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Abstract. Modern air-liners and wind turbine rotor blades are made up primarily of fiber 

reinforced plastics. Failure of these materials heavily impairs the serviceability and the 

operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads 

is of great interest to estimate the operational strength and to compare the performance of 

different materials. Ideally, the damage evolution under operational load is determined with in-

situ non-destructive testing techniques. Here, we report in-situ synchrotron X-ray imaging of 

tensile stress induced cracks in carbon fiber reinforced plastics due to inter-fiber failure. An in-

house designed compact tensile testing machine with a load range up to 15 kN was integrated 

into the beamline. Since conventional radiographs do not reveal sufficient contrast to distinguish 

cracks due to inter-fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced 

Imaging (DEI) technique is applied in order to separate primary and scattered (refracted) 

radiation by means of an analyzer crystal. This technique allows fast measurements over large 

fields-of-view and is ideal for in-situ investigations. Imaging and the tensile test are run at the 

highest possible frame rate (0.7 s-1) and the lowest possible strain rate (5.5∙10-4 s-1). For 0°/90° 

non-crimp fabrics, the first inter-fiber cracks occur at 380 MPa (strain 0.8 %). Prior to failure at 

about 760 MPa (strain 2.0 %), we observe the evolution of nearly equidistant (1 mm distance) 

cracks running across the entire sample in the fully damaged state. 

1.  Introduction 

Fiber reinforced plastics, FRPs, reinforced with carbon fibers or glass fibers, are polyvalent: they are an 

established material in aircraft construction, they are widely used in wind turbine rotor blades and 

increasingly used in automotive engineering. The low weight together with the high strength make this 

class of materials very attractive for modern lightweight construction applications. In general, FRPs are 

of increasing interest for structural components in lightweight constructions, whose failure wholly or 

partially impairs serviceability and operational safety.  

Knowledge of the spatial and temporal evolution of cracks is valuable for both the manufacturer and 

the customer of composite materials in order to estimate the material’s lifetime. In the case of transparent 

glass fiber reinforced plastics (GFRP), the behavior prior to and during fracture has been successfully 

recorded by common optical systems with mega-pixel resolution [1, 2]. While the occurrence of the first 

cracks in GFRPs can be inspected with visible light, it is not suited to characterize the evolution of micro 

cracks at high load levels or due to cyclic loading. Since the (integral) intensity of transmitted light is 

not proportional to the internal surface per volume caused by micro cracks, the number of cracks has to 
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be evaluated by image analysis [3, 4]. Additionally, the increasing intensity of transmitted light due to 

increasing crack opening at a constant number of cracks can be mistaken for increased inner surface. 

In a comparative study, the inter-fiber failure in GFRP has been investigated by means of X-ray-

refraction topography [5, 6]. This technique overcomes the disadvantages of visible light absorption 

techniques, depending on the type and size of cracks. Separated cracks could be imaged, and the internal 

(specific) surface was determined by calculating the co-called X-ray refraction value [5]. Even dry 

textiles or impregnated laminate can be quantitatively analyzed with this technique, for instance for 

different mean fiber filament diameters even at identical fiber volume content. 

2.  Experimental 

2.1.  Samples 

The CFRP specimens were made from 2 layers of a 400 g/m² twill style textile and 4 layers of a 200 g/m² 

NCF, each made with Tenax-E HTA40 E1, 6K yarn (400tex) (figure 1). In both cases the stacking 

sequence was symmetric and balanced. In the non-crimp fabric, the carbon fiber rovings were fixed by 

a 34tex glass fiber yarn. The matrix system used was Huntsman Araldite® LY 556 / Aradur® 917 / 

Accelerator DY 070. Carbon fiber reinforced plastics, CFRP, plates were manufactured in a resin 

transfer moulding technique, and flat specimens with a length of 140 mm, a width of 10 mm (0°/90°-

laminate and -45°/+45°-laminate) and a thickness of 1.1 mm were cut out and tested. Tab reinforcement 

was applied onto the 0°/90°-specimens for clamping. Due to the high Poisson’s ratio of the -45°/+45°-

laminate, the fracture occurs in the middle of the specimens even without the tabs. 0°/90°- 

and -45°/+45°-laminates of each textile reinforcement were investigated. The fiber volume content is 

41% in both laminates.  

