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Abstract

To gain a thorough appreciation of microbiome dynamics, researchers characterize the

functional relevance of expressed microbial genes or proteins. This can be accomplished

through metaproteomics, which characterizes the protein expression of microbiomes. Sev-

eral software tools exist for analyzing microbiomes at the functional level by measuring their

combined proteome-level response to environmental perturbations. In this survey, we

explore the performance of six available tools, to enable researchers to make informed deci-

sions regarding software choice based on their research goals. Tandem mass spectrome-

try-based proteomic data obtained from dental caries plaque samples grown with and

without sucrose in paired biofilm reactors were used as representative data for this evalua-

tion. Microbial peptides from one sample pair were identified by the X! tandem search algo-

rithm via SearchGUI and subjected to functional analysis using software tools including

eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE,

and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among

these software tools, notable differences in functional annotation were detected after com-

paring differentially expressed protein functional groups. Based on the generated GO terms

of these tools we performed a peptide-level comparison to evaluate the quality of their func-

tional annotations. A BLAST analysis against the NCBI non-redundant database revealed

that the sensitivity and specificity of functional annotation varied between tools. For exam-

ple, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated

more accurate GO terms. Based on our evaluation, metaproteomics researchers can

choose the software according to their analytical needs and developers can use the result-

ing feedback to further optimize their algorithms. To make more of these tools accessible

via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorpo-

rated into the Galaxy platform.
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Introduction

Microbiome research has demonstrated the effect of microbiota on their host and environ-

ment [1,2]. To determine the key contributors within complex microbiota, nucleic acid-based

methods such as metagenomics can identify taxonomies that are prevalent in certain environ-

ments and stimuli [3]. Metagenomics provides an overview of the complete inventory of genes

recovered from microbiome samples. As a gene-centric approach it is static and therefore can-

not fully reflect the temporal dynamics and functional activities of microbiomes. To gain a

more impactful understanding of a microbiome, metaproteomics must be used to determine

the actions, or functions, of microbial organisms. Specifically, metaproteomics identifies

microbial proteins, which are biological units of function [4,5]. Functional analysis also helps

in understanding the mechanism by which microorganisms interact with each other and their

immediate environment, thus offering deeper insights beyond mere taxonomic composition

and correlation of the microbiome [6]. For example, functional analysis can provide informa-

tion about which enzymes are active in particular biological processes and metabolic pathways.

Thus, investigating the functional metaproteome aims to give biological relevance to the struc-

ture of microbiomes and can help to identify metabolism changes caused by specific perturba-

tions and environmental factors.

Metaproteomics data analysis involves primarily identification of peptides from tandem

mass spectrometry (MS/MS) data by matching it against protein sequence databases. The iden-

tified peptides are assigned to proteins or protein groups, some of which are unique while oth-

ers are shared amongst various taxa. These identifications are further assigned to functional

groups using various annotation databases [7]. Compared to single-organism proteomics, the

functional annotation of metaproteomics data is not straightforward because it involves multi-

ple complex layers: identified peptides can be assigned to various sequence-similar proteins

originating from multiple organisms. This adds on to the already existing challenge of assign-

ing functional groups because proteins can often be assigned to multiple functional groups.

Over the years, multiple software tools have been developed to assess the functional state of

a microbial community based on the predicted functions of proteins identified by MS [8–13].

These tools differ in various aspects such as–a) input files used for processing, b) annotation

databases used for protein and functional assignment, c) peptide- versus protein-level analysis,

d) generated outputs including functional ontology terms, and e) visual outputs generated for

biological interpretation (Fig 1). Each functional tool has its advantages, and labs across the

world have been using them often based on the criterion of how well a certain tool fits into

their bioinformatics workflow. However, to our best knowledge, these functional tools have

not been compared on the same biological dataset in any benchmarking study yet [14].

In this study, we compared and evaluated the performance of six open-source software

tools—eggNOG-mapper [8], MEGAN [9], MetaGOmics [10], MetaProteomeAnalyzer (MPA)

[11], ProPHAnE (https://www.prophane.de) and Unipept [13]—that specialize in performing

functional analysis of metaproteomics data. For this purpose, we used a published oral dysbio-

sis dataset [15] to generate raw outputs and compare features such as identification statistics,

functional group assignment (both at a dataset and individual-peptide level), and quantitative

analysis features such as differential protein expression. We observed significant variability in

results from the different functional tools. For a fairer comparison, we also expanded the Gene

Ontology (GO) terms using metaQuantome software [16] and compared functional outputs.

metaQuantome is a software tool that performs quantitative statistics on peptide-level quanti-

tative, functional and taxonomic data to generate quantitative outputs for taxonomy, functions

and taxonomy-function interaction. Based on this investigation, we provide some insights on

the sources of this variability and offer suggestions on the usage of these functional tools.
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We have packaged two of these software tools, Unipept 4.0 and eggNOG-mapper, into the

Galaxy platform [17], based both on their performance and amenability to deployment in a

workflow engine like Galaxy. This will make these tools widely accessible to users and facilitate

their usage in analytical workflows.

Methods

Input dataset and search results

The basis for this study lies in selecting a dataset suitable for metaproteomics comparison.

Here, we used a published oral dysbiosis dataset [15] containing mass-spectrometry data gen-

erated from plaque extracted from dental caries-prone children. This data is publicly available

in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the

Fig 1. A comparative workflow of all six functional software tools producing GO term lists from the same dataset. The inputs that are required for

each software tool are connected from the top. The reference databases used for each tool are aligned in the middle. The outputs and Gene Ontology

(GO) term translation processes are outlined at the bottom. Additional output types (data and visualizations) are shown in the table underneath the

workflow.

https://doi.org/10.1371/journal.pone.0241503.g001
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PRIDE partner repository with dataset identifier PXD003151. These plaques were incubated

within biofilm reactors for 72 hours and subject to a pair of conditions for the last 48 hours:

with sucrose-pulsing (WS) five times a day and with no sucrose (NS) but a constant basal

mucin medium flow. One sample pair (737 NS/WS) was selected since they were sufficiently

separated based on principal component analysis [15]. Although not a ‘ground-truth’ dataset,

this dataset was chosen since it was previously analyzed for its biological significance [15,16].

