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Abstract

Contact-resonance AFM (CR-AFM) has been used in recent years for the measurement of mechanical properties of rather stiff ma-
terials, such as ceramics or metals, but also of some polymers. Compared with other techniques providing information on the me-
chanical properties of a sample, notably force—distance curves, CR-AFM has a much shorter acquisition time. This compensates in
part the incomplete theoretical understanding of the underlying physical phenomena and of factors influencing the measurements. A
commonly used method to analyze CR data requires the determination of the relative position of the tip, the calculation of the
normalized contact stiffness, and the use of a calibration sample for the calculation of the elastic modulus of the sample. In the
present paper, we propose an alternative procedure, based on approximations of the equations describing the system, which allows
one to determine the elastic modulus of the sample as a parameter of the fit of the CR frequency as a function of the load. After
showing that CR modes including scanning under continuous contact wear and damage the sample and/or alter the surface rough-
ness, the results of point CR measurements on bulk and thin films are presented. Though Young’s moduli of bulk polystyrene and
poly(methyl methacrylate) could be determined through the presented analysis, it is concluded that CR measurements are not appro-
priate for polymer samples. Major drawbacks are the bad resolution for moduli lower than ca. 10 GPa and the lack of a comprehen-
sive physical model accounting for many factors affecting the dynamic response of a cantilever in contact with a sample.

Introduction

The development of new materials for applications on the nano-  provides, besides its initial intention of topographical imaging,
scale, such as thin polymer films, demands a reliable determina-  several methods for obtaining information about mechanical
tion of their mechanical properties. Atomic force microscopy  properties. The most common and reliable method consists in

(AFM) is a very versatile tool in surface characterization and  recording force—distance curves, which is a quasi-static method.
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A thorough theoretical understanding of force—distance curves
has been developed over the years, which enables a quantita-
tive analysis of the elastic moduli for many kinds of systems
[1-3]. The major drawback of force—distance curves is their
long acquisition time. A force volume, which consists of a large
number of curves in well-defined spatial intervals, can take
several hours to complete. In order to overcome these draw-
backs, dynamic scanning methods are a promising alternative to
force—distance curves. For example, intermittent-contact (or
tapping) mode AFM shows sensitivity to mechanical properties
in the phase image. The resulting contrast is, however, hard to
analyze quantitatively.

Contact-resonance AFM (CR-AFM) [4,5] is a dynamic contact
technique that makes use of the vibrational behavior of the can-
tilever while the tip is in permanent contact with the sample.
Generally, an increase in sample stiffness prompts an increase
of the contact-resonance frequency (CR frequency). The CR
frequency can be obtained from single-point measurements or
tracked during scanning with techniques such as dual AC reso-
nance tracking (DART) [6,7]. The vibrational motion of the
cantilever is usually described using the Euler—Bernoulli beam
equation [8-10]. In the simplest model, only the vertical elastic
forces are represented by a spring between tip and sample. This
can be extended by a spring in lateral direction as well as dash-
pots connected in parallel to the spring to account for visco-
elastic interactions. Such models allow one to calculate the con-
tact stiffness from the measured CR frequency. Then, from the
contact stiffness, the elastic modulus of the sample can be deter-
mined. This technique has been successfully applied on rather
stiff materials such as silicon [11] or chalcogenide glasses [12],

as well as on some polymeric materials [13-15].

A requirement of the analysis based on the Euler—-Bernoulli
beam equation is that certain properties and dimensions of the
probe are known. A crucial parameter is the location of the tip
on the cantilever, which strongly influences the calculation of
the contact stiffness. Several methods to obtain this parameter,
such as direct measurement via scanning electron microscopy
[14] or identification of the value for which two different modes
of the same cantilever yield the same contact stiffness (“mode
crossing” method), may lead to different values [16]. This is a
major weakness of current analysis methods. Additionally, as in
other techniques dealing with mechanical properties, the radius
of the tip needs to be known. Alternatively, a calibration sam-
ple can be used [16]. Yet, this presupposes the exact measure-
ment of the elastic modulus of the calibration sample. These
requirements have prompted several alternative theoretical ap-
proaches [17-19], in some cases based on finite element analy-
sis [13,20,21], as well as modifications of the measurement pro-
cedure [22].
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In addition to the aforementioned critical points in quantitative
analysis, scanning CR-AFM modes such as DART are affected
by problems such as sudden jumps in the recorded CR frequen-
cy, which are probably caused by the collection of dirt particles
by the tip during scanning [13]. This means that not only quan-
tities calculated from the CR frequency, for example, Young’s
modulus, but also the measured CR frequency itself are affected
by large uncertainties and are often not reproducible. Therefore,
several CR-AFM studies on polymers are limited to the mere
detection of contrasts in CR frequency, without further calcula-
tions and, hence, without a quantitative determination of stiff-
ness and moduli [20,23-25].

To compete with the well-established force-distance curves
method in determining elastic properties of samples, CR-AFM
must be able to produce reliable, reproducible values for CR
frequencies. Additionally, an analysis method is necessary that
does not rely on imprecise parameters such as the tip position
on the cantilever.

This article shows quantitative CR measurements on polymer
films of polystyrene (PS), poly(methyl methacrylate) (PMMA),
and poly(n-butyl methacrylate) (PnBMA), as well as glass. Cur-
rent analysis methods are simplified to a point that CR frequen-
cies can be directly fitted to estimate the elastic modulus, with-
out calculation of the sample stiffness and without the use of a
calibration sample. Advantages and limitations of CR tech-

niques are elucidated, with focus on polymer samples.

Theory

The central goal of contact-resonance AFM (CR-AFM) is to get
information on the stiffness of a sample via its vibrations and, in
particular, through its contact-resonance frequency (CR fre-
quency). In the following, the cantilever is modeled as a rectan-
gular, elastically isotropic beam of uniform cross section with
length L, width w, thickness b, density p, and Young’s modulus
E;. The tip mass, being typically much smaller than the cantile-
ver mass, is neglected. The tip is located at a distance L| < L
from the clamped end of the cantilever. The flexural spring con-
stant of the cantilever is k, = Eb>w/ (4L3) [2].

