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Abstract: A long distance range over tens of kilometers is a prerequisite for a wide range of
distributed fiber optic vibration sensing applications. We significantly extend the attenuation-
limited distance range by making use of the multidimensionality of distributed Rayleigh backscatter
data: Using the wavelength-scanning coherent optical time domain reflectometry (WS-COTDR)
technique, backscatter data is measured along the distance and optical frequency dimensions.
In this work, we develop, train, and test deep convolutional neural networks (CNNs) for fast
denoising of these two-dimensional backscattering results. The very compact and efficient CNN
denoiser “DnOTDR” outperforms state-of-the-art image denoising algorithms for this task and
enables denoising data rates of 1.2 GB/s in real time. We demonstrate that, using the CNN
denoiser, the quantitative strain measurement with nm/m resolution can be conducted with up to
100 km distance without the use of backscatter-enhanced fibers or distributed Raman or Brillouin
amplification.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Distributed acoustic sensing (DAS), or distributed vibration sensing (DVS), in optical fibers has
experienced a steep increase in research and application in recent years. This technique allows for
dynamic strain measurement along an optical fiber, typically with nε (nm/m) resolution. It is now
being used for a wide range of applications [1] from the oil and gas sector, security and perimeter
monitoring, seismic applications, traffic monitoring, to structural health monitoring. Most
measurement principles use Rayleigh backscattering signals in combination with coherent optical
pulse reflectometry for high-sensitivity strain change measurement [2]. They are commonly
based on demodulation of local interference changes along the fiber and are often referred
to as phase-sensitive optical time domain reflectometers (OTDR), or φ-OTDR. For various
applications, a long distance range over tens of kilometers is required. This is specifically
important if a single DAS system must cover sensor lengths up to 100 km, as it is for example the
case for the measurement along sub-sea power line cables [3]. The very low signal-to-noise ratio
(SNR) of distant backscatter signals eventually limits the maximum distance range of the sensor
system.

Various techniques have been proposed to overcome these attenuation-limited distance
boundaries: Hardware-supported distance range extensions are, for example, achieved by
distributed Raman and/or Brillouin amplification [4–6], or using remotely pumped Erbium-doped
fiber amplifiers (EDFAs) [7]. Another approach to increase the distance range and locally boost
the SNR is to increase the Rayleigh backscattering signal power by enhancing the backscatter
coefficient of the fiber by inscribing continuous [8] or random [9] weak fiber Bragg gratings.
Such special backscatter-enhanced fibers connected to the distant end of low-loss section have,
for example, been used to increase the backscatter signal locally [10] and detect strain signals
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at more than 112 km distance. Increased attenuation of high-scattering fibers, however, makes
this solution only viable for a reduced distance range. Similarly, the inscription of scattering
dots [3,11] or weak fiber Bragg gratings [12,13] can also boost the local signal power at the cost
of increased fiber attenuation. For a wide range of applications, the installation of additional
hardware, such as remote amplifiers, pump lasers, or costly backscatter-enhanced fibers is not
feasible.

In this work, we develop advanced signal processing techniques to boost the SNR of raw
Rayleigh backscatter data prior to computing DAS strain data from the denoised results. We
deploy deep learning methods and develop convolutional neural networks (CNNs) to denoise
two-dimensional Rayleigh backscatter signals from standard single-mode optical fibers. We use
the wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) technique
[14] to sample two-dimensional raw backscatter data along the fiber distance coordinate and the
optical frequency coordinate. As opposed to previously proposed 2D filtering methods, we apply
deep learning methods and restore extremely noisy backscatter signatures in the fiber distance –
optical frequency plane. In our second step, the strain signals are computed from the denoised
data and analyzed to quantify the denoising performance [15].

Our objective is to optimize the sensor performance for long distance measurement at the
presence of very high noise. We solely explore the impact and possibilities of artificial neural
network (ANN)-based raw data processing to extend the distance range and improve the strain
SNR. No additional in-line signal amplification, distributed amplification, or Rayleigh backscatter
enhancement is deployed. Real-time analysis of data-intensive DAS results is a general challenge
[16]. Our focus is therefore not only on raw data denoising performance, but with equal importance,
on minimizing the computation time in order to achieve real-time denoising capabilities for
distributed vibration sensing using WS-COTDR.