From the 737 dataset, Mascot Generic Format (MGF) files containing peak lists were used to

identify peptides using X! Tandem search algorithm via SearchGUI. Each of these peptide-to-

spectrum matches (PSMs) represent a specific peptide sequence mapped to a specific spectrum

scan, as well as match information such as retention time, measured mass-to-charge ratio, the-

oretical mass and charge, and confidence score. To determine which proteins these identified

peptides belong to, a combined protein database was provided: the Human Oral Microbiome

Database (HOMD—1,079,742 protein sequences—May 2017) concatenated with the common

Repository of Adventitious Proteins (cRAP). Using cRAP proteins to filter out contaminants,

X! Tandem identified ~27,000 microbial peptides from each dataset (Supplement Data:

https://zenodo.org/record/4067104; DOI: 10.5281/zenodo.4067104). Regarding specific

SearchGUI parameters, peptides were assigned based on trypsin-digested proteins, with up to

two missed cleavage sites allowed. Amino acid modifications were specified as methylthio of

cysteine (fixed modification) and oxidation of methionine (variable modification). The

accepted precursor mass tolerance was set to 10 ppm and the fragment mass tolerance to 0.05

daltons with a charge range from +2 to +6. To interpret SearchGUI results, PeptideShaker was

used to generate a PSM, peptide, and protein report, with a false-discovery rate (FDR) cutoff at

1%. Only peptides with length from 6 to 30 amino acids were considered. Spectral counts were

calculated based on the number of PSMs assigned for each peptide. Peptide search results were

processed to provide appropriate inputs for each of the metaproteomics software tools. (Sup-

plement Data: https://zenodo.org/record/4067104; DOI: 10.5281/zenodo.4067104).

Functional tools

Six functional analysis tools were used to analyze the data: eggNOG-mapper (version 1.0.3),

MEGAN5, MetaGOmics (version 0.1.1), MPA (version 1.8.0), Unipept 4.0, and ProPHAnE

(3.1.4). Standard procedures were used for each tool, as defined by their developers. Input

types and databases are specified in Fig 1.

For eggNOG-mapper, we used the Galaxy-implemented version of this tool (v1.0.3) on our

local Galaxy for Proteomics (Galaxy-P) server. DIAMOND (Double Index Alignment of Next-

generation sequencing Data) was used as a mapping mode. PAM30 (Point Accepted Muta-

tion) was used as a scoring matrix (gap costs with an existence value of 9 and extension value

of 1). Bacteria were used for taxonomic scope, and all orthologues were considered. Gene

ontology evidence was based on non-electronically curated terms, and seed orthology search

options had a minimum e-value of 200,000 and a minimum bit score of 20.

For MetaGOmics, a list of peptides and the HOMD were uploaded (version 0.2.0; https://

www.yeastrc.org/metagomics). Searches were performed using the UniProt/SwissProt data-

base with a BLAST e-value cutoff at 1e-10, using only the top hit.

In MEGAN, for Lowest Common Ancestor (LCA) analysis, we used a minimum score of

30 and a maximum expected threshold value of 3.0. Hits with a BLAST score in the top 10%

were chosen for further processing. The minimum support filter to reduce the false positive

hits was set as five. Naive LCA algorithm was used with 100% coverage. The read assignment

mode was set to read counts. The read-match-archive (RMA) files were generated and are

shared via https://zenodo.org/record/4067104; DOI: 10.5281/zenodo.4067104. Further details
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on how the RMA files were generated from MEGAN5 have been described in the dysbiosis

study [15]. Functional analysis was performed to map reads to genes with known COGs (clus-

ters of orthologous groups) and NOGs (non-supervised orthologous groups). These groups

were then translated to GO terms using the following eggNOG RESTful API: http://

eggnogapi5.embl.de/nog_data/json/go_terms/.

MPA performs its own searches using X! Tandem, rather than using the output from

SearchGUI. Specifically, MPA takes in the same input MGF files for SearchGUI (MGF files).

In order to enable searches, a FASTA database generated using the sectioning method [18]

was used. To maintain comparable results, the same parameters as for SearchGUI were used

for the X! Tandem search within MPA: precursor mass tolerance was set at 10 ppm and frag-

ment mass tolerance was set at 0.05 daltons. Two missed cleavages were allowed and trypsin

was used for protein digestion. The false discovery rate (FDR) was set at 1%. For grouping pro-

teins, a minimum of one shared peptide was used if relevant to the analysis.

Unipept takes in a tabular list of peptides. Search settings were configured for isoleucine

and leucine to be considered distinct, duplicate peptides to be retained, and advanced missed

cleavage handling to be enabled.

In ProPHAnE, the NS and WS samples were grouped into one sample group each. Meta-

proteins (clustered by MPA) were analyzed using default parameters. Functional annotation

was transferred from TIGRfams v15 and Pfams v32 using HMMScan with trusted cut-off and,

additionally, EggNOG v4.5.1 using eggNOG-mapper (hmmer mode).

GO term standardization

The six tools described here produce different functional annotation types. To compare and

contrast the composition of each tool’s functional annotation, a standard annotation type was

chosen. Gene Ontology (GO) terms were used since they are a well-supported and common

annotation type throughout most of the tools through either native outputs (e.g., MetaGOmics

and Unipept) or in-built translations (e.g., MEGAN, ProPHAnE, MPA) and are commonly

used in the metaproteomics community. However, MEGAN, ProPHAnE, and MPA do not

provide direct GO term outputs and thus require external databases for translation. MEGAN

and ProPHAnE produce eggNOG orthologous group accessions, which are translated using

eggNOG’s API (http://eggnogdb.embl.de/#/app/api), while MPA produces UniProt protein

accessions, which are used to retrieve UniProtKB GO terms via UniProt’s Retrieve/ID map-

ping tool (https://www.uniprot.org/uploadlists/).

When using GO terms, it is important to consider their categorization into three different

domains: molecular function, biological process, and cellular component. Molecular functions

describe the biological activity of gene products at a molecular level (e.g., ATPase activity), bio-

logical processes represent widely encompassing pathways that can involve many proteins that

aim to accomplish specific biological objectives (e.g., regulation of ATPase activity), and cellu-

lar components describe the localization of the activity of these gene products (e.g., plasma

membrane). To achieve a high-resolution analysis on functional annotation, only molecular

function GO terms were the focus of this analysis. However, since it is important to consider

how each tool handles the other ontologies as well, analyses using biological processes, cellular

components, and all three domains combined are provided in the supplementary section.

Overlap analysis

As an initial evaluation, the GO term outputs of each tool were compared via an R markdown

notebook (https://github.com/galaxyproteomics/functional-analysis-benchmarking/blob/

master/func_tools_analysis.Rmd) that looked at the total number of GO terms and the total
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number of unique terms for each tool. Next, the degree of dissimilarity between the GO term

output sets was gauged using fractional overlap indices calculated for each tool pairing. These

values were calculated for a tool by taking the size of its intersected GO set with another tool

and dividing by the size of the original tool’s term set. To examine the relationships between

more than two tools, a six-set Venn diagram was constructed through InteractiVenn [19].

