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X-ray computed tomography has many applications in materials science and non-destructive testing. While the standard

filtered back-projection reconstruction of the radiographic data sets is fast and simple, it typically fails in returning

accurate results from missing or inconsistent projections. Among the alternative techniques that have been proposed to

handle such data is the Direct Iterative REconstruction of Computed Tomography Trajectories (DIRECTT) algorithm.

We describe a new approach to the algorithm, which significantly decreases the computational time, while achieving a

better reconstruction quality than that of other established algorithms.

I. INTRODUCTION

Since the 1980s, X-ray computed tomography (XCT)

has found many applications in materials science and non-

destructive testing1–6. The basic principle of XCT is that an

X-ray beam is attenuated, because of absorption or scattering,

while it propagates through a sample. The part of the beam

that traverses the sample is typically recorded in the form of

(radiographic) 2D images by a detector. Such images are

recorded for different angular positions of the rotating sam-

ple. Through mathematical reconstruction7 of these images,

the 3D-resolved attenuation coefficient µ of different parts of

the sample can be determined.

The standard reconstruction strategy is the filtered back-

projection (FBP). Back-projection refers to the smearing of

the projected values (recorded in each detector pixel) back in

the direction of the X-ray source. This procedure does not

return the exact attenuation values, since the value of each

element of the reconstructed image is computed through inte-

gration over the complete path of the corresponding rays. Fil-

tering the projections with a high-pass filter8 results in a sam-

pling pattern that is more appropriate to the circular projection

acquisition strategy, and a more accurate reconstruction. The

algorithm proposed by Feldkamp, Davis, and Kress (FDK)9

is the standard FBP algorithm used for the reconstruction of

cone beam data acquired over a circular scan.

While FBP is very fast, it typically fails in producing an

accurate reconstruction from missing or inconsistent projec-

tions. Moreover, it weights all rays equally, meaning that cer-

tain effects, such as beam-hardening, can give rise to severe

artefacts in the reconstruction. In the above cases, iterative re-

construction techniques can serve as alternatives to FBP. With

iterative techniques, the reconstructed image is calculated as

the solution of a system of linear equations. Numerous ap-

proaches are used for the solution of such systems, be it either

algebraic10 or statistical11.

This article provides an overview of recent advances on

the Direct Iterative REconstruction of Computed Tomogra-

phy Trajectories (DIRECTT) algorithm. While previously re-

a)Electronic mail: sotirios.magkos@bam.de

ported results12–14 clearly demonstrated how DIRECTT was

able to produce more accurate reconstructions compared to

conventional techniques, the time required for each iteration

was impractically high. Here we describe how a new approach

can significantly shorten the computational time, while main-

taining the improved reconstruction quality that was demon-

strated previously in the works of Lange et al.12–14.

II. MATERIALS AND EXPERIMENTAL METHODS

A. Sample images

Two data sets were used to test the performance of the

DIRECTT algorithm:

1. A set of 3000 projections of a metal matrix composite

(MMC) plate were acquired over 180◦ with a parallel

beam at the BAMline15 of the BESSY synchrotron ra-

diation facility in Berlin, Germany. The MMC was an

AlSi12CuMgNi alloy reinforced with 7 vol% of Al2O3

short fibers and 15 vol% SiC particles (see also Ref.

16). The whole composite was produced by squeeze

casting. The diameter of the cylindrical sample was 1

mm. A pco.4000 CCD camera of 4008×2672 pixels

was used for the measurement. The nominal pixel size

was 9 µm and a 20× magnification resulted to a linear

voxel size of 0.44 µm. Monochromatic radiation of 25

keV was selected and the acquisition time per projec-

tion was 3 s17. The incident cross section was narrowed

by a slit system to the detector field-of-view (FoV) in

order to reduce detector backlighting18.

2. A set of 3000 cone-beam projections of a concrete rod

with a diameter of 30 mm was acquired over 360◦ on

an in-house GE v|tome|x L 300 scanner. The scanner

was equipped with a 2024×2024 PerkinElmer detector

with a pixel size of 0.2 mm. The acquisition time per

projection was 6 s, and the source-object and source-

detector distances were set to 81.44 mm and 1018 mm,

respectively, for a voxel size of 0.016 mm (magnifica-

tion of 12.5). The voltage and current settings of the
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Reconstruction from limited number of projections with DIRECTT 2

source were set to 140 kV and 80 µA, and a 0.5 mm Cu

prefilter was used.