In general, filtering [17,18] and denoising of raw signals play an important role in fiber optic
sensor applications. With the emergence of distributed fiber sensing, and multi-dimensional data
sampling, more complex data processing algorithms have been developed and deployed. Raw
data denoising of multi-dimensional fiber optic sensor signals using classic non-ANN methods,
such as non-local means [19] and constrained least squares filtering [20] showed significant
performance improvement for noisy distributed Brillouin and Raman spectra. Two-dimensional
filtering of DAS signals along the time and distance axes has been proposed to increase the
SNR of the vibration signal. These algorithms include curvelet denoising algorithms [21],
two-dimensional edge detection [22], and adaptive two-dimensional bilateral filtering [23]. The
multi-dimensionality of sensor data as well as the complexity and interdependency of the physical
effects in the optical fiber suggests that machine learning techniques more particularly ANNs
could extract even more details. Although deep learning and artificial neural networks are widely
used in photonics [24], relatively few works have been presented that target optical fiber sensor
raw data. For clarification: We define raw data processing either as a preprocessing step to
extract more information prior to computing the actual measurand (for example strain) or as
computation of the measurand directly from raw data. ANN processing of Brillouin raw data
spectra proved advantageous for temperature prediction [25–30], and for strain-temperature
discrimination [31,32]. It was also demonstrated that CNNs designed for general image denoising
can improve the sensing performance of 2D raw Raman OTDR data [33]. For DAS data, however,
the focus of research on ANNs is almost exclusively on the post-processing of strain data for event
recognition and event classification [34–45]. To the best of our knowledge, denoising of DAS raw
data using deep learning techniques has not yet been demonstrated. Only neural network-based
DAS raw data processing has been proposed for strain prediction from Rayleigh backscatter
spectra with improved resolution and noise tolerance [15]. These results also demonstrated that
ANN-based processing can significantly reduce computation time and qualify data-intensive
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DAS data processing for real-time applications. This technique is also used here to predict strain
data from denoised data.

The remainder of this paper is structured as follows. The WS-COTDR measurement principle
and experimental setup are introduced in section 2.1. The specific denoising task and evaluation
method are further explained in section 2.2. Training data generation, the final neural network
architecture, and parameter search are summarized in section 3. Two different CNN denoising
models are tested on measurement data, and are compared to the state-of-the-art block matching
denoising algorithm BM3D [46] in section 4. The results and implications are discussed in
section 5 and concluded in section 6.

2. Measurement principle and specific denoising problem

2.1. Experimental setup (WS-COTDR)

We recently proposed the wavelength-scanning COTDR technique for dynamic and high strain
resolution measurement along standard single-mode optical fibers [14]. Using this technique,
sequences of coherent optical pulses with increasing pulse optical frequencies within each
sequence are repeatedly sent into the fiber under test (FUT). Incremental wavelength steps
(frequency shifts ∆ν) during each pulse sequence are realized by direct laser current modulation
of a continuous wave laser source using a sawtooth periodic signal, see Fig. 1(a).

Fig. 1. WS-COTDR setup with semiconductor optical amplifier (SOA) for pulse generation,
erbium-doped optical amplifiers (EDFAs) for pulse and backscatter signal amplification, and
amplified spontaneous emission (ASE) filters. (b) Example of measured backscatter spectra
for one distance sample during harmonic modulation, recorded with measurement settings
used in this paper. The measured frequency shift of the spectrum is proportional to strain
change [14].

During each laser wavelength sweep (or respective frequency sweep), up to 100 pulses of
known optical frequencies are sequentially sent into the FUT. The Rayleigh backscattered light
is individually sampled by an analog-to-digital converter (ADC) for each pulse frequency as a
function of distance with 500 MS/s (about 20.4 cm sampling resolution) and 14 bit resolution.
This way, a distributed Rayleigh backscatter spectrum is repeatedly measured along the FUT.
We record backscatter amplitudes in the three dimensions: distance, optical frequency, and time.
Any change of temperature or strain distribution along the fiber causes a proportional frequency
shift of the local Rayleigh backscatter spectra [14], see Fig. 1(b). A strain change distribution
over distance and time can thus be obtained by computing these frequency shifts relative to a
reference sweep result for each spatial sampling point along the fiber. The difference to most
pulse reflectometry DAS approaches is that strain changes are computed from frequency shifts
of Rayleigh backscatter signatures instead of tracking and unwrapping interferometric phase
changes from single wavelength backscatter results. The WS-COTDR technique requires to
measure multiple backscatter traces per strain result, but it has the significant advantage that
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it is a true reference-based method. That means that recorded reference backscatter spectra
can be stored and reused to compute relative strain changes at any time. As opposed to typical
phase-tracking approaches, WS-COTDR measurements can be interrupted and resumed without
loss of reference.