To gain a better understanding of how each tool’s GO output set overlaps with each other, a

single GO term was selected for in-depth analysis. Two criteria for selecting the GO term were

used to ensure a comprehensive yet focused comparison: (1) presence in all six tools and (2)

minimal presence within each tool. Once selected, any GO terms associated with that selected

term were extracted for overlap analysis between the tools. The associated GO terms were then

evaluated to determine any hierarchical relationships. GO terms assume a hierarchical struc-

ture (directed acyclic graphs) which can be navigated using labels such as ancestor and descen-

dant. For any GO term, its ancestors may consist of any number of less-specialized terms in its

hierarchy. Conversely, its descendants consist of more-specific terms that would continue

beneath its hierarchy [20]. For example, we can examine the ancestors and descendants of ion

binding (GO:0043167): metal ion binding (descendant)! cation binding (child)! ion bind-
ing! binding (parent)!molecular function (ancestor).

Expansion and filtering

The hierarchical nature of GO terms can vary greatly from tool to tool. To mitigate this factor

in this comparative overlap analysis, we used an existing tool, metaQuantome [16], to expand

the hierarchies for all GO terms in each functional tool. metaQuantome originally exists as a

versatile metaproteomics software suite for aggregating peptide-level quantitative data for both

taxonomy and function. One of its modules, metaQuantome expand, can be used to infer the

presence of all possible ancestor GO terms. Additionally, quantitative information can be

aggregated from multiple descendants of an ancestor [16,21]. By expanding these hierarchies,

any fundamental differences between tools are more pronounced. For this analysis, the GO

term sets for all tools were expanded and compared again using the previous fractional overlap

analysis used for the full sets. Any datasets that were too large and were found to consume

more than 1TB of RAM were collapsed by grouping via GO term and adding their intensities.

Once expanded, these GO hierarchies can contain extraneous or unsupported information.

To curtail this issue, these expanded GO terms (ancestors) can be filtered out based on how

many original GO terms (descendants) they originated from [16]. In this study, filtering was

set to remove expanded GO terms that had fewer than two connections to original GO terms.

Quantitative comparative analysis

After comparing the GO term outputs from each tool, fold changes for each term were evalu-

ated (see below). This type of comparison is important in the analysis of microbiomes, since

this can reveal which biological functions show an increase or decrease in abundance in

response to a stimulus. For our analysis, peptide spectral counts associated with each GO term

for both WS and NS conditions were used to estimate fold changes. These counts were avail-

able in the peptide reports from PeptideShaker. To ensure fair comparison, spectral count nor-

malization between the two conditions was performed ad hoc. For eggNOG-mapper,

MEGAN, and Unipept, a PSM fraction was used to scale down the condition with more spec-

tral counts (NS) to match the other condition (WS):
Sum of WS PSMs
Sum of NS PSMs. For MPA, we used protein-

based normalization, wherein a protein fraction was used to normalize the GO term spectral

counts before calculating the log ratio:
Sum of WS protein spectral counts
Sum of NS protein spectral counts . MetaGOmics and ProPHAnE
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already internally normalize their values through a normalized spectral abundance factor

(NSAF) normalization method [22]. Once normalized, these quantitative values were used to

calculate the fold changes as log2ð
WSþ1

NSþ1
Þ. Using these fold changes, the GO terms were sorted in

a descending order. Thus, GO terms that were found to be more abundant in WS conditions

were found at the top of these rankings.

Two levels of comparisons of these fold changes were used: (1) between tools that natively

output GO terms (i.e., Unipept and MetaGOmics); and (2) between all tools, which includes

translated GO terms. Initially, Unipept and MetaGOmics were compared by taking the GO

terms common between them and plotting each term based on the fold change calculations for

Unipept (x-coordinate) and MetaGOmics (y-coordinate). A linear model was regressed, and

the Pearson correlation coefficient was calculated with a two-sided alternative hypothesis. Sec-

ondly, all tools were included in a fold change comparison with translated GO terms. Using

the functional annotation outputs from each tool, fold changes were estimated for each molec-

ular function GO term and compared with one another. For each tool, the top five upregulated

and top five downregulated terms were calculated with their fold changes and compared with

the other tools. If one of these top terms was present in another tool’s GO set, then that other

tool’s GO fold change calculation was referenced for comparison. If multiple copies exist in

another tool, then the GO term with the largest absolute fold change was referenced. For pri-

mary analysis, a tool that aggregated GOs intrinsically (MetaGOmics or Unipept) with high

coverage was selected. Similar analyses for the other tools are included in the supplement

(Supplement S4 Tables 3–7 in S1 File).

Single peptide analysis

With an overall sense of tool discrepancies through identification and quantitation compari-

sons, the underlying differences between tools were closely examined through a single-peptide

analysis. Twenty peptides were randomly selected for this analysis. For a single-peptide analy-

sis, only tools that accepted peptide inputs were used, thus excluding MEGAN, MPA, and Pro-

PHAnE. As a baseline, BLAST2GO v5.2.5 [23] was used to retrieve GO terms from a peptide.

This tool was chosen due to its ability to obtain direct GO annotation via a universal algorithm,

BLAST (Basic Local Alignment Search Tool). BLAST-P was used against the NCBI (nr) data-

base with default parameters (no taxonomy filter, 1000 expectation value, 50 blast hits, word

size of three with a low complexity filter enabled, 33 high-scoring segment pair (HSP) length

cutoff, 0 HSP-hit coverage with GO mapping against the 2020_03 Goa version). Sensitivity

and specificity of functional annotation differed between tools, in that some tools contained

more GO terms than those found via BLAST2GO against the NCBI non-redundant (nr) data-

base. Of the tools that used peptide-level input information (see Fig 1), Unipept was most simi-

lar to BLAST2GO outputs. Thus, eggNOG-mapper and MetaGOmics, which generally

contained many more terms than BLAST/Unipept were scrutinized. To account for these

extra terms, the hierarchical structure of GO terms was considered. GO terms assume a top-

down hierarchical structure (directed acyclic graphs) which can be navigated using terms such

as child, parent, ancestor and descendant. For any GO term, its ancestors consist of any num-

ber of less-specialized terms in its hierarchy. Conversely, its descendants consist of more-spe-

cific terms that would continue beneath its hierarchy. Parents and children are direct

ancestors and direct descendants, respectively [20]. As an example, we can examine the ances-

tors and descendants of ion binding (GO:0043167): metal ion binding (descendant)! cation
binding (child)! ion binding! binding (parent)!molecular function (ancestor).