B. Software

In the scope of this article, the DIRECTT algorithm was

applied on the two data sets using the Python programming

language. The forward- and back-projection operations were

performed via the open-source ASTRA toolbox19. The use

of ASTRA allows computationally demanding operations to

be offloaded to a graphics processing unit (GPU) using the

CUDA language. In addition, several algorithms, including

the FBP, the Simultaneous Iterative Reconstruction Technique

(SIRT)20 and a Conjugate Gradient (CG)21 method based on

the Krylov subspace, are available in the toolbox for recon-

struction without any intervention by the user19.

III. BASIC PRINCIPLES OF THE DIRECTT ALGORITHM

DIRECTT as proposed by Lange et al.12 operates by selec-

tively back-projecting filtered projections in an iterative pro-

cess, where the focus is on the precise projection. Rather than

directly solving the inverse problem, the aim of the algorithm

is to find the best solution (reconstruction) possible by numer-

ically mimicking the actual physical projection process (e.g.

finite focal spot size22, strong absorbers23). Unlike most iter-

ative techniques, the starting point of DIRECTT is an empty

reconstruction array. During the first iteration, the algorithm

determines which trajectories (among all the traceable trajec-

tories across the projections) are the most dominant. Only

the elements of the reconstruction array that correspond to

these trajectories are updated after the projections have been

filtered. At the end of the iteration, the Radon transform of

the reconstruction array is computed and subsequently com-

pared to the measured projections. The described process is

repeated for the calculated difference. The algorithm is termi-

nated when the variance of these residual projections is suffi-

ciently close to zero.

The technique has been shown capable of returning re-

constructed images that are of superior quality to the ones

computed by standard FBP and even by some other itera-

tive algorithms13,24,25. However, its application through the

calculation of all the trajectories was computationally expen-

sive for large data sets, mainly because of the convolution

operation, which is required for the filtering of the residual

projections during each iteration. An additional drawback

of repeatedly filtering the projections is the increasing pres-

ence of salt-and-pepper noise in the reconstructed images. We

solved this problem with an alternative approach described be-

low. We will in fact demonstrate how to determine which el-

ements of the reconstruction array should be updated during

each iteration without the use of any filtering prior to the back-

projection.

During back-projection, the greyscale value of each ele-

ment of the reconstructed image is computed through inte-

gration over the complete path of the corresponding rays.

FIG. 1. (a) Model of a homogeneous disc; (b) Reconstruction of the

disc by back-projection; (c) Profiles through the centre of the model

(orange) and its reconstruction (green).

Therefore, the voxels around the centre of mass of the sample

have disproportionately higher values compared to the vox-

els closer to the edges of the sample. An example is shown

in Fig. 1: the back-projected image of a homogeneous disc

resembles a disc with a blurred edge to its background, and

with density decreasing as a function of distance from its cen-

tre of mass. Based on the above observation, it is safe to as-

sume that any elements of the back-projected image with a

greyscale value greater or equal to Bc, the value of the ele-

ment that corresponds to the centre of mass of the sample,

would correspond to the most dominant trajectories within the

projections. Regardless of the example used, the shape of the

sample does not introduce any limitations to the performance

of the algorithm.

During the first iteration of this version of DIRECTT, only

the elements of the back-projected image with a value greater

or equal to Bc, are selected. This selection is rescaled, so

that its largest grey value remains unaltered and its lowest de-

creases to zero. From this point onward, the performed oper-

ations match their equivalents from the original version of the

algorithm: the selection is added to the initially empty recon-

struction array; the now partially reconstructed image is then

projected according to the projection geometry of the mea-

surement; the resulting projections are subtracted from the

measured ones. All these steps are demonstrated in the top

row of Fig. 2.

During each subsequent iteration, a new value B′
c is used

for the selection of the elements that will be updated. B′
c is

proportional to the actual weight of the residual projections:

B′

c =
Weight of residual projection

Weight of measured projections
×Bc. (1)

Each selection is added to the reconstruction array, which is

projected in its current form, so that new and further reduced

residual projections can be calculated. The criterion for the

termination of the algorithm is whether the weight of the com-

puted Radon transform is equal to that of the measured pro-

jections, not the variance of the residual projections as was the

case for the original version of DIRECTT.

