix.

Elastic Compliances of Matrix

sm
ij , GPa−1 a, 10−3 GPa−1 b, 10−6 GPa−1 ◦C−1 c, 10−6 GPa−1 d, 10−6 ◦C−1

sm
11 7.49 4.44 1.05 7.10
−sm

12 2.90 2.12 0.399 7.31
sm

44 7.19 2.89 3.26 5.43

The fitted curves sij = f (T) for the γ-matrix are shown in Figure 7a. It is seen that
these curves have shapes similar to those for CMSX-4 (compare with Figure 6a) and pass
through the experimental dots. The curves cij = f (T) calculated from sij = f (T) with
inverse Equations (8)–(10) are plotted in Figure 7b. They have shapes that are also similar
to those for CMSX-4 (compare with Figure 6b) and reasonably predict the experimental
values of cij.
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3.3. Calculation of Elastic Constants for the γ′-Phase

The use of the bounds of Reuss (R) and Voigt (V) and their average as proposed by Hill
(H) [52], provides a way to derive very simple estimates of the effective elastic properties of
heterogeneous materials. For example, the RVH-rule of mixture was successfully applied
in [31] to investigate contributions of the different phases to the effective Young’s modulus
of Ni-base superalloys. Even for textured polycrystals, the RVH was shown to provide
estimates of the effective elastic stiffness that agree well with the self-consistent method
with a much lower mathematical expenditure [53,54]. In this work, the RVH-rule of mixture
is applied to the inverse problem, namely for the estimation of the elastic properties of
the constituent phase γ′ using the elastic properties measured for the superalloy (γ/γ′-
compound) and its γ-matrix (another constituent phase). The applied procedure, which is
based on the RVH-rule of mixture, is described below. It is worth mentioning that misfit
(coherency) stresses have no influence on the effective elastic constants of the compound
due to the principle of superposition in linear elasticity (see, e.g., [55]).

If C(x) and S(x) respectively denote the local stiffness and compliance tensors, and
Ceff and Seff denote the effective stiffness and compliance tensors, the bounds of Voigt
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and Reuss are based on the following inequalities of quadratic forms specifying the elastic
energy functional, as derived by Hill [56]:

E : Ceff : E ≤ E : 〈C〉 : E, (12)

Σ : Seff : Σ ≤ Σ : 〈S〉 : Σ, (13)

where E and Σ are respectively arbitrary strain and stress tensors. Here, and in the
following of this section, the notation 〈x〉 represents the volume average of the quantity x
in a representative volume.

A rigorous way to obtain bounds of the effective elastic properties of a compound is
to use the spectral decomposition of the tensors of elastic stiffness and compliance, which
in the case of cubic symmetry is given by:

C =
3

∑
i=1

λi Pi, (14)

S = C−1 =
3

∑
i=1

λ−1
i Pi, (15)

where Pi are three orthogonal fourth order basis tensors such that Pi : Pj = 0 if i 6= j,
Pi : Pi = Pi, and Pi :: Pj = δij, and λi are three eigenvalues of the tensor C. This
decomposition of the elasticity stiffness tensor in orthonormal modes can be traced back to
the historic work of Lord Kelvin [57]. For a more recent presentation, one can consult the
references [58–60]. The Voigt’s representation of the basis tensors is:

PV
1 =

1
3



1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

 (16)

PV
2 =

1
3



2 −1 −1
−1 2 −1
−1 −1 2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

 (17)

PV
3 =

1
2



0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

 (18)

The eigenvalues λi following from the system of linear equations defined by Equations
(14), (16)–(18) are:

λ1 = c11 + 2 c12, (19)

λ2 = c11 − c12 , (20)

λ3 = 2 c44. (21)

The inverse conversion λi → cij is defined by:

c11 = (λ1 + 2λ2)/3, (22)
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c12 = (λ1 − λ2)/3, (23)

c44 = λ3/2. (24)

For a nickel-base superalloy with a composite γ/γ′-microstructure, the spectral de-
composition (14) can be separately applied to the stiffness tensors of a γ/γ′-compound and
each phase, γ and γ′, respectively to Ceff, Cm, and Cp:

Ceff =
3

∑
i=1

λeff
i Pi, (25)

Cm =
3

∑
i=1

λm
i Pi, (26)

Cp =
3

∑
i=1

λ
p
i Pi, (27)

which results in three sets of the eigenvalues: λeff
i for the γ/γ′-compound, and λm

i and
λ

p
i for the constitutive γ- and γ′-phases. Due to Equation (15), the corresponding decom-

positions hold for the compliance tensors Seff, Sm, and Sp. A consequence of the spectral
decomposition (14,15) is that the inequalities (12,13) can be rewritten in the following form:

3

∑
i=1

λeff
i Ei : Pi : Ei ≤

3

∑
i=1
〈λi〉 Ei : Pi : Ei (28)

3

∑
i=1

(
λeff

i

)−1
Σi : Pi : Σi ≤

3

∑
i=1
〈λ−1

i 〉 Σi : Pi : Σi, (29)

where E1, E2, and E3 are three orthogonal eigentensors of C corresponding to three defor-
mation eigenmodes, that is, dilatation, deviatoric tetragonal distortion in the crystal axes,
and pure shear. These deformation eigenmodes Ei are respectively related by the elasticity
law to the three orthogonal stress tensors Σi, where Σ1 is a hydrostatic stress tensor, and Σ2
and Σ3 two deviatoric stress tensors.

As the three tensors Ei as well as Σi are independent, and the inequalities (28) and (29)
are valid for any Ei and Σi, the following inequalities hold:

λeff
i ≤ 〈λi〉 (30)(

λeff
i

)−1
≤ 〈λ−1

i 〉. (31)

Combining (30) and (31) gives the lower Reuss and upper Voigt bonds for λeff
i :

λR
i = 〈λ−1

i 〉
−1 ≤ λeff

i ≤ λV
i = 〈λi〉, (32)

which correspond to the serial and parallel arrangement of constituents and are given by:

λR
i =

[
(1− f p) (λm

i )−1 + f p
(

λ
p
i

)−1
]−1

, (33)

λV
i = (1− f p)λm

i + f p λ
p
i , (34)

where f p is the γ′-volume fraction.
Thus, an estimate of the effective properties can be obtained by the arithmetic average

of the bounds λeff,1
i = 1/2

(
λR

i + λV
i

)
or alternatively by harmonic average 1/λeff,2

i =

1/2
(

1/λR
i + 1/λV

i

)
. However, a theoretical drawback of these averages is their lack of
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consistency, because λeff,1
i 6= λeff,2

i . As mentioned earlier by Hill [52], a more consistent
estimate is the geometric average:

λeff
i =

√
λR

i λV
i , (35)

which removes this inconsistency (see, e.g., [61]).
The elastic constants of the γ′-phase can be estimated using Equation (35) by setting

the effective constants to those determined for CMSX-4, that is λeff
i = λa

i (the superscript
“a” means alloy CMSX-4) and solving with respect to λ

p
i the Equations:

λa
i =

√
λR

i

(
λm

i , λ
p
i

)
λV

i

(
λm

i , λ
p
i

)
, (36)

where λR
i

(
λm

i , λ
p
i

)
and λV

i

(
λm

i , λ
p
i

)
are given by Equations (33) and (34). After some

rearrangement, the last Equation can be transformed in a quadratic equation for the
unknown λ

p
i , which has only one positive root. Finally, with the substitution ξi = λa

i /λm
i ,

this solution can be written as:

λ
p
i =

λm
i
2

−(1− f p

f p

)(
1− ξ2

i

)
+

√(
1− f p

f p

)2(
1− ξ2

i
)2

+ 4 ξ2
i

 (37)

Summing up the above analytical computation, one can define the following steps for
calculating the elastic stiffnesses cp

ij of the γ′-phase:
1. Using ca

ij and cm
ij defined by Equation (11) with {a, b, c, d} given in Tables 3 and 4,

calculate λa
i and λm

i by Equations (19)–(21);
2. With the substitution ξi = λa

i /λm
i and f p defined by Equation (4), calculate λ

p
i by

Equation (37);
3. Using λ

p
i , calculate cp

ij by Equations (22)–(24).
It should be mentioned that at temperatures close to the γ′-solvus temperature

TS = 1280 ◦C, the γ′-fraction f p approaches zero and accordingly the term (1− f p)/ f p

in Equation (37) takes too high values, which leads to wrong results. Therefore, in this work
cp

ij were calculated for temperatures up to 1250 ◦C, which was the highest temperature in
the f p-measurements.