 

  
Figure 1. Carbon twill and carbon NCF textiles used for the specimen preparation (left) and photograph of 

the produced specimens (right): NCF (top two) and twill (bottom two). Specimens with 0°/90° fiber 

orientation were additionally prepared with tab reinforcements.  

 
Table 1. Compilation of the fabrics investigated. The specimen names are assigned to the type of fabrics and 

fiber orientation relative to the direction of tensile stress. 

 0°/90° -45°/+45° 

non-crimp fabric (NCF) 133-3, 133-11 133-17, 133-19 

2 × 2 twill fabric (TF) 135-10, 135-14 135-18 

2.2.  X-ray refraction 

X-ray refraction techniques were introduced a few decades ago [7] and have been successfully used for 

both material characterization and non-destructive testing [8]. These techniques are used to obtain the 

amount of the relative internal specific surface (i.e., surface per unit volume, relative to a reference state) 

of a specimen, and are therefore effective in the investigation of inhomogeneities within fiber reinforced 

plastics such as cracks, fibers, and fiber debonding. 

X-ray refraction occurs whenever X-rays interact with interfaces between materials of different 

density, as in the case of cracks, pores, and particles in a material. This is analogous to the behavior of 
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visible light in transparent materials, such as lenses or prisms. It should be noted that the X-ray refraction 

index is smaller than unity. Thus, the optical behavior is inverted [9], so structures such as pores act 

rather as focusing objects. The difference in the refraction indices between the two interfacing materials, 

the so-called refraction decrement, determines the refraction angle at the interface (angle between the 

propagation direction of the primary and the refracted beam). Since the refraction decrement for X-rays 

is of the order of 10-7 to 10-5, X-ray optical effects can only be observed at very small deflection angles 

ranging from a few seconds to a few minutes of arc. X-ray refraction techniques detect pores and cracks 

as soon as they exceed a certain size or opening of a few X-ray wavelengths. Since the typical X-ray 

wavelengths are approximately 0.1 nm, the smallest detectable object size is down to the nanometer 

range. This is not to be confused with the spatial resolution or the size of the objects that can be imaged. 

The spatial resolution of the technique is limited by the pixel size of the detector system. 

It must be emphasized that, because of the inevitable background noise, it is impossible to 

conclusively detect one single defect. A certain population of objects is necessary to yield an integrated 

signal above the background noise. Thus, X-ray refraction is primarily used in radiographic mode with 

thin specimens (platelets) and yields 2.5D information about the microstructure of the sample (i.e., 

integrated over the whole specimen thickness); the 2D lateral resolution corresponds to the number and 

size of the detector pixels. This results in the detection and imaging of a population of defects and not 

in the imaging of single defects. If the lateral size of defects or structures exceeds the spatial resolution 

of the detector system, they can be localized by the X-ray refraction contrast. This analysis can be 

conducted on samples of macroscopic size of a few cm, where the field of view of X-ray refraction 

techniques is much larger than that of high-resolution X-ray computed tomography and of classic 

scanning electron or even optical microscopy. Furthermore, X-ray refraction techniques are sensitive to 

defect orientation, thereby allowing different kinds of defects to be identified. The refraction signal of 

an isotropic inhomogeneity, such as spherical voids, is present at any orientation of the specimen. For 

cracks or elongated pores, on the other hand, the signal decreases when the defect surface normal is 

parallel to the scattering vector of the detection system (the bisectrix between the incident and the 

refracted beam directions). The X-ray refraction signal has been quantitatively correlated to 

microstructural changes, which have been rationalized in micromechanical models [10-17]. 