The tip—sample interaction can be modeled by a vertical and a
horizontal spring and a dashpot accounting for dissipative
forces [16,26]. Yet, these sophisticated models lead to rather
complex equations with a large number of parameters. In the
simplest model, the tip—sample interaction is completely elastic
and along a direction normal to the sample surface. The system
can be represented by a spring with elastic constant kg, that is,
the contact stiffness. Taking advantage of the Euler—Bernoulli
beam equation, the normalized contact stiffness a = ky/k. is
given by [8-10,27]:
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o =—(yx”L)3 1+cos(angcosh(an), "

where y is the relative position of the tip, given by L/L, and D

is given by:

sin [(1 —y)an]cosh[(l - y)anJ

—cos[ (1-y)x,L ]sinh[ (1-y)x,L]
[ 1-cos(yx, L )cosh (yx,L) | )
—[sin(yan)cosh(yan) - cos(yan)sinh(yan)}
~{1 +cos (1-v)x,L |cosh[ (1- y)an]}.

The wavenumber x,L for the contact flexural mode n can be
calculated from x,L = x,OLL\/ 1,/ 19, where f,, and f;,0 are the CR
frequency and the free resonance frequency for the n-th flex-
ural mode, respectively.

The wavenumber ng for the free flexural mode n can be calcu-
lated from the following equation describing the vibration of a
cantilever of length L in free space [16,27]:

1+cos(x,?L)cosh(x2L) =0. 3)

The first two roots of Equation 3 are xloL =1.8751 and ng =
4.6941 [28].

Equation 1 has two important features affecting the feasibility
of CR measurements. First, it can be used only to calculate the
normalized contact stiffness « as a function of x,L or f;,, but,
since the equation cannot be inverted analytically, x,L(a) and
fn(a) can be calculated only numerically. This also means that,
when expressing the stiffness as a function of the static load F
via a suitable elastic continuum theory [3], such as Hertz theory
[29], only the function F(f;,) can be determined analytically, and

not its inverse f,,(F).

Second, the parameter y is usually determined through a proce-
dure (“mode crossing”, see [16]), which is not always feasible
[10,27,30], “may differ slightly from the physical tip position”
[16], and may even vary for different measurements with the

same cantilever (see the Results section).

In the following, we will approximate and simplify Equation 1
with two aims: (1) to reduce it to an equation that can be
inverted, thus allowing the analytical calculation of f;,(a0) or else
fn(F); and (2) to better understand the meaning of the parameter

Y-
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The first approximation is based on the fact that y is usually in
the range 0.9 <y <1, hence (1 — y)x,L « 1. It is known that, for
€ <« 1, sin € = sinh € = ¢ and cos € = cosh € = 1. Substituting in

Equation 2, we get:
D=D = ZI:COS('YXHL)Sinh('YXnL) —sin(yan)cosh(yan)}

4
— ol [cos(yan)(l el ) ,sin(yan)(l Lo 2Vl )} (€]

For the second approximation, we assume that yx,L > 1 and
exp(—2yx,L) = 0. Hence:

D =D, =e"nt [ cos (7, L)—sin(yx,L) ]
&)
= etk cos (yx, L)[ 1-tan(yx,L)].

In the following, the function D and its approximations are dis-
cussed for the first mode, that is, for x2L=x10L=1.8751.
Except for numerical results, all equations are valid also for

higher modes, provided the corresponding value of ng is used.

Figure 1 shows D without approximations (Equation 2) and
with both approximations (Equation 4 and Equation 5) for
v=0.97 and 1 <f,/f,0 < 5. The top part of the figure shows the
differences between both approximated functions and the exact
one, divided by the exact function. Both approximations are
very good. The three curves can hardly be distinguished from
each other. The first approximated function is always smaller
than the exact one and the normalized difference exceeds 1%
only next to the root of D. For the second approximated func-
tion, the normalized difference is higher than 1% only next to
the root of D or for f,,/f,0 = 1.

The second approximation given by Equation 5 allows one to
calculate analytically the root of D, that is, the value (f;,)q at
which a diverges. It is given by (x,L)g = 5m/4y, since
(x,L)o = T/4y would yield the unphysical result f,/f, < 1. For

the first mode, we get for the root of D:
2
0 1 5 1
= — T . 6)
(o = I (1.87514 yj (

With y = 0.97 and (f,,) = 4.66152f,,°, the numerical solution is
(f,)o = 4.65985f,°. Hence, the deviation is 0.036%. Even for
y = 0.9, the deviation between the root given by Equation 5 and
the numerical solution is smaller than 0.8%. Yet, even this
small discrepancy plays an important role in the exact determi-
nation of y and can be overcome through an alternative expres-

sion of D:
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Figure 1: The function D without approximations (Equation 2) and with
both approximations (Equation 4 and Equation 5) for y = 0.97. The top
part of the figure shows the differences between both approximated
functions and the exact one, divided by the exact function.

D=D,=e"nt cos(yan)[l -6- tan(yan)], (7)

with an ad hoc parameter o, which can be calculated from
higher terms in the approximations of sin[(1 — y)x,L],
sinh[(1 — y)x,,L], cos[(1 — y)x,L], and cosh[(1 — y)x,L] and is a
function of y.

With Equation 7, the divergency of the normalized difference
(D — Dy)/D at (f;,) = 4.65985f,0 almost disappears (<6 x 1073)
and, for 2f,0 < f, < 4.65£,0, is =2 x 107™* < (D - D,)/D <
-8 x 1074,

Turning to the contact stiffness a, it is important to remember
that the numerator of Equation 1 is negative for values of x,L
between x{L = 1.8751 and xJL = 4.6941, that is, 1 < f/f,° <
6.267. Since the function D is negative for 0 <filfi% < 4.66, the
maximum attainable CR frequency in the first mode is
fi = 4.66f,°, because larger frequencies would lead to an

unphysical negative contact stiffness.
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The second approximation, applied to a, yields:

(yan)3 2+cos(x,L) (ex"L +enl )
3 ol [cos (yx,L)—sin (yan)]

(yan)3 2e 1l (1710l cos(x,L) (1 +e 2l )

= (®)
3 cos(yan) - sin(yan)

- (yan)3 cos(an)

=% T (1-o)cos(yx,L)-sin(yx,L)’

with the same o as in Equation 7. Even if considerably simpli-
fied, Equation 8 still cannot be inverted. Further simplifications
are necessary. Using simple trigonometric relations, Equation 8
can be written as

(yx,,L)3 cos(x,L)
3 cos(yan)+cos(yan+§)

I

(03

s ©)
(yx,L)  cos(x,L)

W2 cos(yan + %)

1

and, using again sin € = e= () and cos € = 1 for € « 1, we finally
get:

(Van)3

azo, :T[l+tan(yan+%)] (10)

Since CR frequencies are usually more than three times higher
than free resonance frequencies, the function on the right-hand
side of Equation 10 can be developed in Taylor series around
5m/4. By putting yx,L — 5m/4 = E, we get:

+1. (11)

s Y —1+Z;’0(_])n+,1 g
(é-‘r—ﬂj (211).

o=—
6 4 © \~ ! n+
e+ ((2 1+)1)!‘t’2 1

Around 571/4, the most important term is the one that diverges,
that is, the one proportional to 1/€. Therefore, we can approxi-
mate a as follows:
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The approximated function og diverges at x,L = 5Sm/4y. Again,
an ad hoc parameter can be employed to eliminate the discrep-

ancy of the divergency points.