The laser sweep rate during a measurement is typically in the kHz range and several thousands
of spatial Rayleigh spectra must be compared for each sweep. Therefore, the computational effort
is immense. In order to conduct these computations in real-time, specifically trained artificial
neural networks (ANNs) have been developed for strain prediction from raw sweep data [15].
The use of ANNs not only improved the strain resolution, but also decreased the computation
time by more than two orders of magnitude in order to be used for real-time strain measurement.
This ANN-based strain computation approach from Rayleigh spectra is also used on the denoised
results in this work.

The WS-COTDR technique and measurement setup shown in Fig. 1(a) are described in more
detail in Ref. [14]. Notable changes from the previous implementation are the narrow-bandwidth
ASE filters (3 GHz after EDFA1, and 1.5 GHz after EDFA2), and a laser source with reduced
linewidth of 1.5 kHz. Pulses of 100 ns duration (resulting in 10 m spatial resolution) are sent
into a 100.1 km long FUT (Corning SMF-28 ULL with 0.161 dB/km attenuation and a Rayleigh
backscatter coefficient of −82 dB at 1550 nm for 1 ns pulse duration). The performance of the
denoisers was tested at different fiber distances using the measurement settings of: 100 ns pulse
duration (10 m spatial resolution), 1 kHz pulse repetition rate, and a laser frequency sweep rate
of 10 Hz.

A change of the laser central wavelength has proportional influence on the measured shift of
the backscatter spectrum [see Fig. 1(b)] as a physical strain change of the fiber itself [14]. In order
to induce a strain-equivalent shift of the backscatter spectrum along the fiber, we superimposed
an additional low-amplitude sinusoidal laser current modulation onto the sweep-modulated laser
current. This results in a uniform and reproducible strain-equivalent backscatter signal shift
in the frequency axis over the length of the fiber. This way, the denoising performance during
a strain-equivalent frequency shift modulation can be easily tested at arbitrary fiber distances.
Unwinding the fiber spools and cutting the fiber at multiple distances to insert a piezo stretcher is
not necessary.

2.2. Denoising problem and training approach

Three-dimensional backscatter data is recorded along the axes: distance, optical frequency, and
time. The distance-frequency plane exhibits characteristic backscatter signatures with shapes and
statistical distribution independent of fiber distance and strain. The convolutional 2D denoising
models are therefore optimized, trained and tested in the distance-frequency plane.

The performance of general 2D image denoising methods using ANNs, and especially CNNs,
has shown rapid advancement in recent years [47]. CNNs have the potential to out-perform
nonlocal self-similarity models such as BM3D, also for non-photographic image applications.

One of the most important advantages of ANN-approaches is the potentially low computation
time. In contrast to many other denoising algorithms where a rather expensive optimization
computation must be conducted for every new image, the optimization of an ANN is only
conducted during the training phase. The prediction (inference) of denoised images from noisy
images is then conducted by the optimized ANN model. This is efficiently achieved by a series
of matrix multiplications followed by elementwise non-linear transforms on graphics processing
units (GPUs), and can reduce inference times by orders of magnitude. However, most of the
proposed methods rely on careful parameter setting, are computationally expensive, or require
specific models for specific denoising tasks or noise levels [48]. More recent architectures do not
rely on knowledge about the noise level of the image and are referred to as a blind denoisers [49].
Most general image denoisers target arbitrary photographic color images that contain three color
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channels (RGB). Our task is to conduct blind denoising of single channel (grayscale) images
with 16 bit resolution. Our data-intensive application requires to process a steady data stream in
the order of several hundreds of MB/s.

We use supervised learning in this work: A function is learned that maps our input data to
the output data by learning from examples of input-output image pairs. In our specific case,
we train CNNs to predict denoised 2D data from noisy 2D input data. CNNs typically consist
of an input layer, multiple convolutional hidden layers, and an output layer. The convolutional
layers compute the sliding dot product of the output of the previous layer and a number of
learnable kernels (or filters). Thereafter, a nonlinear activation function, such as rectified linear
unit (ReLU), is applied before the result is passed to the next layer. During the initial training
phase of the network, the CNN is presented with noisy 2D input data Y. The weights of the
individual filters are adjusted during each training epoch to minimize a loss function, i.e. the
deviation of the CNN output to the corresponding “clean”, or ground truth, images X. The aim of
the trained denoiser is to recover a clean image x∈X from a noisy image y∈Y. A noisy image y
can be described as a superposition of ground truth images x with noise n as y= x+ n. The noise
n is often modelled as additive white Gaussian noise (AWGN) with a standard deviation of σ.