To retrieve the ancestors and descendants of GO terms, the Python library GOATOOLS

was used (20). Any ancestors, descendants, and ancestors’ children were identified in the extra
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GO terms found in eggNOG-mapper and MetaGOmics for each peptide. Terms that were

uncategorized were labeled as ‘extraneous’.

Results

General characteristics of the six tested software

Input. The six software tools that were evaluated in this study have been used for meta-

proteomics analysis before (Fig 1). The inputs for each of these tools are different. EggNOG-

mapper and Unipept take in only a peptide list and use established databases for annotation

(eggNOG and UniProtKB databases, respectively). In contrast, search databases are required

for MEGAN, MetaGOmics, MPA, and ProPHAnE which take in peptides with BLAST-P

results, peptides with spectral counts, spectral search files, and spectral search results (from

MPA, for example), respectively. MetaGOmics, MPA, and Unipept use UniProtKB as a data-

base for annotation, while MEGAN requires results from the NCBI (nr) database. ProPHAnE

can use EggNOG, PFAMs, TIGRFams databases and also custom databases for functional

annotation.

Analysis level. The software tools differ in their level of analysis–some perform analysis at

the peptide level (MetaGOmics, eggNOG-mapper and Unipept) and others perform analysis

at the protein or protein-group level (MEGAN, MPA, and ProPHAnE).

Outputs. The software tools also generate variable outputs such as proteins annotated

with GO terms (eggNOG-mapper, MEGAN, MetaGOmics, MPA, and Unipept 4.0), Inter-

Pro2GO (MEGAN), EggNOG orthologous groups (eggNOG-mapper, MEGAN, and Pro-

PHAnE), EC numbers (Unipept 4.0), and Pfam/TIGRFAM accessions (ProPHAnE). Given

the variety of inputs, annotation databases, levels of analysis and output types, some variability

in results can be expected if the same dataset is processed using these different software tools.

To test the degree of variability, we used the published oral dysbiosis microbiome metaproteo-

mics dataset (sample 737) [15].

Variation in the number of GO term outputs from functional tools

Peptide reports for the sample grown without sucrose (NS) had 27,420 peptides (56,809 PSMs)

and the sample grown with sucrose (WS) had 26,638 peptides (53,205 PSMs). Peptide search

results from the oral dysbiosis dataset pair (see Methods) were processed to provide appropri-

ate inputs for functional analysis. The outputs from the data processing through these software

tools (Table 1) show that the total number of functional annotation groups differed for each

software tool. For example, an orthologous group-based tool (e.g., MEGAN) can have as few

as 1,665 groups while a tool with UniProt protein IDs (e.g., MPA) can have as many as 23,169

groups.

To facilitate comparison, the functional annotation groups were standardized into GO

terms. Here, the number of GO terms derived from the tools is listed with and without dupli-

cates. These two numbers are the same for tools that aggregate each GO term individually

(MetaGOmics and Unipept). For tools that had GO terms translated, the unique (without

duplicates) numbers are comparable with one another, ranging from as low as 1,056 (for

MPA) to 6,155 (for eggNOG-mapper). The raw (with duplicates) numbers are less compara-

tive but demonstrate the differences between tools that aggregate GO terms and those that do

not. Since this study focuses on functional analysis, we filtered the GO terms to retain molecu-

lar function GO terms. The number of unique molecular function GO terms ranged from as

low as 634 (for MPA) to 1,613 (for MEGAN).

When compared with the numbers for all ontology GO terms, these molecular function

GO terms number show their proportionality. For example, MPA had the highest molecular
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function composition at 60% (634 / 1,056) while eggNOG-mapper had the lowest at 23%

(1,411 / 6,155). When comparing these molecular function GO terms between each tool, terms

that were exclusive to a tool were highly present in Unipept at 22% (394 / 1,726), which con-

trasts with MPA, which only had one exclusive term: molybdopterin-synthase adenylyltrans-

ferase activity (GO:0061605).

To get a sense of the granularity of each tool’s molecular function GO set, the numbers of

each dataset’s metaQuantome-expanded molecular function GO set is reported. metaQuan-

tome expands each GO’s hierarchy to list all possible ancestors. To avoid overloading 1 TB of

RAM, the large datasets of eggNOG-mapper and ProPHAnE were collapsed by grouping via

GO term and adding intensities. When compared with the numbers for molecular function

GO terms, Unipept is found to contain the most expanded ancestors at 523 (2,249 minus

1,726) followed by MPA at 340 (974 minus 634). Proportionally, however, MPA had ancestors

at 35% (340 / 974) of the expanded dataset and Unipept at 23% (523 / 2,249). The other tools

had ancestor coverage at or less than 10% of their expanded GO sets: 3.8%, 4.7%, 10%, and

6.9% for eggNOG-mapper, MEGAN, MetaGOmics, and ProPHAnE, respectively.

Expansion to more ancestral terms affects how many terms were exclusive to each tool. For

the expanded GO term sets, eggNOG-mapper, MEGAN, and MetaGOmics had around 50

fewer exclusive terms each when compared to their unexpanded counterparts. For ProPHAnE,

there were only five fewer terms. In contrast to the other tools, MPA retained its only exclusive

term, and Unipept had an increase of 50 exclusive terms through expansion.

The same tables were created for different category combinations as well: all GO terms

(molecular function, biological process, and cellular component), biological process GO terms

only, and cellular component GO terms only (Supplement S1, Tables 1–3 in S1 File).

Overlap analysis

Pairwise overlap analysis was performed on unique translated molecular function GO terms

(sizes indicated in Table 1). The tool pairings that had the most overlap were MEGAN within

ProPHAnE (92% of ProPHAnE’s 474 terms are also in MEGAN’s 1,613 terms) and Unipept

within MPA (99% of MPA’s 634 terms were found in Unipept’s 1,726). Both observations are

expected since ProPHAnE had a smaller output set and both MPA and Unipept use the Uni-

ProtKB database. Generally, tools with larger GO sets (e.g., MEGAN at 1,613) had better cov-

erage in other tools’ GO sets, as indicated by each row. However, even against a tool with a

large GO set like MEGAN, 20 to 30% of most tools’ annotations lacked overlap as a best case

Table 1. Functional analysis of the oral dysbiosis dataset using molecular function GO terms.