Figure 2 shows the function o without approximations (Equa-
tion 1) and its three approximations, that is, a. (Equation 8), oy
(Equation 10), and ag (Equation 12), as a function of the fre-
quency ratio f,/f,°. We can roughly distinguish three ranges:
Fulf0 < 3.5, where « is almost constant, a transition range for
3.5 <folf,0 < 4.3, and 4.3 < f£,/f,0 < (f,)o, where a rapidly in-
creases and finally diverges.

300 .,
— a (Eq.1)
250+ ** o (Eq. 8)
200 o (Eq.10)
200 10| |— @ (Eq.12)
100
S 150
50+
100 °®
50
o __
T T T T 1
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Figure 2: The function o without approximations (Equation 1) and its
three approximations o (Equation 8), ot (Equation 10), and o (Equa-
tion 12). The inset shows in detail the range 3.8 < f,/f,0 < 4.6.

The best approximation is clearly a;, whereas a; and ag differ
substantially from « in the transition range and for small
frequencies (f,/f,° < 3.5 in Figure 2), respectively. Yet, as
already noticed, CR frequencies are usually more than three
times higher than free ones. Moreover, the discrepancy be-
tween a and ag is counterbalanced by the fact that ag can be

inverted and, hence, can be used to calculate f,,(a) analytically.

Since Equation 12 can be inverted analytically, it is useful to
express the contact stiffness as a function of the static load F.
For a spherical or a paraboloidal tip and for a homogeneous
sample, if sample adhesion to the AFM tip is negligible, that is,
if sample deformation can be described through Hertz theory
[1,3,29], the sample stiffness is given by:

3 2
ks w1 :EV3 FRE{y,

where R is the tip radius and the reduced elastic modulus E; is

13)

obtained through:

1 3(1=v? 1-v?
== + , (14)
E, 4| E  E
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with E and E; and v and v, denoting the moduli and Poisson’s
ratios of sample and AFM tip, respectively. Expressions for

other solids of revolution are well known ([3], page 13).

Since oy = kg g/kc, combining Equation 12 and Equation 13 we

get:
T4\ ) 3o o 40 6\4 (15)
VREioiF *H
and finally
LY 1 1 2 T
fo=| B ] g0 5. . __[inj RN
an 4 yan 6 4 C(,H
_ 5 (16)
RENRES (SWT k, 0
= 2n——1- LI |
4yl \12 ) YRE2 F

This equation allows one to fit the curve f,,(F), that is, the CR
frequency measured at different loads. Provided the radius of
the tip and, of course, the elastic constant of the cantilever are
known, the fit function can be used to estimate the relative posi-
tion of the tip y and, more important, the elastic modulus E of a

sample the deformation of which can be described through

Hertz theory. For ay < %(%T‘) > Equation 16 would yield nega-

tive values of anzngﬂfn/an‘ This unphysical result
restricts the range of application of Equation 16 to

ks,H
3 3
i 5 { k
Etot > Etrgtm = (ETCJ F_CR

This limit in modulus for the application of Equation 16 is no

i 1(5 Y
>kon :g(ZnJ k, = 2.6k, or
a7

practical restriction. Even with a very sharp tip (R = 5 nm),
F =50nN, and k¢ = 3 N/m, EM" = 0.7 GPa and Equation 16
can be applied to measurements on several polymers having a
modulus larger than 1 GPa, such as PS or PMMA.

Before testing Equation 16 in experiments, two of its properties
are worth being highlighted. First, for ayg > 1, that is, for

3YRELF = kg > ke, f, tends to

2

0
! = 4.386f—’5,

0 (18)
¥x, L Y

ol 5
fmax :fn Zn
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where the numerical approximation has been calculated for the
first mode, that is, xSL = x{) =1.8751. This confirms that, for a
given cantilever, the CR frequency has an upper limit. Further-
more, measurements with very large forces or tip radii or on
very stiff samples can be used to estimate the parameter y with-
out “mode crossing”. Whereas the parameter y determines the
asymptotic value of f;,, the fitting parameter E, affects mainly
the “width” of the derivative df,/dF, that is, “how fast” the
asymptotic value is attained. Hence, the two parameters are

indeed independent.

Second, the first derivative of the CR frequency with respect to
the elastic modulus is:

o/ 1) 4 [inj“ R
o yp(pr) ) YREEY "
k 1

2
1_(inj ke 1
12°) YrF EX}

For E,, > EMM | the function in Equation 19 is monotonically
decreasing and tends to O for Eyy— . Furthermore, the term in
square brackets can be neglected in Equation 19. Hence, the
first derivative of the CR frequency is proportional to E;)?/ 3,
This means that, at small values of the elastic modulus, a small
change of E;,; engenders a large change of f,,, whereas, at large
values of the elastic modulus, the contact resonance is less
sensitive for changes in the elastic modulus of the sample. In
other words, for a certain kind of cantilever, that is, when the
elastic constant and the tip radius do not vary, the resolution of
the measurement is less good with stiff samples than with
compliant ones. It is interesting to determine the error AE;q
engendered by an uncertainty AL = 1%, corresponding, for
most cantilevers, to Af,, = 1-4 kHz:

o\l 17 4 (0,2 YRF
AEmt=0.01/ u ;0.0675(;) (yx,?L) TEtSO/t} - (20)
tot T ¢

Figure 3 shows AEy for y = 0.97, F = 100 nN, R = 30 nm, and
four values of k. (3, 10, 30, and 50 N/m). As expected, AE in-
creases with Eyy. For k. = 3 N/m, it is AE, = 22 GPa at
Eiot = 160 GPa (14%), AEy = 4.2 GPa at Ey = 60 GPa (7%),
and AEy = 0.03 GPa at Ey; = 3 GPa (1%). The error AEy is
inversely proportional to k. and decreases substantially with
stiffer cantilevers. Yet, stiffer cantilevers are less suited for
measurements on polymer samples, since they are likely to
damage the sample. Moreover, the limit given by Equation 17