General purpose image denoisers have to be able to denoise any structure and structural
distributions in the images and “have to compromise” for high-frequency signals as well as
extended uniform structures. In our application, however, the prevailing structural patterns in
the images exhibit a specific shape, size, orientation, and distribution, see Fig. 2(a). These
characteristic patterns owe from interference of multiple Rayleigh scatterers within the length of
the pulse that propagates along the fiber. The statistic distribution of shapes, sizes, and aspect
ratios of these structures are a function of the optical pulse duration, the frequency sweep step
size, the sampling rate, and the detection bandwidth. Since the characteristic structures have a
relatively high aspect ratio, and prevailing orientation along the distance axis, we also explore
using filters with matching aspect ratios. We presumed that matching the filter size (or shape) to
the characteristic structures, and matching the receptive field to the structure size and orientation
will reduce the necessary depth of the CNN and, therefore, necessary number of convolutional
layers of the denoiser.

Fig. 2. (a) Ground truth image x (measured WS-COTDR spectrum vs. distance), (b)
measured noise distribution image n, and (c) noisy image y (x superimposed by noise n with
noise factor of 1). The size of the single image is 96 frequency samples by 96 distance
samples.

Another difference to general image denoising applications is that the noise exhibits distinct
spatial patterns, see the measured 2D noise distribution in Fig. 2(b). Due to the small bandwidth of
the transimpedance amplifier of the photodetector module (35 MHz) in comparison to the (spatial)
sampling rate of the analog-to-digital converter (500 MS/s and 250 MHz analog bandwidth),
the detector noise is low-pass filtered and spreads over several distance samples. Neighboring
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noise “pixels” along the frequency axis are however uncorrelated. The histogram of all noise
amplitudes (all pixels) follows a Gaussian distribution.

Due to the very specific distribution and orientation of the backscatter structures as well as
the spatial structure of the noise, it could be expected that a deep learning approach would have
advantages to restore these patterns in the presence of severe noise. The image size for a single
denoising operation (input size and output size of the denoiser) is 96×96 pixels. For a denoising
operation of a distributed measurement over several kilometers, multiple 96×96 images along the
fiber distance are denoised and stitched along the distance axis for each frequency sweep result.

A commonly used measure to quantify the denoising performance of an algorithm is the peak
signal to noise ratio (PSNR). This quantitative pixel-wise measure is, however, not always the
best method to determine the overall denoising performance [50]. Also perception-based models
such as the structural similarity index measure (SSIM) [51] are not the most valid choice for
our purpose. Since our application requires to compute accurate strain signals from denoised
data, we defined our own application-specific performance measures: We aim to minimize the
amplitude spectral density (ASD) noise of the computed strain results, and maximize the accuracy
of the strain modulation amplitude [14], see also Fig. 3(b). These decisive performance criteria
are evaluated on actual noisy measurement data recorded at different distances along the fiber.
Figure 3(a) shows exemplarily sinusoidal strain signals over time for a single sampling position
at 90.034 km distance, computed from noisy measurement data and denoised measurement data,
respectively. As indicated in Fig. 3(b), the strain modulation amplitude, as well as the strain ASD
noise (square root of the signal power spectral density [52]) above the modulation frequency is
obtained from the frequency domain results.

Fig. 3. Example of sinusoidal strain results during a 1 Hz harmonic modulation equivalent
to 67 nε at 90.034 km distance: (a) Computed strain results from raw data, and from denoised
result using CNN denoiser DnOTDR (introduced in section 3). (b) Frequency domain
spectrum of the strain result computed from raw data and denoised data (magnified inset
with indication for strain ASD noise level).

3. Data generation and training

Our procedure for the generation of training data is to independently measure a low-noise
ground truth dataset X, and a noise dataset N. Examples for single images x∈X and n∈N are
shown in Fig. 2(a) and Fig. 2(b), respectively. The noisy training dataset Y is then generated by
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superimposing the ground truth dataset X with the measured noise dataset N. Details on data
generation and training of the CNNs are summarized in the following subsections.