Tool EggNOG mapper MEGAN MetaGOmics MPA ProPHAnE Unipept

Type of functional annotation eggNOG

orthologous groups

eggNOG

orthologous groups

GO terms Proteins Protein families, eggNOG

orthologous groups

GO terms

Total number of annotation groups 18,440 1,665 2,829 23,169 3,999 3,471

Total (and unique) number of translated

GO terms for all ontologies

533,066 (6,155) 76,529 (4,155) 2,829 (2,829) 77,204

(1,056)

189,054 (2,598) 3,471

(3,471)

Total (and unique) number of translated

molecular function GO terms

88,582 (1,411) 21,212 (1,613) 900 (900) 42,084

(634)

57,208 (1,057) 1,726

(1,726)

Total number of molecular function GO

terms exclusive to the tool

265 168 113 1 16 394

Total number of molecular function

expanded GO terms

1,466 1,693 1,002 974 1,135 2,249

Total number of molecular function

expanded GO terms exclusive to the tool

204 118 80 1 11 447

https://doi.org/10.1371/journal.pone.0241503.t001
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scenario (Fig 2A left panel). In the metaQuantome-expanded versions of these GO sets, there

is an overall improvement, notably with tools that had the most expansion (MPA and Uni-

pept). Relative to GO term comparison, expanded GO term comparison shows an improve-

ment due to an expanded representation of each term (Fig 2A right panel). The same overlap

analysis was performed for all GO term ontologies, biological process GO terms, and cellular

Fig 2. A) Qualitative and quantitative comparison of functional tools. Overlap of unique molecular function GO terms (left) and

expanded GO terms (right) were compared amongst the six functional tools. Values were calculated as a fraction of the size of the

term intersection (between the tools labeled on the column and row) over the total term size of the tool listed on the horizontal axis

(column). Each functional analysis software tool was compared against each other. For example, for molecular function GO terms

(left panel), 90% of the unique MPA term set is present in Unipept’s unique term set. For molecular function expanded GO terms,

the overlap is much larger for all tools within Unipept (right panel’s top row). B) Comparison of quantitative expression for

molecular function GO terms from Unipept and MetaGOmics. Log2ratio of spectral counts ‘with sugar sample’ (WS) against ‘no

sugar sample’ (NS) was calculated for MetaGOmics- and Unipept-generated molecular function GO terms. Unipept identified 1,109

molecular function GO terms, while MetaGOmics identified 900 molecular function GO terms. The data points in the figure

represent quantitative values for 460 molecular function GO terms that overlapped between Unipept and MetaGOmics.

https://doi.org/10.1371/journal.pone.0241503.g002
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component GO terms (Supplement S2 Figures 2–4 in S1 File). Moreover, we also provide an

Edwards-Venn diagram comparison of molecular function GO terms with unfiltered and

expanded data (See Supplement S2 Figures 1a and 1b in S1 File) to provide overlap based on

absolute numbers.

Quantitative comparative analysis

After assessing the overlap of functional annotations (Fig 2A), we looked at the quantitative

changes in GO terms for MetaGOmics and Unipept (Fig 2B). As mentioned earlier, MetaGO-

mics and Unipept both generate GO terms as their native output. Comparison of quantitative

expression using spectral counts for GO terms from Unipept and MetaGOmics was performed

after normalization of spectral counts. Quantitative values of the overlapping molecular func-

tion GO terms were represented (Fig 2B). The Pearson coefficient of this quantitative compari-

son was found to be 0.798 with a significant p-value. Given that this is a quantitative

comparison of the same dataset, a better quantitative correlation for overlapping molecular

function GO terms was expected amongst two functional tools which used the same annota-

tion database (UniProtKB).

Quantitative comparison for all GO terms, biological processes GO terms, and cellular

component GO terms are available as Supplement S3 in S1 File. The Pearson correlation for

all of these comparisons shows lower values than for molecular function category (Supplement

S3 Figures 1–3 in S1 File).

Differentially expressed GO terms across functional tools

A comparison of differentially expressed GO terms was performed by looking at the top five

upregulated and top five downregulated terms for Unipept. Unipept was chosen since it aggre-

gates on a GO term level and has more coverage at these extremes than MetaGOmics (the

analogous table is available in Supplement S4 Table 5 in S1 File). Overall, the fold changes for

these top terms were somewhat maintained across most tools. Exceptions included eggNOG-

mapper and MPA, which had either little to no coverage for some GO terms. Similar tables for

the other tools can be found in Supplement S4 3–7 in S1 File. We also provide expanded and

filtered outputs for Unipept top five upregulated and down-regulated terms (Supplement S4

1–2 in S1 File).

Single peptide analysis

To determine the source of lack of overlap and quantitative correlation, we took a deeper look

at the functional annotation of the top down regulated acetyl-CoA C-acetyltransferase activity

(Fig 3 and Supplement S5 in S1 File) and randomly selected peptides from the oral dysbiosis

dataset (Supplement S6 in S1 File). This term was chosen rather than the top-upregulated

since the peptides associated with the term for each tool had no overlap between all peptide-

level tools.

For example, a closer look at the peptides associated with acetyl-CoA C-acetyltransferase

activity showed that for acetyl-CoA C-acetyltransferase, eggNOG-mapper, MetaGOmics, and

Unipept assigned 53, 69, and 73 peptides, respectively. (Table 2). It should be noted that the

PSM ratios from the sucrose-to-control dataset remained similar for Unipept, MetaGOmics

and MEGAN. In contrast, eggNOG-mapper could assign only one peptide from the control

dataset and could not assign any peptides from the sucrose dataset.

We performed analysis on single peptides that annotated acetyl-CoA C-acetyltransferase,

which was the most down-regulated GO term using Unipept (Fig 3 and Supplement S5 in S1

File). Analysis of the peptide that was assigned by EggNOG mapper (Fig 3) showed that
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MetaGOmics and eggNOG-mapper annotations had related terms (ancestors). Unipept, on

the other hand, identified GO terms that were more specific. MetaGOmics assigned ancestor

and descendant terms for the rest of the peptides. This was in contrast to Unipept which iden-

tified specific GO terms—similar to the baseline BLAST searches against the NCBI nr

database.

Bar diagrams for randomly selected peptides from the oral dysbiosis dataset (Supplement

S6 in S1 File) also show the number of ancestors’ direct children, ancestor terms when using

eggNOG-mapper, and MetaGOmics. It is clear that as compared to Unipept (and BLAST),

these two functional tools (eggNOG-mapper and MetaGOmics) output more functional

terms. The single-peptide analysis (Fig 3, Supplement S5 and Supplement S6 in S1 File) was

carried out for Unipept, MetaGOmics and eggNOG-mapper since they provide GO term

annotations at a peptide level. As a result, we do not have results for the protein-level tools

MEGAN, MPA and ProPHAnE.