increases with k. and the model proposed in this article could
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not be applied. Acquiring frequencies at smaller forces im-
proves the resolution, but just slightly, because the error is
proportional to JF . For example, in measurements with a force
F =10 nN, which is very small and hardly feasible, the error
would decrease only by a factor of two. As suggested by Rabe
et al. [9], also higher modes can be used to improve the resolu-
tion. This is not in contradiction to Equation 20. AE is propor-
tional to (ng)2 and xSL increases with the mode number, but
[ increases too, so that Af,, = 1-4 kHz corresponds to less than
1% of f,,. Therefore, the factor 0.01 in Equation 20 is consider-
ably lower and compensates the increase of xBL. Due to the
increase of CR frequencies with the mode, measurements at
higher modes are not always feasible, since microscopes have
usually an upper limit of detectable frequencies (2 MHz for a
standard Cypher setup). Also, the amplitude of the oscillation,
that is, the height of the resonance peak, decreases with increas-
ing mode. As a consequence, for most cantilevers, measure-

ments in modes higher than the fourth are not feasible.

3 N/m

©

o 35

Q 5

5

W 254

< 2 10 N/m|
15+
1o 30 N/m
5
0 — o ot 50 Nim}
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Eit [GPa]

Figure 3: Error AE; engendered by an uncertainty Af,/f,0 = 1%,
calculated from Equation 20 with y = 0.97, F = 100 nN, R = 30 nm, and
four values of k¢ (3, 10, 30, and 50 N/m), as indicated by the labels.

It is instructive to compare the error AE;y of a CR measure-
ment with the corresponding error of a force—distance curve
measurement. To this aim, the system is modelled by a spring
of “constant” kg iy (Equation 13), depending on the force. The
elastic modulus is calculated from the measured value of d/Z,
where 0 is the cantilever deflection and Z the piezo displace-
ment ([3], page 9). The error given by 1% uncertainty in the
measurement of 8/Z, corresponding to a realistic uncertainty of
1 nm for a 100 nm contact line, is:

-

OE

tot
JRF £33

2
(3.3/ RFEZ, + 2kc]
YE 20.02255—E)7,

4k AIRF ke

@n

=0.01
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where the approximation is valid for «3/RFEt20t > k., that is, for

very stiff samples.

Comparing Equation 20 and Equation 21, it is found that the
error of a measurement of force—distance curves on very stiff
samples (kg > k) is approximately 25 times higher. Indeed,
with k. = 3 N/m, AEy; > 10% already at 1 GPa and, even with
ke = 50 N/m, the error at 160 GPa is 22%.

Even this simplistic analysis shows that CR measurements are
indeed more suitable than force—distance curves for the mea-
surement of high moduli. Yet, measurements on such samples
are feasible only with stiff cantilevers, which are not appro-
priate for measurements on compliant samples such as poly-
mers, as will be shown later. This is a serious drawback when
characterizing composite samples with large differences in the
moduli of the components.

Results

In order to test Equation 16, in a first approach, measurements
in DART mode have been performed on several polymer sam-
ples with different cantilevers. The evident result of these mea-
surements is that the polymer sample is worn or, more general,
damaged during the scan. Scanning with the AFM tip leads to
different forms of wear and modifications. When abrasion or
plastic deformation are the dominant mechanisms, the DART
measurement leads to a depression of the whole scanned area,

eventually accompanied by the formation of pile-ups.

For example, measurements on a 120 nm thick PS film with a
static force higher than ca. 250 nN leave depressions that are
visible even with an optical microscope, and the depth of which
increases with increasing static force (see Supporting Informa-
tion File 1, Figure S1). Such plastic deformations of the
polymer film engender changes of its mechanical properties,
since compression leads to an increase of the stiffness. More-
over, if mobile polymer chains are pushed aside, as it is the case
for PnBMA, the layer thickness is reduced, also leading to an
increase of the stiffness and to severe changes of the sample
[31]. In extreme cases, when the polymer film is completely
worn, the AFM tip is in contact with the blank substrate
and measures its properties, instead of those of the polymer
film.

At lower static forces, ripples [32-34] may be formed. This
well-known wear phenomenon has been studied in detail,
mostly through scans in contact mode, that is, without oscilla-
tions of the AFM tip. In particular, it is known that the ampli-
tude and the wavelength of the ripples increase with decreasing
scanning speed [35] and with increasing load, temperature, or

number of scans [35,36]. Some works have shown that oscilla-
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tions of the AFM tip with increasing amplitude lead to a reduc-
tion of the ripples and finally to their suppression [37].

As an example, Figure 4 shows a tapping-mode topography
image of a 100 nm thick PnBMA film scanned with a PPP-
FMAuD cantilever (k. = 2.74 N/m). The wave pattern was
“engraved” into a smaller scan area of (15 pm)? in DART mode
previous to the scan in tapping mode. For the DART scan a
static force of 308 nN, a frequency of ca. 320 kHz, and ampli-
tudes of 440 and 80 pm were employed.

Figure 4: Tapping-mode topography image of a 100 nm thick PnBMA
film after a smaller area (15 pm)2 was scanned in DART mode with a
static force of 308 nN, a frequency of ca. 320 kHz, and amplitudes of
440 and 80 pm.

Some studies show that polymer samples on which ripples have
been formed are more compliant than the corresponding
unmodified samples [38]. This agrees with the hypothesis that
ripples result from the formation of (microscale) cracks and
voids in the polymer bulk. Though such results must still be
confirmed by further studies, it is evident that ripples change
the roughness of the sample, the geometry of the contacting sur-
faces and, hence, the contact area, which plays a crucial role in
the characterization of mechanical properties.