2.3.  X-ray refraction radiography by Diffraction Enhanced Imaging 

Synchrotron X-ray refraction radiography (XRRR) measurements were carried out at the BAM 

synchrotron laboratory BAMline at the Helmholtz-Zentrum Berlin, Germany [18, 19]. A double crystal 

(Si (111)) monochromator (DCM) was used to extract a highly collimated monochromatic X-ray beam 

with an energy band width of 0.2 %. The beam energy was set to 25 keV. A flat panel detector in 

combination with a lens system and a 50 μm thick CWO scintillator screen provided a pixel size of 7.2 

× 7.2 µm2, capturing a field of view of about 14 × 7.2 mm2. The incident beam was narrowed to the field 

of view by a slit system in order to avoid detector backlighting [20, 21]. The exposure time for each 

image was 1 second (plus 0.4 s read out time). In order to achieve a sufficient count rate per pixel we 

applied a 4 × 4 pixel binning, resulting in an effective pixel size of 28.8 × 28.8 µm2. The X-ray beam 

was oriented along the specimen thickness direction (t = 1.1 mm). 

In contrast to transmission-based radiographic measurements, a Si (111) analyzer single crystal was 

placed in the beam path between the specimen and the camera system, shown in figure 2a, to perform 

refraction radiographs (Diffraction Enhanced Imaging, [22]) in two different modes. In mode 1 the 

crystal is positioned in the X-ray beam in such a manner that the Bragg condition is fulfilled (Bragg 

angle θB = 4.537° at 25 keV, between beam direction and crystal surface) and the free X-ray beam 

(without sample) is completely reflected to the detector. In mode 2 the crystal is slightly tilted (by some 

10-4°), the Bragg condition is not fulfilled for the primary radiation. Here, we show images obtained in 

mode 1, exclusively. X-rays, refracted by the sample’s internal surface such as cracks violate the Bragg 

condition. Hence, they are not reflected and create an additional attenuation to the sample’s true 

absorption properties.  
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We performed complementary experiments with the samples 133-11 and 135-14 in mode 2, which 

revealed the same material behavior as their sister samples 133-3 and 135-10. In mode 2, only those 

beam portions are reflected by the analyzer, which fulfill the actual Bragg condition. The different 

contrasts are shown in figures 2b and 3. 

 
     a)  

 

b) 

 
Figure 2. (a) Set-up of synchrotron X-ray refraction radiography. In the sketch, the dark shaded (attenuated) 

primary beam portions are diffracted by the analyzer crystal. The black arrowed rays (scattered by the sample) 

do not fulfill the Bragg condition, and thus are not reflected by the crystal (and not detected by the camera 

system). (b) The crystal’s rocking curve provides X-ray images of changing contrast. In the center of the rocking 

curve (mode 1), all refracting beam portions are discarded and the primary beam is imaged, only. Thus, the 

cracks appear dark (low intensity). Off the center (mode 2), the primary beam is discarded. Only rays of a 

predefined refraction angle are accepted; the cracks appear as bright (high intensity) features. 

 

 

Figure 3. Comparison of absorption (left) and 

refraction contrast of a pre-loaded NCF CFRP 

sample ((max=530 MPa). The middle image is 

obtained from the rocking curve center, the 

right image from an off-center rocking curve 

position.  

2.4.  In-situ tensile tests 

A tensile rig with an electro-mechanical actuator and a hydraulic clamping system was integrated into 

the DEI set-up at BAMline (figure 4a). The compact load rig was designed and manufactured 

specifically for in-situ tensile and cyclic loading in a laboratory X-refraction set-up. The maximum load 

capacity is +/-15 kN. In the laboratory set-up, the loading of the FRPs must be performed in load steps, 

since each scan of the specimen takes more than one hour. At BAMline, the tensile tests were done with 

a typical actuator speed of 2 mm/minute, as is common in quasi static tensile tests standards [23]. The 

typical stress strain curves obtained during the tests are shown in figures 4b and 4c. Table 2 summarizes 

some mechanical characteristics of the individual samples (obtained from tensile testing). 