In an effort to include more tools than just peptide-level tools, a single GO term, Xanthine

dehydrogenase activity (XDA) (GO:0004854), was chosen for its annotation in all six tools.

XDA also had fewer annotation groups in each tool, allowing for a manageable analysis. For

Fig 3. Analysis of peptides associated with acetyl-CoA C-acetyltransferase activity. A.) A combined GO hierarchy

of unique terms annotated from a single peptide (sequence = FKDEIVPVVIPNK) for peptide-level tools (Unipept,

MetaGOmics, and EggNOG-mapper), and a baseline tool: BLAST2GO—NCBI (nr). This peptide was selected from a

group of 20 peptides randomly selected from all possible peptides that annotated ‘Acetyl-CoA C-acetyltransferase’

from the peptide-level tools. The peptide was selected since it shared results with the most number of peptides (10).

Similar analyses for these other peptides are included in Supplement S5 in S1 File. In this hierarchy, an arrow indicates

“is a” or parent/children relationships. Colored blocks represent GO terms (color represents relationship type). Dashed

block outlines (non-colored) are labeled with tools that encapsulate GO terms that were annotated by that tool. B.) A

stacked bar chart representation of the related terms (descendants, ancestors, or ancestor’s children). Colors

correspond to these relation types. Green represents terms that were found through BLAST2GO’s annotation via

NCBI (nr). The other colors represent the relationship of the other terms in other tools to those BLAST GO terms.

These types are quantified and stacked on one another to show the contributions of each relationship type to the

overall GO hierarchy.

https://doi.org/10.1371/journal.pone.0241503.g003

PLOS ONE Survey of metaproteomics software tools for functional microbiome analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0241503 November 10, 2020 12 / 20

https://docs.google.com/document/d/15KuJQqg4UCDJDfDqfgMs9MNpR1JJiHcG8qMh7D8irXM/edit
https://docs.google.com/document/d/1hn4wo0y0UxKmp9yF0Er1QBmUVy3LsBKRak_jqpsYP68/edit
https://doi.org/10.1371/journal.pone.0241503.g003
https://doi.org/10.1371/journal.pone.0241503


each tool, any GO terms that accompanied XDA on the same annotation group (i.e., peptide,

protein, protein family, and eggNOG orthologous group) were organized into a GO hierarchy.

The level of coverage and expansion is visually represented in two components similar to

Fig 3.

Table 2. Comparison of the top five upregulated and top five downregulated molecular function GO terms of Unipept with the molecular function GO terms from

the other tools from the oral dysbiosis dataset.

GO Term Fold Change Unipept EggNOG MEGAN MetaGOmics MPA Prophane

glucosyltransferase activity FC (WS /

NS)

6.87 (116 / 0) 2 (3 / 0) 1.46 (21 / 7) 2.71 (117 / 17) 3.01 (7.03 /

0)

0.52 (0.44 /

0)

Percentile

(%)

0.058 12.267 18.438 8.024 1.157 1.9

dextransucrase activity FC (WS /

NS)

6.67 (101 / 0) - - 6.71 (104 / 0) 3.01 (7.03 /

0)

-

Percentile

(%)

0.086 - - 0.035 1.157 -

pyruvate oxidase activity FC (WS /

NS)

6.38 (82 / 0) - - 6.13 (69 / 0) - -0.09 (0 /

0.07)

Percentile

(%)

0.115 - - 0.071 - 57.689

glyceraldehyde-3-phosphate dehydrogenase (NADP+) (non-

phosphorylating) activity

FC (WS /

NS)

6.04 (65 / 0) - - 6.02 (64 / 0) - -

Percentile

(%)

0.144 - - 0.141 - -

fructuronate reductase activity FC (WS /

NS)

5.7 (51 / 0) - 0 (1 / 1) - - -

Percentile

(%)

0.173 - 52.072 - - -

CoA-transferase activity FC (WS /

NS)

-7.84 (2 /

685.56)

-6.28 (0 /

76.8)

-8.56 (0 /

377)

-5.15 (15 /

568)

-4.52 (0 /

22)

-1.3 (0 /

1.47)

Percentile

(%)

99.885 99.881 99.94 97.702 99.236 99.925

acetyl-CoA C-acyltransferase activity FC (WS /

NS)

-7.92 (0 /

240.7)

-6.45 (0 /

86.16)

-8.59 (0 /

384)

-8.37 (0 / 330) -5 (0 / 31) -1.09 (0 /

1.13)

Percentile

(%)

99.914 99.913 100 99.894 99.819 99.825

butyrate-acetoacetate CoA-transferase activity FC (WS /

NS)

-8.36 (0 /

326.86)

- - -6.85 (0 / 114) -4.52 (0 /

22)

-0.42 (0 /

0.33)

Percentile

(%)

99.942 - - 99.434 99.258 96.674

glutaconate CoA-transferase activity FC (WS /

NS)

-8.41 (0 /

339.03)

- - -8.13 (0 / 279) -4 (0 / 15) -0.55 (0 /

0.47)

Percentile

(%)

99.971 - - 99.823 98.412 98.25

acetyl-CoA C-acetyltransferase activity FC (WS /

NS)

-8.54 (0 /

369.94)

-6.45 (0 /

86.16)

-8.59 (0 /

384)

-8.37 (0 / 330) -5.46 (0 /

43)

-1.09 (0 /

1.13)

Percentile

(%)

100 99.913 100 99.859 99.987 99.825

Fold changes are featured here (descending for Unipept). For other tools, if there are multiple GO terms that match the top term, then the term with the highest absolute

fold change is displayed. Additionally, spectral counts are indicated for “with sucrose” and “no sucrose” (WS / NS) conditions which are used to calculate the displayed

fold change FCð Þ ¼ log
2

WSþ1

NSþ1

� �
. Percentiles are included to indicate the position of that particular term in that GO set containing all ontologies (0 = most upregulated;

100 = most downregulated).

https://doi.org/10.1371/journal.pone.0241503.t002
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The first component (Fig 4A) is a stacked bar chart similar to the one created for single pep-

tide analysis (Fig 3). Here, available peptides from EggNOG-mapper (one peptide), MetaGO-

mics (12 peptides), and Unipept (52 peptides) that annotated XDA were used as input for

BLAST2GO through the NCBI (nr) database. Amongst the 53 unique peptides, we retained 50

peptides that had GO sets with more than one peptide that supported that annotation. These

50 peptides were annotated by BLAST2GO and the GO terms were collated and duplicates

were removed. Like Fig 3, the hierarchy relationships from the six functional tools’ GO terms

to BLAST2GO terms are listed in Fig 4A. The expansiveness of tools that output orthologous

groups is highlighted here (such as MEGAN and ProPHAnE) which include both descendant

and ancestor terms relative to BLAST2GO. MetaGOmics, a peptide-level functional tool, has

an expanded hierarchy, but does not have descendants, relative to BLAST2GO. EggNOG-map-

per and Unipept have the same amount of terms but eggNOG-mapper has a focused yet

expanded hierarchy while Unipept has terms on the same level, similar to BLAST2GO. MPA is

similar to Unipept, but with fewer terms.