Even when ripples are not formed and the static load is not high
enough to induce a uniform depression, abrasion and plastic de-
formation can lead to the formation of disordered agglomerates
of polymer chains, severely changing the roughness of the sur-
face. Since these wear phenomena are due to the lateral move-
ment of the tip, a second group of measurements has been per-
formed. In this case, the lateral scan size was 1 nm, hence the
tip does not move laterally. This allows for the characterization

of the temporal evolution of the resonance frequency. An
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AC240 tip with k. = 0.775 N/m was used. The static force was
varied, too. Figure 5 shows the CR frequency f(¢) in the first
mode as a function of the measuring time on three PnBMA
films with a thickness of 25, 50, and 100 nm at a static force of
130 nN (full markers) and 32 nN (hollow markers, only 100 and
25 nm thickness, because the 50 nm curve would make the
graphic too unclear). Measurements on glass for both static
forces are also shown (black and grey lines without markers).
The resonance frequencies have been averaged over the 128
points in one scan line. With a scanning frequency of 1 Hz, this
results in one averaged value per second, but, for clarity, only
one point out of four is shown. On glass, f(#) increases rather
little (by less than 1 kHz), but clearly, with time. This is due to
moderate deformations of the sample and/or of the tip, increas-
ing the contact area. On PnBMA, when the tip dwells on the
sample, f(¢) increases rather fast in the first few seconds, and
then more slowly. The tip compresses the PnBMA film over
time, thereby making it stiffer and increasing the CR frequency.
The tip might also pierce through the PnBMA film and come
closer to the substrate or even in direct contact with it. After a
few seconds, frequencies on PnBMA exceed even the frequen-
cies on glass, although glass is much stiffer. This occurs most
probably because the plastically deformed PnBMA material
surrounds the tip. Hence, a larger portion of the tip is in contact
with the sample. In other words, the contact radius and conse-

quently the sample stiffness (Equation 13) increase.

130 nN:

—e— 100 nm
—&- 50 nm
—4-25nm

— glass

32 nN:
O— 100 nm
~>- 25nm

— glass

Frequency [kHz]

T T T T
0 50 100 150 200 250

Time [s]

Figure 5: CR frequency f(t) in the first mode as a function of the
measuring time on three PnBMA films with thickness of 25, 50, and
100 nm at a static force of 130 nN (full markers) and 32 nN (hollow
markers, only 100 and 25 nm thick films). Measurements on glass at
both 32 and 130 nN are shown as black and grey lines without
markers. Frequencies have been averaged over the 128 points in one
scan line, yielding one averaged value per second. For clarity, only one
point out of four is shown.

This is confirmed by the comparison of the different curves on
PnBMA: (1) At 130 nN, the thicker the film, the higher the CR
frequency. This counterintuitive result (thicker films are less
stiff [31]) can be explained only through the fact that more ma-
terial surrounds the tip on thicker samples. (2) At both static

forces, the curves on the thinner films attain a plateau, whereas,
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on the 100 nm thick film, f(#) increases further after some
minutes. This is because the thicker polymer film can be
pierced deeper and the contact area increases further. (3) At
32 nN, for ¢ smaller than ca. 80 s, f(¢) on the 100 nm film is
smaller than on the 25 nm thick film. This is due to the
shielding effect of the thicker polymer film, preventing the tip
from “sensing” the substrate and making the sample less stiff
[31]. Yet, after ca. 80 s, a larger amount of polymer surrounds
the tip and the contact area increases, so that f{¢) on the 100 nm
film becomes larger than on the 25 nm film. (4) Since the defor-
mation of the sample and the contact area correlate with the
static force, at a given time, f(#) at 130 nN is larger than at
32 nN on all samples.

Since measurements with a lateral movement of the tip or even
with the tip dwelling on the sample modify the sample and
change its roughness and/or its mechanical properties, the ex-
perimental test of Equation 16 has been performed by means of
point measurements of the CR frequency by variation of the
force. Each measurement has been performed at a different po-
sition on the sample. The standard deviation of the six measure-
ments performed at each force is typically between 0.1 and
1.5 kHz. Figure 6 shows the CR frequency in the first mode of a
PPP-FMAuD cantilever as a function of the force F on glass,
bulk PS and bulk PMMA, fitted with Equation 16, where the
reduced elastic moduli Ey, and the relative tip position y are the
fit parameters. The parameters of the measurement are
/19=75.9 kHz, R = 55 nm, and k. = 3.27 N/m. Hence, since F is
larger than 50 nN, Equation 16 can be applied for
Eiot > 0.3 GPa (see Equation 17). For all following measure-
ments, the tip radius R was measured through recording tapping
mode topography images on a grid with sharp tips (see Experi-

mental section).

340
330 -]
320 -|
310

300 |

CR Frequency [kHz]

290

280

T T T T T 1
50 100 150 200 250 300 350

F [nN]

Figure 6: CR frequencies as a function of the force F on glass
(diamonds), bulk PMMA (triangles), and bulk PS (circles), fitted with
Equation 16 (black curves). CR frequencies on PnBMA (squares) are
shown, too.
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The curves can be fitted quite exactly, most of all those on glass
and PS. The three values of the reduced elastic moduli obtained
for glass, PMMA, and PS are 62.3 GPa, 9.4 GPa and 7.2 GPa,
respectively; with E; = 160 GPa, v, = 0.28 and a Poisson's ratio
of 0.27 for glass, 0.4 for PMMA, and 0.33 for PS, the elastic
moduli are 57 GPa, 6.2 GPa and 5 GPa, respectively. The
measured values of the elastic moduli of PMMA and PS are
higher than the literature values for the respective bulk poly-
mers ([3], page 98). These higher values are due to inner
stresses and the stretching of the polymer chains during spin
coating [3,31,39]. Furthermore, since CR measurements are
performed at high frequencies, the time—temperature superposi-
tion principle leads to a stiffening of the sample [40]. This
effect, while being rather moderate for polymers having a glass
transition temperature T, higher than room temperature, such as
PMMA and PS, strongly affects the thermomechanical proper-
ties of polymers with a T, comparable with or lower than room
temperature. The measured value of the elastic modulus of PS is
in agreement with previous measurements on spin-coated sam-
ples [3]. The value obtained on bulk PMMA has been checked
through force—distance curves on the sample. The measurement
performed with a 40 nm tip yielded a reduced elastic modulus
of 9.5 GPa, in agreement with the CR value (see Supporting
Information File 1, Figure S2). The second fitting parameter, v,
is different for the three curves (0.982 for glass and 0.973 for
PS and PMMA), although they have been acquired with the
same cantilever. This contradicts the interpretation of y as deter-

mined only by the relative position of the tip.