3.1. Training data generation

All training data was obtained from measurement data: The ground truth dataset X was
generated by conducting low-noise WS-COTDR measurements over fiber lengths up to 7 km. The
ground truth dataset exhibits insignificant label noise since the SNR is high for such short fiber
distances. The same measurement settings as during the recording of the noisy long-distance test
dataset were used. Only the laser current of the EDFA2 was reduced not to exceed the ADC input
range. We sampled ground truth data from the same fiber during wavelength scans at 12 different
laser central frequencies. Sufficient spectral separation between the individual wavelength scans
was maintained to prevent spectral overlap of the different sweeps. This way uncorrelated 2D
backscatter signatures along the distance and laser frequency dimensions were generated. 100
different pulse optical frequencies were sent into the fiber during each laser frequency sweep.
The first four pulses of the sequence are within the falling edge of the laser frequency modulation
and were discarded [14]. Each Rayleigh backscatter spectrum therefore consist of 96 optical
frequencies. Individual 96×96-pixel images [see Fig. 2(a)] were extracted from the measured
2D Rayleigh data. A spatial overlap of 64 distance samples was chosen to increase the number
of training images. The 64008 images of the ground truth dataset X were sampled during an
additional sinusoidal 2 Hz laser frequency modulation. This was done to also include images
with distorted structures to the training dataset and improve the model’s generalization capability
with respect to varying strain signals and amplitudes.

The 64008 independent 96×96 images of the noise dataset N [see Fig. 2(b)] were recorded by
only sampling the low-pass filtered photodetector noise signal. The same measurement settings
(high EDFA2 current of 80 mA) as during the recording of the long-distance test dataset were
used but without a fiber connected to the measurement setup. This way, noise amplitudes similar
to the actual long-distance measurement were generated.

The noisy dataset Y was obtained by adding the noise data N to the ground truth data X.
Before superimposing noise N and ground truth X, each individual image of both datasets was
z-score standardized, resulting in zero mean and a standard deviation of one for each image.
Before adding and noise data N to the ground truth data X, the noise dataset was multiplied by a
factor (noise factor). This noise factor was treated as a hyperparameter during the training of the
models in section 3.4.

3.2. Validation data generation

After each training epoch, the model’s performance was validated on a measured strain signal.
The current denoising model was validated with respect to the computed strain results (strain ASD
noise and strain amplitude) on a long-distance backscatter validation dataset. This validation
dataset was measured over 20 seconds at 100 km distance during a 2 Hz modulation with a
strain-equivalent amplitude of 64 nε. More details of the validation approach are given in section
3.4.

3.3. Test data generation

The denoising CNNs are tested on measurement data. The test dataset was sampled at multiple
fiber distances z0 = {60 km, 70 km, 80 km, 90 km, 100 km}. Starting at each position z0, about
80 m long fiber sections were sampled for 60 seconds during a strain-equivalent modulation
amplitude of 67 nε at 1 Hz, respectively. We evaluated the denoising performance on this test
dataset with respect to strain ASD noise and strain amplitude. The results are presented in section
4.
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3.4. Model architecture, hyperparameter testing, and training

The input images for our application differ significantly from the typical input images of general-
purpose photographic image denoisers with respect to the image content, noise shape, as well
as the extremely high level of noise. We explored combinations and alterations of numerous
state-of-the-art deep convolutional image denoiser architectures for this specific task. This
included convolutional denoising auto-encoders, and models with residual noise subtraction
or skip connections. Particularly, various properties of the CNN denoisers DnCNN [49], and
FFDNet [53] proved advantageous. We conducted a wide hyperparameter search to optimize the
denoising performance with respect to the correct modulation signal amplitude, minimum strain
ASD noise, and minimum computation time.

We optimized the following model hyperparameters: The use of a residual layer for noise sub-
traction [49], down-and-up conversion layers [53], noise maps [53], the number of convolutional
layers, the use of batch normalization layers, the number of convolutional layers, the number of
filters per layer, the type of activation function (rectified linear unit ReLU, exponential linear
unit ELU, and tanh), and the shape of the 2D filters. The following training parameters were
tuned: learning rate, training batch size, and the noise factor. As loss functions, mean squared
error (MSE), and negative Pearson correlation coefficient (NPCC) were explored. The ADAM
optimizer [54,55] was used for all training settings.