To visualize the distributions in Fig 4A, the GO relationship hierarchies of each tool were

constructed and overlaid on another in Fig 4B. Here, the anchor points (BLAST2GO terms)

were labeled with circles. Each tool’s level of expansiveness and specificity are visualized here.

Fig 4. Gene ontology hierarchy analysis of a single GO term for all six tools. A) A stacked bar chart representation of the related

terms (descendants, ancestors, ancestor’s children, or extraneous) for xanthine dehydrogenase activity (XDA) for all six functional

tools. Colors correspond to these relation types. Green represents terms that were found through BLAST2GO’s annotation via NCBI

(nr). The other colors represent the relationship of the other terms in other tools to those BLAST GO terms. These types are

quantified and stacked on one another to show the contributions of each relationship type to the overall GO hierarchy. B) A single

GO hierarchy analysis of xanthine dehydrogenase activity (XDA) (GO:0004854) for all six functional tools. For each tool, the GO

terms of annotation groups containing XDA are arranged in a GO hierarchy for each tool. Each GO term is contained in a rounded

rectangle. All six hierarchies are layered upon one another (with the largest in the background and the smallest in the foreground).

Each color represents a tool (not a GO relationship). Solid lines represent “is a” or parent/child relationships and the dashed line

indicates a connection that is present in the overall combined hierarchy, but not in any of the individual hierarchies. Circles indicate

GO terms derived from BLAST2GO—NCBI (nr) results using peptides from the peptide-level tools (MetaGOmics, Unipept,

EggNOG-mapper). GO terms not represented by more than one peptide are omitted (hence why eggNOG-mapper is not

represented here).

https://doi.org/10.1371/journal.pone.0241503.g004
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For eggNOG-mapper, the GO terms annotated on the XDA-containing single protein

(339724.XP_001539262.1 Xanthine dehydrogenase) have a hierarchy that is highly specific and

expanded all the way. For MEGAN, there is high coverage and expansion from only two

COGs: “COG1529 Aldehyde oxidase and xanthine dehydrogenase, molybdopterin binding”

and “COG4631 xanthine dehydrogenase”. For MetaGOmics, there are 12 peptides that anno-

tate XDA and 13 associated GO terms resulting in an expanded hierarchy with moderate

coverage. For MPA, there were two proteins (“W3Y6K1 selenium-dependent xanthine dehy-

drogenase” and “T0T10 xanthine dehydrogenase, molybdenum binding subunit”) with four

specific UniProt-derived GO terms. For ProPHAnE, there were two protein families that

resulted in a hierarchy similar to MetaGOmics. For Unipept, there were 52 peptides contain-

ing nine unique molecular function GO terms. As a filtering mechanism, GO terms that were

annotated in a number of proteins less than 5% of the total protein count per peptide were

removed (GO:0016788 “hydrolase activity, acting on ester bonds”, GO:0008270 “zinc ion bind-

ing”, GO:0009056 “catabolic process”). Only six GO terms remained in a less expanded hierar-

chy similar to MPA. After listing out these hierarchies, the visual differences between

functional tool annotations is apparent.

Discussion

Using metaproteomics to investigate microbiomes has gained importance primarily due to its

ability to identify functional roles of diverse taxonomic groups within a complex microbial

community. In order to evaluate the software tools that are available for functional analysis of

metaproteomics dataset, we used a published dataset of oral dysbiosis from plaque samples

derived from dental caries prone children. In this study, the effect of sucrose on a dental plaque

community was assessed wherein principal components analysis showed that the functional

content exhibited better separation of the sucrose-treated samples from control samples as

compared to taxonomic profiles [15]. Although, not a ground truth dataset, we chose this pub-

lished dataset since it was thoroughly investigated. It is important to note that while taxonomy

based ground-truth datasets are available [24], generating a functional microbiome ground

truth dataset is not a trivial exercise.

For all of the functional studies, it is important that the software tools used offer results that

facilitate a sound biological interpretation. Functional analysis tools either use peptide-level

inputs (eggNOG-mapper, MetaGOmics and Unipept) or through other means (MEGAN,

MPA and ProPHAnE). Functional annotations are generally performed using functional data-

bases such as Gene Ontology (GO) [20] and Kyoto Encyclopedia of Genes and Genomes

(KEGG) [25], or using databases that catalogue the evolutionary relationships of proteins such

as orthologous groups (eggNOG). However, all of these databases/approaches are affected by

issues associated with annotation quality [26].

Peptides or proteins can also be searched against annotated databases such as NCBI (nr)

database [27] and UniProtKB by using algorithms such as BLAST-P or DIAMOND. For taxo-

nomic assignments, peptides unique to a taxonomic unit are used to identify the taxonomic

unit [28], while the majority of peptides are assigned at a higher taxonomic level (such as king-

dom, phylum, etc.) and cannot be used to identify a lower taxonomic level i.e., strain, species,

or genus. In contrast, for functional analysis the identified peptides are assigned to a protein

and then a function. This offers an advantage of using functional information of peptides that

have conserved function across taxa, even though they can only be assigned to relatively high

taxonomic levels such as kingdom, phylum, etc. However, protein assignments and functional

GO term assignments are hierarchical thus making it difficult to assign them to a single
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function. Moreover, this is confounded by the issue that peptides/proteins can be assigned to

multiple functional GO terms.

All of these issues are observed in our results. For example, the database size and composi-

tion and underlying algorithm used is reflected in the number of GO terms detected for each

software at molecular function GO terms level (Table 1). The results from the overlap indices

plot (Fig 2) is also noteworthy, though not surprising considering the variability in database

and underlying algorithms used to annotate functions. As expected, the overlap index

improves when using expanded GO terms to remove the variability between GO hierarchies

(as demonstrated as well in Fig 4). We were surprised to see that the quantitative correlation

between molecular function terms identified by MetaGOmics and Unipept was not better than

0.798, especially since this correlation was based on the overlapping GO terms. The non-over-

lap of GO terms (and hence quantitative values) can be explained by the hierarchical nature of

GO terms—wherein the same peptides might have been assigned GO terms at varying levels.