Figure 6 also shows the CR frequencies acquired on bulk
PnBMA. The curve cannot be fitted with Equation 16. This is
due to the low elastic modulus and the higher chain mobility of
PnBMA. As a consequence, PnBMA is very compliant and can
be deformed plastically even with small loads. Hence, at loads
of approximately 300 nN, even during a short measurement,
PnBMA has been displaced laterally, that is, the tip has carved a
hole in the polymer film and is in contact with a very thin
PnBMA film or even with the glass substrate. Therefore, the CR
frequency goes from typical “polymer values” around 290 kHz
at 50 nN to typical “glass values” around 330 kHz at 300 nN.

Figure 7 shows again the CR frequencies on glass, bulk PS and
bulk PMMA, together with CR frequencies on two PMMA
films with thickness values of 45 £+ 5 nm and 100 = 2 nm,
measured with the same cantilever. The two additional curves
on the thin PMMA films are fitted with Equation 16, too.
The parameter y is the same as for bulk PMMA and bulk PS
(0.973).

The CR frequencies on thin PMMA films depend on the thick-

ness via the elastic modulus [41]. The reduced elastic modulus
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Figure 7: CR frequency as a function of the force F on glass
(diamonds), bulk PMMA (white triangles), and bulk PS (circles), as in
Figure 6. CR frequencies on two PMMA films, 45 nm and 100 nm thick
are shown, too (grey and black triangles, respectively). All curves are
fitted with Equation 16 (light grey and black curves).

is Eyo = 11.5 GPa (E = 7.6 GPa) for the 100 nm thick film and
Eot = 14.2 GPa (E = 9.5 GPa) for the 45 nm thick film. Hence,
CR measurements enable to distinguish films of different thick-
ness with moduli differing by 1-2 GPa. However, the thickness
resolution is clearly worse than that of force—distance curves.
A comparison with [41] shows that force—distance curves
enable the clear distinction of six different thickness values be-
tween a 45 nm thick film and bulk PMMA, whereas data scat-
tering and the small differences between the frequencies
(=4 kHz) would hardly allow one to discern a further curve in
Figure 7 between those corresponding to the 45 nm film and the
100 nm film or even between those of the 100 nm film and of
the bulk sample.

The values of y determined through the fit have been used to
calculate a (Equation 1). Figure 8 shows a as a function of
3JFR/ 2k.. In such a plot, if the deformation of the sample can
be described by Hertz theory, a can be fitted with a straight line
through the origin; the slope of the line is given by Et20/t3 (see
Equation 13).

The normalized contact stiffness on glass (white diamonds,
y = 0.982), bulk PMMA (triangles, y = 0.973), and bulk PS
(circles, y = 0.973) can indeed be fitted with a straight line
through the origin. When using y = 0.973 for glass (grey
diamonds), the fit is not as good as for y = 0.982; the experi-
mental data clearly have a smaller slope than the fit, but a
straight line with this slope would not go through the origin.
Furthermore, this fit yields a reduced modulus Ey = 31 GPa,
which is definitely too low for glass. As shown in this example,
the proportionality between a and YF can be used to test

values of y, provided measurements are performed on homoge-
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Figure 8: Normalized contact stiffness o on glass (white diamonds,
calculated with y = 0.982, and grey diamonds, calculated with

y = 0.973), bulk PMMA (triangles, y = 0.973), and bulk PS (circles,

y = 0.973), fitted with a straight line through the origin (black lines). The
normalized contact stiffness on PnBMA (squares, y = 0.973) is shown,
too.

neous samples that are deformed only elastically and exhibit
small adhesion, that is, the deformation of which can be de-
scribed by Hertz theory. The normalized contact stiffness on
PnBMA (squares, y = 0.973), as expected, is not proportional to

IF.

Figure 9 shows the CR frequencies of the previous measure-
ment (open diamonds for glass, triangles for bulk PMMA, and
circles for bulk PS) together with an additional measurement on
glass (full diamonds), performed with a PPP-FMAuD cantile-
ver (R = 55 nm, and k. = 3.27 N/m) with a free resonance fre-
quency of f;° = 75.85 kHz. Frequencies are plotted as functions
of the normalized contact stiffness ay = kg y/k.. Hence, they
would lie on the same curve, if the value of y was the same for
all samples. The fit of the additional measurement with Equa-
tion 16 yields y = 0.991 and Ey = 65.3 GPa, corresponding to
E = 63.2 GPa. The value of y is considerably different from the
two other ones. This, again, contradicts the interpretation of y as

the relative tip position.

The maximum CR frequency attainable with the respective
values of £, and vy, that is, the frequency fyax given by Equa-
tion 18, is noted in Figure 9, too. It is evident that, in all three
measurements, fax has not been reached. Both measurements
on PS and PMMA are in the range where the frequency rapidly
increases with increasing stiffness, that is, with increasing force.
However, even the highest CR frequency measured on
the second glass sample (full diamonds) is 330 kHz, that is,
significantly lower than fi,,x = 339 kHz. In practice, the
static load cannot be raised indefinitely, since this would lead
to wear of the tip, especially on hard and stiff samples such as

glass.

Beilstein J. Nanotechnol. 2020, 11, 1714-1727.

360

T 340

T

X,

3 320

C

)

35

S 300

—

i

a4

O 280
]
i

260

T T T T T T T
50 100 150 200 250 300 350 400 450 500

ks,H/kc

Figure 9: CR frequency as a function of the normalized contact stiff-
ness oy = ks H/kc on glass (open and full diamonds, two different mea-
surements), bulk PMMA (triangles), and bulk PS (circles), fitted with
Equation 16 (black curves). Dashed grey lines denote the maximun CR
frequency attainable with the the respective values of f1% and y.