Two different CNN architectures were identified as most promising and were optimized and
tested for long-distance raw data denoising performance: The first architecture is a residual
denoiser and has similarity to the DnCNN architecture [49]. In the following, it is referred to as
DnCNN*. The second convolutional denoiser features a “down-und-up” sampling functionality
[53] and is referred to as DnOTDR. The two CNN denoising architectures used in this work are
depicted in Fig. 4.

Fig. 4. Depiction of (a) DnCNN* architecture, and (b) DnOTDR architecture.

DnCNN* is a reduced version of DnCNN. The size and computation time of the model has
been reduced by using only 14 convolutional layers, 16 filters, and omitting batch normalization
layers without significant drop in denoising performance.

DnOTDR is a relatively shallow architecture. The first layer down-samples the 96×96 input
image into four sub-images of dimension 48×48 (neighboring pixels are re-arranged into sub-
images). After only four consecutive convolutional layers with only four filters each with ReLU
activation, up-sampling of the sub-images to the input shape of 96×96 is conducted. The shape
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of the kernels was adapted and optimized to three by thirteen to match the predominant shape
and orientation of the backscatter structures. Increasing the number of convolutional layers or
filters at the cost of computational efficiency did not considerably increase the performance.

The training of both architectures was conducted with the same training dataset. As mentioned
above, the denoising performance was not validated in relation to direct output-to-ground truth
comparison, but with respect to the strain results computed from the denoised output. All
hyperparameter tuning was therefore based on the evaluation of the strain results from the
validation dataset with the aim to minimize the strain ASD noise and accurate strain amplitude
results, see Fig. 3(b). To monitor the training progress with respect to the strain results, this
validation procedure was conducted after each training epoch. All model hyperparameters and
training parameters were tuned to maximize the resulting strain accuracy of the validation data.
This way, the two final model architectures DnCNN*, and DnOTDR, as well as specific model
parameters were found. Exploring the training parameter showed minimal improvement of NPCC
over MSE loss function. The learning rate was tuned to 0.0001, the training batch size to 16, and
the noise factor was set to 4.5. The performance of the final trained models on the test dataset is
summarized in the following section.

4. Results

The models with the best performance on the validation dataset were tested on the raw test
dataset measured at z0 = {60 km, 70 km, 80 km, 90 km, 100 km} during a 67 nε modulation.
Strain predictions were analyzed on raw data, and denoised test data using BM3D, DnCNN*,
and DnOTDR. Figure 5 shows examples of single noisy test data images (left column) sampled
at z0, and denoised results of BM3D, DnCNN*, and DnOTDR in the other columns.

The visual impression is that the BM3D method fails to restore the fainter backscatter structures
in the image. The much smaller and faster DnOTDR model with only 2512 trainable parameters
seems to preserve details to a comparable extend as the results of the bigger and deeper DnCNN*
model with 32785 trainable parameters.

Following, the strain results that were computed from denoised data using ANNs [15] are
evaluated. The resulting strain distribution over distance and time is exemplarily shown at
z0 = 100 km for strain results computed from raw test data in Fig. 6(a), and from denoised results
using DnOTDR in Fig. 6(b). Figure 6(c) and Fig. 6(d) show the resulting distribution of the
strain amplitude spectrum for both results, respectively.

The stain signal at 100 km cannot be recovered from the low-SNR raw data, whereas the
strain modulation from denoised data is close to the actual modulation amplitude of 67 nε. All
strain amplitude distributions at the modulation frequency of 1 Hz are shown in Fig. 7(a). The
results are computed from raw test data and denoised test data using DnCNN* and DnOTDR.
The mean strain modulation amplitudes and the mean strain ASD noise [compare ASD depiction
in Fig. 3(b)] from raw data and the denoised data are shown Fig. 7(b) and Fig. 7(c), respectively.

An on average reduced strain amplitude can be observed for all results at 100 km distance.
Correct quantitative strain measurement for not denoised raw data is only possible up to 80
km distance at increased strain ASD noise. It has to be noted that the ANN-based algorithm
that is used to compute the strain results from the backscatter data already improves the noise
tolerance by several dB in comparison to a correlation-based approach [15]. The distance range
gain compared to correlation-based strain computation would therefore be significantly higher.
The evaluation results from raw data and all tested denoisers are summarized in Table 1.