For example, the MetaGOmics algorithm expands its own hierarchy while Unipept does not

(as demonstrated in Figs 3 and 4). For overlapping GO terms, the discrepancy in quantitative

values might be explained by considering that peptides might have been assigned to different

GO terms by different algorithms. For example, through the single GO analysis of ‘Xanthine

Dehydrogenase Activity’ (XDA), only 12 peptides in MetaGOmics annotated XDA while 40

additional (52 total) peptides in Unipept annotated XDA (Fig 4).

When the ranking of differentially expressed molecular function GO terms was considered,

we found that most tools were in agreement when estimating fold changes. However, there

were minor discrepancies in a few of these up-regulated molecular function GO terms

(Table 2). This indicated that some of the peptides were assigned to variable GO terms or not

assigned at all by some software algorithms. In the case of peptide deformylase activity, which

was the top-ranked differentially expressed molecular function GO term using Unipept, we

observed that most of the peptides were not assigned using eggNOG-mapper. This may be

attributed to the fact that eggNOG-mapper uses fine-grained orthologues to focus on novel

sequences. This would result in the loss of quantitative information during eggNOG-mapper

analysis, given that only one peptide in eggNOG-mapper annotated ‘Peptide deformylase

activity’. This peptide was only in NS, which goes against the expected value calculated from

more WS counts. The other peptide-level tool, MetaGOmics, had a similar amount of spectral

counts to Unipept when examining ‘Peptide deformylase activity’. Surprisingly, a protein-level

tool, MEGAN, had similar values as well. MPA, did not have similar spectral count values for a

few of the upregulated terms, but did have relatively similar fold change calculations for the

fourth and fifth upregulated terms and downregulated terms as well.

A closer look at the peptides assigned in the study showed the various terms and hierarchy

at which molecular function GO terms were assigned (Fig 3 and Supplement S5 and S6 in S1

File). This shows the need for consideration of GO terms detected especially when ancestor,

descendants, and any extraneous terms were detected. When this analysis was scaled up to

include all tools that annotated xanthine dehydrogenase activity (Fig 4), the differences in

annotation were still apparent. One thing to note, however, is that some of these terms were

translated from other groups. For example, within MEGAN, proteins were annotated with

COGs. These COGs were then translated into a large and expanded hierarchy of GO terms.

ProPHAnE contains even more modules for translation from multiple groups: TIGR-

FAM2GO, Pfam2GO, and OG2GO (eggNOG orthologous groups). These translations from

different types of functional annotation need to be considered when comparing between tools.

This highlights the importance of expanding the hierarchy in this analysis through tools such

as metaQuantome [16] which allows for differences to be attributed to the underlying algo-

rithm and database rather than the GO hierarchy. Additionally, being able to sift through,
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aggregate, and filter through the hierarchy is important for not only comparing between tools,

but also using them in a metaproteomics study.

Given all of these observations, we noted a few variables that might need to be considered

for a more effective functional analysis. For example, some of the software seems to generate

outputs with additional GO information. This is also augmented by the hierarchical structure

of GO terms and the issue of multiple GO terms for the same protein (Fig 4). Adding a filtering

step after navigating the hierarchical structure of GO terms and reporting signal from noise

will aid in arriving at fairly consistent outputs. The usage of a metaproteomics tool such as

metaQuantome or an R Bioconductor package such as GO.db (10.18129/B9.bioc.GO.db);

extensively used during this analysis, can help navigate these hierarchical structures.

Based on our knowledge, this is the first study that evaluates the performance of various

functional tools in the field of metaproteomics. We acknowledge a few limitations in the study,

including performing analysis on a single replicate paired-samples and using spectral counts

for quantitative analysis. This design was used primarily to address the current capacities of

various software that were compared. Most of the software evaluated in the study supports

analysis of single-replicate, spectral-count based analysis. We are currently evaluating

MS1-based precursor-intensity tools and DIA-based tools [29] for protein quantitation, which

we hope will provide more accurate quantitative data for these analysis programs in the future.

While using the same post-search inputs from the same dataset (except for MPA, which

performed the X! Tandem search on a sectioned database internally), we were anticipating

slight variability in the outputs from the six tools—mainly since they used variable databases

for functional annotation along with underlying variability in algorithms. However, we were

surprised by the incomplete overlap in GO terms (Fig 2A), particularly their quantitative out-

puts (Fig 2B and Table 2). This was rather noteworthy for tools that generated native GO

terms as outputs. A closer look at the peptides and their functional assignment showed that

software tools such as Eggnog-mapper and MetaGOmics generated a lot of information that

was related but not specific to the protein. Unipept on the other hand showed more narrow

and specific functional information. As a result of these observations, it is our opinion that in

order to measure the functional component of the microbiome, there is a need for further

refinement in databases used for annotation and also the underlying algorithms and filtering

of the outputs generated, so that relevant functional information can be easily parsed out from

these software tools. There is an opportunity, for example, to improve on the underlying data-

base. This will become increasingly important when evaluating microbiomes from environ-

ments where metagenome and metatranscriptome data for peptide spectral matching is

available, but not functionally annotated. Metaproteomics researchers face the challenge of

analyzing the function of such microbiome systems and software developers have a major role

in tackling this challenge. In order to assign functions to such metagenomics data, functional

assignment after taxonomic binning is being used. This annotated metagenomics data can be

used as a template to assemble metatranscriptomics data and generate protein databases for

metaproteomic analysis. We also highlight the importance of targeted metaproteomics analysis

to validate peptides and proteins as a follow up to key functions identified in discovery meta-

proteomics research.

As a result of the study, we have implemented two functional analysis tools (Unipept and

EggNOG Mapper) which use distinct approaches related to database searching and filtering of

results for usage in the Galaxy environment (see Supplement S7 in S1 File); additionally, the

computational performance of both tools are included (see Supplement S8 in S1 File). We

hope that access to these software will encourage metaproteomics researchers to explore these

tools either individually or within Galaxy workflows [7,16,21,30,31]. We also hope that this

evaluation encourages software developers to develop tools that generate the right balance of
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annotation and results processing so that the functional analysis, which is the essence of meta-

proteomics research, can be explored with confidence.
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