Figure 8 shows together the temperature dependencies of elastic stiffnesses of alloy
CMSX-4 and its phases γ and γ′, respectively ca

ij, cm
ij , and cp

ij. It is seen that the curves ca
ij(T),

cm
ij (T), and cp

ij(T) have similar shapes and the values of ca
ij, cm

ij , and cp
ij are quite close. At all

relevant temperatures, the inequalities cm
11(T) > ca

11(T) > cp
11(T) and cm

12(T) > ca
12(T) >

cp
12(T) apply. For c44, the same inequality is valid up to a temperature of about 800 ◦C

but at higher temperatures, the c44 values of CMSX-4 and its phases become very close,
cm

44(T) ≈ ca
44(T) ≈ cp

44(T).
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4. Discussion

The elastic constants of single-crystal nickel-base superalloy CMSX-4 were measured
by the sonic resonance method in a wide temperature interval between room temperature
and 1300 ◦C. The accuracy of such a measurement is influenced by many factors and
consequently the total measurement error can be quite large. Therefore, in order to achieve
a high measurement accuracy, a negative effect of every factor has to be minimized.

For example, the effect of a change of the material density with a temperature can be
discussed. The general relationship between the elastic moduli M (E or G) measured by the
resonance method, the specimen parameters and the resonance frequency fR is given by:

M = KS ρ f 2
R, (38)

where KS is the factor of specimen geometry and ρ is the material density. It follows from
Figure 3 that an increase of temperature from RT to 1300 ◦C results in the thermal expansion
of CMSX-4 by about 2.5%, which according to the relationship ρ(T) = ρ(RT)/[1 + εT(T)]

3,
corresponds to a decrease of material density by about 7.7%. Thus, neglecting the tem-
perature expansion εT(T), that is assuming ρ(T) ≈ ρ(RT), results in the same error of the
measured elastic moduli. Therefore, in this work the thermal expansion of CMSX-4 investi-
gated over an entire temperature interval as well as the alloy density at room temperature
ρ(RT) was precisely measured.

Single-crystals of nickel-base superalloys are characterized by high elastic anisotropy
which significantly increases with temperatures. As mentioned above, the Zener factor of
anisotropy A of CMSX-4 increases from about 2.9 at RT to about 4.7 at 1300 ◦C. Therefore,
for a reliable characterization of the elastic properties of such strongly anisotropic materials,
it is important to investigate many specimens of different crystallographic orientations, as
well as to excite different vibration modes. This was done in the present investigation.

A decisive point of the whole investigation is the determination of the elastic constants
by computing the resonance frequencies. Here the specimen geometry and its exact
crystallographic orientation have to be accurately considered. This cannot be done in
analytical approaches, which assume ideal orientations with high symmetries. In contrast,
this can be realized by finite element method, as it was computed in this work.

The resonance measurements performed at super-solvus temperatures allowed us
to determine the elastic constants of the γ-matrix of CMSX-4 in the temperature interval
1280–1300 ◦C. Combining the results of this work obtained with the results reported by
Siebörger et al. [16] for an alloy compositionally similar to the matrix of CMSX-4, the elastic
constants of the γ-matrix cm

ij over an entire temperature range were estimated. Precisely



Crystals 2021, 11, 152 15 of 18

measuring the temperature change of the γ′-fraction f p and applying the Reuss–Voigt–Hill
rule of mixture, the elastic constants of the γ′-phase cp

ij were estimated as well. The obtained

values of cm
ij and cp

ij can be used for advanced physically-based modeling of the mechanical
behavior of nickel-base superalloys explicitly considering the γ/γ′-microstructure.