It can be concluded that the CNN-based denoising algorithms improve the sensor performance
and distance range and clearly outperform BM3D. The much smaller DnOTDR model shows
comparable performance to DnCNN* up 90 km distance and even outperforms the DnCNN* at
extremely low SNR at 100 km distance. The BM3D denoiser only marginally improves the strain
results compared to the raw data for very low SNR.
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Fig. 5. Examples of raw test data and denoised data (96×96 distance samples vs. frequency
samples) at different distances z0. Row-wise: 60 km, 70 km, 80 km, 90 km, and 100 km.
First column: measured raw data. The second, third and fourth column show the denoised
results using BM3D, DnCNN*, and DnOTDR, respectively.

Table 1. Comparison of the sensor performance parameters strain ASD
noise and peak amplitude during a 1 Hz and 67 nε amplitude modulation for
low-SNR raw data and denoised data using BM3D, DnCNN*, and DnOTDR.

The ASD noise from raw data and BM3D at z0 =100 km is not meaningful and
is therefore omitted.

Distance z0 Parameter Raw data BM3D DnCNN* DnOTDR

60 km
ASD noise [nε/

√
Hz] 0.459 0.540 0.401 0.453

Peak amplitude [nε] 67.157 67.379 67.039 67.100

70 km
ASD noise [nε/

√
Hz] 0.644 0.796 0.495 0.569

Peak amplitude [nε] 67.461 67.567 66.907 66.970

80 km
ASD noise [nε/

√
Hz] 1.693 1.465 0.867 0.893

Peak amplitude [nε] 65.152 67.867 67.089 67.175

90 km
ASD noise [nε/

√
Hz] 4.785 4.250 1.914 2.135

Peak amplitude [nε] 43.892 60.073 67.544 67.374

100 km
ASD noise [nε/

√
Hz] - - 5.862 5.772

Peak amplitude [nε] 13.155 32.411 52.605 61.388
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Fig. 6. Strain distribution at z0 = 100 km distance during 1 Hz and 67 nε amplitude
modulation: (a) computed from measured raw data, and (b) computed from the same
denoised data using DnOTDR. Strain amplitude spectrum over distance computed from the
same measurement over 60 s: (c) using raw data; (d) using denoised result using DnOTDR.

Fig. 7. (a) Strain-equivalent modulation amplitudes computed from noisy raw test data,
denoised data using DnCNN*, and DnOTDR for 80 m long fiber sections at different fiber
distances of z0 = 60 km, 70 km, 80 km, 90 km and 100 km, respectively. (b) Mean strain
amplitudes at distances z0 computed from low-SNR raw data and denoised data. (c) Mean
strain ASD noise computed from raw data and denoised data at distances z0. (The strain
ASD noise from raw data at 100 km distance is not meaningful and is therefore omitted.)
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The most important performance parameter for real-time application is computation time. A
comparison of computation times for the baseline method BM3D and the proposed DnCNN*
and DnOTDR denoisers is listed in Table 2.

Table 2. Computation time for denoising per 96×96 images for DnCNN* and DnOTDR using NVIDIA
RTX 2080Ti 11 GB RAM GPU, Keras v. 2.2.4, TensorFlow v. 2.2.0, and a batch size of 4000 for

DnCNN* and 10000 for DnOTDR. Denoising time for BM3D implementation using CPU (16 x Intel
Xeon E5-1660 v3, 3 GHz).

Denoising model Computation time per 96×96 image Max. data rate for real-time denoising

BM3D 1500 ms 12.3 kB/s

DnCNNa 0.266 ms 69 MB/s a

DnOTDR 0.0154 ms 1.2 GB/s a

aCNN denoising is conducted with 32-bit float resolution on the GPU. Since the data stream from the ADC is 16 bit
resolution, the calculated maximum real-time data rates is based on the actual 16 bit resolution input. Real-time denoising
of a 32-bit resolution 2D data stream could be conducted with the same models at twice the data rate (138 MB/s for
DnCNN* and 2.4 GB/s for DnOTDR).

The CNN-based denoising models are orders of magnitude faster than the BM3D block
matching algorithm. Although a GPU implementation of BM3D would accelerate the processing,
the computation time and performance will lack far behind that of the convolutional neural
network denoisers. The computation time of the DnOTDR denoiser for a single 96×96 image is
only 15.4 µs. With the measurement settings and GPU used in this work, the DnOTDR model
can be used as a real-time denoiser for fiber sections up to about 127.8 km length. The denoiser
may, for example, be used for the last 30 km in the fiber where a performance increase is apparent,
see Fig. 7(b) and Fig. 7(c). For long-distance sensing applications, the spatial sampling would
typically be reduced from the 20.4 cm used in this work to about 1 m or more. The distance
range for real-time denoising with this more realistic sampling resolution would be extended to
626 km using a consumer GPU.