Imaging and the tensile test were started separately. Roughly 15 seconds after continuous imaging had 

started, the tensile stress machine was set into displacement-controlled mode. It recorded the 

displacement (strain) and the applied force as a function of time. With the known time stamp, the single 

images were assigned to the respective stress/strain by computing residual images (figure 5a), i.e., the 

difference of subsequent images. The variance of these residual images clearly indicated the start of the 

tensile test and the rupture (figure 5b). It should be noted that the generated cracks are clearly visible in 

the residual images, but their local contribution to the variance of the full image is too low to cause 

significant changes. 
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a)  

b)  

c)  

Figure 4. (a) Main components of the experimental set-up - The primary beam (red arrow) is emitted from (1) 

the synchrotron source and monochromatized by a DCM. It is absorbed and scattered by (3) the (loaded) sample; 

the tensile rig, including the electro-mechanical actuator, the load cell, and (2) the hydraulic clamping . The 

transmitted and scattered beam (solid yellow arrow) is diffracted at the analyzer crystal (4). The diffracted beam 

(dotted yellow arrow) is recorded by (5) the flat panel detector. Stress strain curves (b) of the non-crimp fabrics 

and (c) the twill fabrics reveal the larger stiffness of the NCF samples. The magnified detail in (c) visualizes 

the occurrence of transverse cracking and its impact on the slight decrease of the 0°/90° samples’ stiffness 

(“Puck’s knee” [24]). 

 

a)  

b)

 
Figure 5. (a) Subsequent synchronization of imaging and tensile test with the example of an image detail of 

a -45°/+45° non-crimp fabric (sample 133-17). The as-measured radiographs (top row) are used to compute 

residual radiographs (bottom row). Points A, B, and C indicate the start of the tensile test, the appearance of 

first cracks, and the sample rupture, respectively. (b) Computing the variance of the residual radiographs reveals 

clear indication of A and C, while the evidence of B is less pronounced. 
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Table 2: Compilation of the tensile test results, where UTS is the ultimate tensile strength,  r the strain at 

rupture, and E is Young’s modulus. 

 

sample type Fiber orientation UTS / MPa  r / % E / GPa 

133-3 NCF 0°/90° 760 2.0 44.5 

133-11 NCF 0°/90° 740 2.0 44.4 

133-17 NCF -45°/+45° 138 6.3 9.7 

133-19 NCF -45°/+45° 135 6.6 9.8 

135-10 twill 0°/90° 620 1.8 41.2 

135-14 twill 0°/90° 550 1.6 41.4 

135-18 twill -45°/+45° 148 8.9 9.6 

3.  Results 

3.1.  Non-crimp fabrics 

Figure 6 shows selected images of the tensile test on the 0°/90° non-crimp fabric (specimen 133-3). 

Since the specimens are unnotched and the field of view is about 10% of the specimen’s free length, it 

is a coincidence if the rupture occurs within the image.  

The 35tex glass fiber binding yarn is not detectable by naked eye inspection (figure 1) when 

impregnated with the epoxy matrix. However, the density of the glass (ρ = 2.55 g/cm³) is significantly 

higher than the carbon fiber epoxy (according to fiber volume content of 41 % - ρ = 1.4 g/cm³). Hence, 

the glass fiber yarn causes an absorption contrast. Due to the orientation sensitivity of X-ray refraction, 

the contrast of the horizontal glass fiber yarns is enhanced compared to the perpendicular-oriented ones 

(absorption and refraction confounded vs. pure absorption). The specimens strain becomes visible by 

the displacement of the binding yarns. 

 

 
        ( = 0,  = 0)               ( = 0.8 %,  = 380 MPa)      ( = 1.1 %,  = 480 MPa)   ( = 1.2 %,  = 500 MPa) 

 
( = 1.3 %,  = 560 MPa)    ( = 1.6 %,  = 650 MPa)     ( = 1.8 %,  = 720 MPa)   ( = 2.0 %,  = 760 MPa) 

Figure 6. Selected XRRR images of the tensile test of the NCF sample 133-3 covering the start of the test, the 

subsequent occurrence of 90° inter-fiber cracks until reaching a saturated crack density, followed by rupture. 