Besides this, the obtained values of cm
ij and cp

ij can be applied for the verification of
Nabarro’s elastic concept for rafting. Figure 9 shows the predicted temperature dependence
of the misfit m of the elastic moduli Mm = cm

11 − cm
12 and Mp = cp

11 − cp
12, as defined by

Equation (1). It is seen that at temperatures where the γ′-rafting is usually observed,
900–1150 ◦C, the value of m for superalloy CMSX-4 is positive. It is known [37,62], that the
lattice misfit of CMSX-4 is negative, δ < 0. Thus, the term δ × m is negative too. This fits
with Nabarro’s elastic concept for rafting, predicting N-rafting under tensile 〈001〉 loading
when δ × m < 0. It is remarkable that the curve m(T) predicted for CMSX-4 in this work
passes through the middle of scattering area of literature data reported for m in different
Ni-base alloys. This agreement with the literature data testifies the reliability of results
obtained in this work.
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5. Conclusions

1. The elastic constants of single-crystal nickel-base superalloy CMSX-4 were precisely
measured by the sonic resonance method at temperatures between room temperature and
1300 ◦C. This wide temperature interval covered all areas where the elastic constants of
CMSX-4 are needed, namely: Service conditions of the blade material, technical accidents
of gas turbines (overheating), as well as the manufacturing of turbine blades (hot isostatic
pressing and heat treatment);

2. Combining the results of this work obtained for superalloy CMSX-4 with the
results reported by Siebörger et al. [16] for an alloy similar to the γ-matrix of CMSX-4
and applying the Reuss-Voigt-Hill rule of mixture, the elastic constants of the γ- and γ′-
phases, cm

ij and cp
ij, were estimated in the temperature range between room temperature and

1250 ◦C. The obtained values of cm
ij and cp

ij could be used for advanced physically-based
modeling of the mechanical behavior of nickel-base superalloys explicitly considering the
γ/γ′-microstructure;

3. The estimated elastic constants cm
ij and cp

ij were used to predict the temperature

dependence of the misfit m of elastic moduli Mm = cm
11 − cm

12 and Mp = cp
11 − cp

12. It was
shown that at temperatures where the γ′-rafting occurs, 900–1150 ◦C, the value of m for
superalloy CMSX-4 was positive, m > 0. Since CMSX-4 is an alloy with a negative lattice



Crystals 2021, 11, 152 16 of 18

misfit, δ < 0, such a result for the sign of m fits with Nabarro’s elastic concept for rafting
predicting N-rafting under tensile 〈001〉 loading when δ × m < 0.
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Appendix A

Table A1. Thermal expansion of CMSX-4 as a function of temperature, εT = f (T), in %. Rows in
–100 ◦C intervals, and columns in –10 ◦C intervals.

T, ◦C 0 10 20 30 40 50 60 70 80 90

0 0 - - 0.0238 0.0329 0.0425 0.053 0.0641
100 0.076 0.088 0.1 0.113 0.125 0.138 0.15 0.16 0.176 0.19
200 0.203 0.217 0.23 0.245 0.258 0.272 0.286 0.3 0.314 0.329
300 0.342 0.355 0.368 0.382 0.396 0.41 0.424 0.438 0.451 0.464
400 0.479 0.494 0.508 0.523 0.537 0.552 0.567 0.581 0.596 0.61
500 0.625 0.639 0.653 0.667 0.682 0.697 0.712 0.727 0.743 0.758
600 0.774 0.79 0.806 0.822 0.839 0.856 0.873 0.89 0.906 0.924
700 0.941 0.958 0.975 0.993 1.01 1.03 1.05 1.06 1.08 1.1
800 1.12 1.14 1.15 1.17 1.19 1.21 1.23 1.25 1.27 1.29
900 1.31 1.33 1.35 1.38 1.4 1.42 1.44 1.46 1.49 1.51

1000 1.53 1.56 1.58 1.61 1.63 1.66 1.68 1.71 1.74 1.76
1100 1.79 1.82 1.85 1.88 1.91 1.94 1.97 2.01 2.04 2.07
1200 2.11 2.15 2.18 2.22 2.26 2.3 2.35 2.39 2.44 2.47
1300 2.5 2.52
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