Discussion

The first tests performed in this work with a CR method
(DART) on polymers show definitely that scanning CR mea-
surements, that is, with the cantilever moving not only normally
to the surface, but also laterally, are unable to provide repro-
ducible quantitative results. The main reason for this is wear
and damage of the sample while scanning in permanent contact.
Summarizing, the following forms of wear or damage are ob-
served: (1) At high loads, when abrasion is the dominating wear
mechanism, the tip removes the polymer film on top of the sub-
strate during the scanning. Debris is accumulated at the sides of
the scan surface. If the removal is total, with progressing scan
movement, the tip senses the substrate and not the polymer film.
Even if the erosion is only partial, since the stiffness of a thin
polymer films depends on its thickness [31], the measurement
of mechanical properties is severely affected by the wear.
(2) Another wear mechanism that, depending mainly on the
cohesion and linking of the polymer chains, can take place at
high loads as an alternative to abrasion is plastic wear. When
this form of wear occurs, the scan leads to the formation of a
depression, eventually accompanied by pile-ups at the sides of
the scan surface. In this case, the mechanical properties are
altered because of the changes in thickness and, more impor-
tant, because of compression. (3) Even when the load is not
high enough to modify the whole scan surface through abrasion
or plastic deformation, local wear may lead to the formation of
agglomerates, which increase the roughness of the sample. Via
changes in the contact geometry and in the contact radius ([3],
page 83), this phenomenon affects significantly the determina-
tion of mechanical properties. (4) At lower normal forces,
ripples may be formed, height and distance of which depend,

among others, on the thermomechanical properties of the
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polymer, on the load, the scanning speed, the number of scans,
and the temperature. Even if the mechanism of ripple formation
is not known exactly, it is reasonable to assume that the me-
chanical properties of a polymer sample with ripples are signifi-
cantly different from those of an unmodified sample. In particu-
lar, polymer chains in the depressions are likely to be tightly
packed or compressed, whereas those in the protrusions are
probably looser and enclose air or water cavities. Even without
supposing changes in the mechanical properties of the samples,
the changes in the sample geometry and, hence, in the contact
area affect their measurement.

Since CR frequencies are particularly sensitive to tip contami-
nation, a further problem is that debris or wear particles, but
also dirt or loose particles on the surface, are likely to adhere
onto the tip. An additional experiment in CR mode with the tip
dwelling for some minutes on the same point shows that, also in
this case, the sample is modified, and its properties change
during the measurement. Hence, the only way to detect the
properties of polymer samples without altering them is to

measure the CR frequency during a short contact.

A commonly used method to analyze CR data [9,10,16,26]
includes the following steps: (1) the determination of the rela-
tive position of the tip, y, through “mode crossing”, (2) the
calculation of the normalized contact stiffness a with measured
CR frequencies and the value of y determined in the first step,
and (3) the calculation of the elastic modulus of the sample
through comparison with a calibration or reference sample, pro-
vided the shape of the tip is known.

The alternative method we have proposed in this work, based
on an approximation of the equation describing a, enables to fit
the CR frequencies measured at different loads directly, with-
out determination of the relative position of the tip through
mode crossing, without the previous calculation of the normal-
ized contact stiffness o, and without recurring to a calibration
sample. Yet, not only knowledge of the shape of the tip is
necessary, but also of geometrical parameters (for example, the
radius of the tip in case of spherical or paraboloidal shape). The
fit yields values of the elastic moduli of glass, PMMA, and PS,
which are in agreement with literature values obtained with
force—distance curves. Moreover, differences in the elastic

modulus due to film thickness can be detected (Figure 7).

The relative position of the tip, y, is the second fit parameter.
Previous works have shown that values of y yielded by SEM
measurements and calculated through mode crossing are not the
same [10,26]. Differences are ascribed to deviations of the can-
tilever shape from the idealized model shape (uniform rectan-

gular cross section). The measurements analyzed in the present
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work show varying y values for the same cantilever. For exam-
ple, it is y = 0.973 for PS and PMMA, but y = 0.982 (or
y = 0.991 in another measurement) for glass. Different values of
y for the same cantilever are obtained not only with the method
proposed in this work, but also with mode crossing. In [9], it
has been shown that curves a(y) calculated for the first three
modes do not intersect at the same point. This contradictory
result is attributed to discrepancies between the model and the
real experimental conditions. Nevertheless, there is actually no
criterium to decide which value of y should be used in the
further analysis, and researchers should arbitrarily choose one
intersection, knowing that this leads to errors of the modulus
values of ca. 20% [9,26]. More important, the values obtained
for y may differ even when considering the same two modes but
using different samples. In our experiments, the largest differ-
ence between the values of y measured through mode crossing
has been found during measurements on PS films of different
thickness (1-1.3 um and 120 nm), yielding y = 0.966 and
y = 0.98, respectively. Hence, the parameter y is not a measure
of the relative tip position alone and depends also on the sam-
ple. In particular, values of y determined on compliant polymer
samples are often very different from those on stiff samples,
such as glass or silicon. This is probably due to the use of very
simple models: (1) The cantilever is modelled as an elastically
isotropic beam of uniform cross section and the tip mass is
neglected [8,26]. (2) The sample is described by Hertz theory,
that is, plastic deformations, viscoelastic behavior, and adhe-
sion are neglected [3,40]. Yet, adhesion has been shown to be
indeed negligible for measurements on polymers such as PS and
PMMA with a customary AFM tip [3]. (3) The description of
the cantilever—sample system as a vertical spring ignores lateral

forces (and related torsion) and damping [8,26].

The models do not represent satisfactorily the complex situa-
tion of a CR measurement on a polymer. In other words, differ-
ent values of y for different samples “compensate” for the lack
of parameters accounting for other factors. In particular, it has
been shown that the influence of lateral forces increases with kg
and that, when including them in the model, curves a(y) corre-
sponding to different modes intersect indeed at the same point
[26]. However, accounting for anisotropies in the cantilever
structure, tip mass, plastic deformations, viscoelastic behavior,
adhesion, lateral forces, and damping increases significantly the
number of free parameters, so that the practical use of such

complex models is very limited.

The dependence of y on the sample is a severe limitation for
measurements on thin films of very compliant polymers
(E < 1 GPa), the mechanical properties of which are deter-
mined by the mechanical properties of the polymer at small

indentations and by the mechanical properties of the substrate at
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large indentations. The same limitation holds for measurements
on very compliant polymers with high chain mobility, that is,
with a glass transition temperature near room temperature. This
is the case for PnBMA. Considering the CR frequencies
(Figure 6), PnBMA behaves like PS and PMMA at small forces
and like glass at large forces. In our measurements, y does
indeed depend on the sample, since using for glass the same
value of y obtained for PS and PMMA (y = 0.973) yields a
value of the elastic modulus that is too low, and the contact
stiffness cannot be described by Hertz theory. Hence, the calcu-
lation of « is not possible for PnBMA. As a matter of fact, the
CR frequencies and the contact stiffness for PnBMA in Figure 6
and Figure 8 would agree with each other only if the parameter
y used for PnBMA gradually increased from 0.973 to 0.982

with increasing load.