The images correspond to a size of 11  7.2 mm2. The respective strain () and stress () is indicated below 

each image. 

 

Before the first cracks appear ( = 380 MPa), the strain is evidenced from stretching the glass fiber 

yarns (figure 5a). The sample roughly follows a linear-elastic stress-strain behavior (Young’s modulus 

44.4 GPa [23]). However, due to the increasing number of transverse cracks, the stiffness of the 

specimen decreases slightly to a secant modulus of about 38 GPa short before rupture. Only 90° inter-

fiber cracks are observed. Once such cracks are generated, they immediately cross the entire width of 

the NCF sample. (The time resolution does not allow locating the site of initiation.) In an intermediate 

state, they form an irregular pattern of 1 mm and 2 mm distance. Since subsequent cracks fill the 2 mm 

gaps symmetrically, before rupture (which is by chance in the field of view) we observe a regular 1 mm 

distance pattern, which corresponds to the saturated crack density for quasi static loading [2]. The 
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transverse strain is negligible. After the rupture due to 0°-fiber failure, the cracks remain visible with 

lower contrast, indicating reduced crack opening due the relaxed external load. However as discussed 

above, a transverse crack opening of a few nm is sufficient to generate the refraction contrast. A second 

measurement on specimen 133-11 (cf. figure 4b, table 1) confirmed the results obtained for 133-3. 

Figure 7 shows selected images of the tensile test on the -45°/+45° non-crimped fabric (sample 133-

17). Again, before the first cracks appear (at 123 MPa) the strain is evidenced from the stretching of the 

glass fiber yarns. Here, however, the translation of the yarn (due to displacement) is accompanied by 

fiber rotation by about 2° (figure 8a), which is due to the high Poisson’s ratio (of about 0.7). The -

45°/+45° NCF laminate shows a non-linear viscoelastic-plastic stress-strain behavior [1] (Young’s 

modulus 9.7 GPa [23]) due to the strong influence of the polymer matrix up to the rupture strain (of 

about 6.3 %). Figure 8b demonstrates that the local remaining plastic deformation in the field of view is 

rather low. 

The initial cracks observed are 90° cracks near the free edges and cross about 10 % of the sample 

width. Presumably, such cracks are generated in the matrix at the intersection of fiber bundles, where 

the epoxy matrix agglomerates. At higher strain (about 5 %), the generation of 45° inter-fiber cracks 

sets in; such cracks stop near the specimen’s edges. Until rupture, we observe no cracks crossing the 

entire width of the sample in the field of view. A second measurement on sample 133-19 (cf. figure 4b, 

table 1) confirmed the results obtained on 133-17 but it shows that one particular 45° crack crosses the 

entire width at rupture in the field of view.  

 

 
        ( = 0,  = 0)               ( = 2.5 %,  = 123 MPa)     ( = 4.9 %,  = 135 MPa)    ( = 6.3 %,  = 138 MPa) 

Figure 7. Selected XRRR images of the tensile test of the NCF sample 133-17 showing the start of the test, 

the first 90° crack, the first 45° inter-fiber cracks and the damage before rupture. 

 

a)   b)  

Figure 8. (a) Fiber rotation of 2° visualized by the glass fiber yarns. The color image is composed of single 

XRRR images at the start of the tensile test (green picture) and short before rupture (red picture). The two solid 

lines indicate the translation and rotation of one and the same yarn in the two states. The light green areas on 

both sides of the sample indicate the transverse contraction (of about 5 %). (b) The low plastic deformation is 

evidenced by superimposing the start of the tensile test (green) with the image after rupture (red). The glass 

fiber yarns rotate back to their initial orientation, and the transverse contraction is nearly reversed (2 % residual 

contraction) in the field of view. 

3.2.  Twill fabrics 

Figure 9 shows selected images of a 0°/90°-twill specimen (133-10) under tensile load. The slight 

horizontal whitening comes from the horizontal carbon fiber bundles and is due to the refraction contrast. 