5. Discussion

Although state-of-the-art ANN architectures can be adopted for tasks, similar to what they were
originally designed for, specific domain knowledge is generally key to maximize the performance
for most ANN applications. Extended knowledge about the application is required to generate
representative training data, define useful loss functions, evaluation measures, and network
architectures. The denoising performance of our tested models is solely evaluated with respect to
strain ASD noise and accurate modulation amplitude. PSNR, perception-based image quality
metrics, or temporal consistency of the backscatter structures are not relevant for this task.
Other denoisers may perform better for lower noise levels or with respect to other performance
parameters. The main goal, however, was to restore significant backscatter signatures in the
presence of extremely high noise with real-time compatible computation times. The DnOTDR
architecture is the only denoiser that fulfills both requirements.

Two main reasons may enable the combination of high denoising performance of the DnOTDR
denoiser and very low computation time (inference time): One reason for the high performance
of this compact architecture may be the limited pattern variety of the images and prevailing shape,
size, and orientation of the Rayleigh backscatter structures in the distance-frequency dimension.
Hence, only a small number of filters (four filters in each DnOTDR convolutional layer) suffice
to map all structural varieties of the backscatter patterns. The second reason is the combination
of the down-and-up sampling layers and the use of rectangular filter shapes (3×13) to fit the
predominant orientation and aspect ratio of the backscatter structures. This helped reduce the
necessary depth of the DnOTDR architecture to only four convolutional layers by increasing the
receptive field, and matching the receptive field to the backscatter patterns.



Research Article Vol. 28, No. 26 / 21 December 2020 / Optics Express 39323

By taking the third dimension time of the measured data stream into account, temporal
consistencies and strain noise should theoretically be further improved. The temporal pattern
propagation (from frame to frame) has been addressed in more recent CNN video denoising
algorithms. We also tested various CNN-based architectures and block matching algorithms
that were developed for video denoising. We trained and tested various models with specifically
recorded 3D backscatter sequences. However, our not comprehensive analysis did not lead to an
improved performance for our specific denoising task. Our preliminary results indicate distinct
but inconsistent low-pass behavior along the time dimension. This may pose a challenge for
accurate measurement applications. Although low-pass behavior may lead to visually more
pleasing results for video denoising, it may prevent correct strain amplitude measurement, which
is crucial for most DAS applications. This is the main reason why 3D denoising algorithms have
not further been studied for this task and preliminary results were only briefly mentioned in this
paper. In addition, 3D denoising algorithms are typically far more computationally expensive,
which would prevent real-time use for our application. Note that this is only a preliminary
assessment for our specific application. Three-dimensional data processing does have significant
potential for this task and similar applications.

It has to be noted that the used DnCNN* and DnOTDR models are trained to denoise input
images containing structures of a specific size, orientation, and distribution. The denoising
performance for 2D-Rayleigh data that is sampled with significantly deviating measurement
settings would be reduced. Ideally, particular denoisers are trained for specific measurement
settings, i.e., pulse duration, spatial, and spectral sampling step size. New training data can be
measured within seconds and customized models can be trained in less than one minute. Various
pre-trained denoising models can be stored and readily loaded for specific measurement settings.

6. Conclusion

We demonstrated that deep convolutional neural networks can be a powerful algorithm for specific
denoising tasks. Using the DnOTDR denoiser, the distance range for quantitative distributed
vibration sensing was extended to 100 km and the optical return backscatter loss budget for strain
measurement can be increased to about 33 dB (backscatter loss at 100 km distance). We explored
the maximum distance range that could be gained by using only raw-data signal processing.
Using special backscatter-enhanced fibers would extend the distance range by tens of kilometers.
The use of Raman and/or Brillouin optical amplification would further extend the distance range
and improve the strain noise by an even higher margin. The most significant advancement is the
high denoising performance and that this can be achieved with very little computational expense.
About 1.2 GB/s of 16-bit image data (2.4 GB/s with 32-bit resolution) can be denoised with a
consumer GPU. This is prerequisite for real-time processing in data-intensive applications such
as distributed acoustic sensing.
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