As already pointed out, the direct fit of CR frequencies without
a reference or calibration sample for the calculation of moduli
requires the knowledge of geometrical parameters, for example,
the tip radius. This is a drawback, since measurements on test
gratings may damage the tip and blunt it. Moreover, small devi-
ations from the paraboloidal shape, for example, small protru-
sions, are likely to seriously affect deformations and the mea-
surement of mechanical properties. Finally, the determination of
the tip radius is rather erroneous for very sharp tips.

A common way to circumvent this problem is the use of
colloidal probes, that is, spheres with a known radius in the
micrometer range glued onto tipless cantilevers ([3], pages
74-75). Yet, CR measurements with a silicon colloidal probe
(radius R = 1.5 um) performed on glass and bulk PS and
PMMA yielded results that could not be analyzed quantitively,
neither with our approximation (Equation 16), nor with the
“exact” model (Equation 1). In particular, even with a large
variation of y and even including the adhesion force, measured
separately with force—distance curves, as an additional force,
the sample stiffness kg is never proportional to JF . In case of
colloidal probes, the cross section of the cantilever is not
uniform, the mass of the “tip” is not negligible and the adhe-
sion, at least on polymers, is comparable with the load. Hence,
further developments in the theory are necessary for the quanti-
tative use of colloidal probes.

Conclusion

The measurements presented in this paper show that CR modes
such as DART, performed with the tip in permanent contact
with the sample, are likely to wear compliant polymer samples
and/or to alter the sample surface, notably the roughness, and,
hence, the contact area with the tip. Scanning CR methods are
therefore not suitable for quantitative measurements of the

elastic modulus on polymers.
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Point measurements of the CR frequency have been shown to
enable the accurate determination of the elastic modulus of
glass, PS, and PMMA. Through approximation of the common
equation describing the dynamic response of the cantilever
as a function of the contact stiffness, CR frequencies as
function of the applied load can be fitted directly. Yet, such
experiments show also that quantitative measurements
on polymer samples with elastic moduli smaller than
ca. 1 GPa or with a glass transition temperature close to or
lower than room temperature (i.e., with very high chain
mobility) are affected by serious artefacts and do not yield any
exact estimation of the moduli. Also, the characterization of the
substrate influence on the mechanical properties of thin polymer
films is not as detailed and fine as with force—distance curves.
As the acquisition time of such point measurements is even
longer than that of force curves, this method does not offer any
advantages.

Like measurements through force—distance curves, such a quan-
titative analysis presupposes the knowledge of the tip radius
and, of course, of the spring constant of the cantilever. Yet, a
further parameter is needed with CR methods, namely the
relative tip position y. Differences in the values of y yielded
by different measurements with the same cantilever indicate
that commonly employed models are not appropriate for
polymer samples. Not only anisotropies in the cantilever
structure, tip mass, and lateral forces, but also plastic deforma-
tions, viscoelastic behavior, adhesion, and damping should be
accounted for in models of the system. Unfortunately, espe-
cially in case of polymers, this would drastically increase the
number of parameters needed for the description of the cantile-
ver—sample system. The inadequacy of simple models for the
description of polymer samples is also shown by measurements
with a colloidal probe, allowing for qualitative conclusions
(e.g., comparison of the CR frequency on glass, PMMA, and
PS) but not for the quantitative determination of the moduli of
samples.

A comparative analysis of the errors of the values of the moduli
engendered by an uncertainty in the measured frequency (CR
modes) or in the measured deflection (force—distance curves)
shows that CR methods are more suitable than force—distance
curves for the measurement of moduli larger than ca. 20 GPa.
Bulk polymer samples and thin polymer films commonly have

lower elastic moduli.

Experimental

Materials

Contact-resonance measurements have been performed on films
of polystyrene (PS, average M, = 280,000), poly(methyl meth-
acrylate) (PMMA, average My, = 120,000), and poly(n-butyl
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methacrylate) (PnBMA, average M,, = 337,000). All polymers
have been purchased from Sigma-Aldrich (St. Louis, USA).
PnBMA has a glass transition temperature T of 15 °C, while
the T, value of PS and PMMA is above 100 °C. The polymers
have been dissolved in toluene and then spin-coated on glass
cover slips, previously cleaned and rinsed with toluene. By
changing the polymer concentration, the obtained sample thick-
ness could be varied. Films with a thickness larger than 400 nm
are considered as bulk, since the substrate does not influence

the mechanical properties of the sample [31].

Contact-resonance mode AFM

Contact-resonance atomic force microscopy (CR-AFM) mea-
surements have been performed with a Cypher AFM (Asylum
Research, Oxford Instruments, Santa Barbara, USA). Two kinds
of silicon AFM tips have been used: PPP-FMAuD (k. = 3 N/m)
from Nanosensors (NanoWorld, Neuchatel, Switzerland) and
AC240 (k. = 0.775 N/m) from Asylum Research. Additional
measurements have been done with a silica sphere (Sigma-
Aldrich) with a radius of 1.5 um that has been glued to a
NSC15 tipless cantilever with k. = 40 N/m (MikroMasch, Sofia,
Bulgaria) using two-component epoxy UHU Endfest 300
(UHU, Biihl, Germany).

Before the measurement, the sensitivity of the cantilever has
been calibrated by recording force curves on an uncompliant
substrate, such as a silicon wafer. The spring constant could
then be determined from the thermal noise spectrum [42]. Tip
radii have been obtained through scanning a TGT]1 test grating
(NT-MDT Spectrum Instruments, Moscow, Russia) consisting
of an array of sharp tips. The resulting image is a replica of the
AFM tip [43,44]. An example of tip imaging is shown in Sup-
porting Information File 1, Figure S3.

Single-point CR measurements have been conducted by per-
forming a frequency sweep (tune), while the tip has been in
contact with the sample, and identifying the contact-resonance
frequency f,,. The excitation is actuated through the sample,
which is glued to a contact-resonance sample holder by means
of a two-component epoxy. To avoid sample damage, every
point measurement is done on a different spot on the sample.
Each value is averaged over four to six separate measurements.
In different series of measurements, the static force exerted on
the sample by the tip has been varied. A sufficiently small exci-
tation amplitude has been chosen for the frequency sweep, so
that the vibration amplitude is always smaller than the static
indentation of the sample and the tip always remains in contact.
Additionally, the dual AC resonance tracking (DART) mode
[6,7] has been employed. In this mode the cantilever is excited
at two frequencies on either side of f,,, which allows one to track

f, while scanning the sample in contact.
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