The perpendicular fibers are not detectable [5, 6]. The first crack occurs at 340 MPa in the center of a 

fiber bundle. Subsequent cracks are also generated within the fiber bundles, where the local fiber volume 

is high. In contrast to the NCF-laminate, the cracks do not suddenly cross the total specimen width due 

to the presence of the perpendicular woven fiber bundles. With increasing load, about half of the cracks 

grow across the entire sample width. The crack density in the saturated state is lower than in the NCF-
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laminate. However, in the roughly linear-elastic stress-strain behavior, the stiffness slightly decreases 

with the increasing transverse cracking by about 15 % to 35 GPa (detail in figure 4c), as observed with 

the NCF 0°/90° laminate. Finally, the twill textile shows a more damage tolerant inter-fiber failure 

behavior accompanied by a slightly lower total strength and stiffness compared to the NCF-textile. It 

should be noted that in this particular case, the stress-strain curve shows at least three “Puck knees” [24], 

i.e., discontinuities, at about 400, 500, and 600 MPa. These kinks are a footprint of the occurrence of 

transverse cracks crossing the sample as the sample’s compliance increases. 

 

 
  ( = 0.8 %,  = 340 MPa)   ( = 1.0 %,  = 420 MPa)   ( = 1.4 %,  = 520 MPa)    ( = 1.8 %,  = 620 MPa) 

Figure 9. Selected XRRR images of the tensile test of the twill sample 135-10 showing the first 90° crack, the 

first crack crossing the sample width, and the crack pattern at 520 MPa, which remains nearly unchanged until 

rupture at 620 MPa. 
 

Cracking in the -45°/+45° twill specimen (figure 10, sample 135-18) starts at about 5% strain. The first 

cracks observed are 45° inter-fiber shear cracks of limited length at the free edges. With increasing load, 

90°-cracks are generated in matrix-rich areas near the edges, preferably, at the intersections of former 

45° cracks. However, they do not cross the entire sample width until rupture. The total crack density is 

low compared to the 0°/90°-laminates. In the -45°/+45°-twill-laminate, the refraction effect occurs in 

both fiber orientations (proportional to 1-cos2α, where α is the angle of fibers relative to the scattering 

direction, here: vertical [5]). Hence, the -45°/+45°-fiber bundles become visible.  

 

 
( = 5.0 %,  = 137 MPa)    ( = 6.6 %,  = 142 MPa)    ( = 8.9 %,  = 148 MPa)    ( = 9.5 %,  = 131 MPa) 

Figure 10. Selected XRRR images of the tensile test of the twill sample 135-18, showing the first 45° inter-

fiber cracks, the first 90° crack, and a grown crack pattern, which remains nearly unchanged until rupture at 

131 MPa. 

4.  Conclusions 

We have tracked the crack evolution in differently prepared carbon fiber reinforced plastics (CFRPs) by 

in-situ X-ray refraction imaging without the need to use contrast agents. The different samples showed 

significantly different mechanical behavior mainly due to fiber orientation: 0°/90° oriented fabrics show 

a linear elastic behavior and break at about 2 % strain, while -45°/+45° oriented ones show a 

viscoelastic-plastic behavior and break at considerably higher strain. It could be shown that crack 

generation is correlated to discontinuities in the stress-strain curves for 0°/90° samples. Crack generation 

and growth is mainly governed by the type of fabric: in non-crimp fabric (NCF) several cracks propagate 

across the sample, while twills stop cracks with the presence of perpendicular yarns. Hence, twill fabrics 

exhibit a lower strength and stiffness but higher damage tolerance. The comparatively low stiffness of 

the 0°/90° fabrics is due to the low fiber volume content of 41 %. The observed inter-fiber-failure is 

qualitatively similar to the phenomena observed with glass fiber reinforced plastics, GFRP. The cracks 

remain visible after the rupture, although at reduced contrast. This demonstrates that XRRR is sensitive 

even to cracks of very small opening, which are not detectable using X-ray absorption techniques at 

comparable spatial resolution. 
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