The middle rows of Fig. 2 demonstrate all steps of the sec-

ond and seventh iteration. While the reconstruction array is

building up, its Radon transform resembles more and more the

measured projection. Accordingly, the residual projections

tend to zero and the back-projected image contains increas-

ingly less information. During the final iteration (bottom row

of Fig. 2), the computed Radon transform has the same weight
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Reconstruction from limited number of projections with DIRECTT 3

FIG. 2. The different steps of the DIRECTT algorithm for the first, second, seventh and final iteration of reconstruction of the concrete sample.

The greyscale values that are described by the bars correspond to the attenuation integral values.

TABLE I. Average time required for the execution of a single itera-

tion of each algorithm for a 2024×2024 slice.

Algorithm Average time per iteration (s)

FBP 2.71±0.03

SIRT 0.87±0.05

CG 0.88±0.01

DIRECTT 1.38±0.01

DIRECTT (Lange et al.12–14) 3.62±0.02

as the measured projections and the residual projections con-

sist mainly of noise; therefore, the algorithm is terminated.

IV. RESULTS

Four different algorithms were used for the reconstruction

of the two data sets. Three of them are available from the

ASTRA toolbox: FBP, SIRT and CG. SIRT and CG were

programmed to perform a fixed number of 70 and 500 iter-

ations, respectively. The number of iterations for each algo-

rithm was determined to be the number that produces images

with a good balance between noise and blur. The quantifi-

cation of this balance is attempted in the Discussion section.

The other algorithm used was DIRECTT. No fixed number

of iterations was programmed for it. As we mentioned in sec-

tion III, DIRECTT is terminated when the residual projections

have the same weight as the measured projections. Table I

lists the average time required for the execution of a single

iteration of each algorithm (including the original version of

DIRECTT) for one slice through the concrete volume on a

computer equipped with an NVIDIA GeForce GTX 1080 Ti

GPU. In the case of FBP, the time listed refers to the total time

required and was calculated as the mean value after repeating

the operation 50 times.

A. Simulation of the missing wedge problem

A slice through the volume of the MMC sample as recon-

structed by each of the algorithms is shown in Fig 3. SIRT

and DIRECTT have returned images that are less noisy than

the ones by FBP and CG.

In order to evaluate the performance of the algorithms in the

case when the sample cannot be rotated over the full 180◦, the

last 1000 projections were removed from the data set, thus cre-

ating a missing wedge of 60◦. The reconstruction of the slice

from this limited set of projections is shown in Fig. 4. Again,

the images returned by SIRT and DIRECTT appear to be an
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Reconstruction from limited number of projections with DIRECTT 4

FIG. 3. Slice through the MMC sample volume as reconstructed

from 3000 projections by (a) FBP, (b) SIRT (500 iterations), (c) CG

(70 iterations), and (d) DIRECTT (126 iterations). The µ scales de-

scribed by the bars on the right were set equally for all subfigures.

improvement compared to FBP and CG, in terms of noise. In

addition, while the shape of the sample in the other three im-

ages appears distorted as a result of the missing wedge, this

distortion is less apparent in the case of DIRECTT. This is an-

other indication of the ability of DIRECTT to accurately esti-

mate how the different densities, which result to the measured

projections, are distributed in the space.

B. Simulation of sparse-sampling acquisitions

A slice through the volume of the concrete as reconstructed

by each of the four reconstruction algorithms is shown in

Fig. 5. The images reconstructed by the iterative algorithms

are comparable to the one by FBP, but multiple iterations of

each algorithm were required.

In order to evaluate the performance of the algorithms in

a case when fewer projections are acquired over a full rota-

tion of the sample, certain projections were evenly and pro-

gressively removed from the data set and new reconstructions

were computed from 1500, 1000, 750, 600 and 500 projec-

tions. The reconstruction of the slice from 500 projections is

shown in Fig. 6. There is an obvious decrease in the quality

of the reconstructed image returned by FBP compared to the

full number of projections. The quality of the reconstructions

returned by the iterative algorithms has also decreased, but to

a lesser extent.

FIG. 4. Slice through the MMC sample volume as reconstructed

from 2000 projections by (a) FBP, (b) SIRT (500 iterations), (c) CG

(70 iterations), and (d) DIRECTT (112 iterations). The last 1000

projections were removed from the original data set, so to simulate

an acquisition with a missing wedge of 60◦. The µ scales described

by the bars on the right were set equally for all subfigures.

TABLE II. Histogram entropy for the reconstructed images of the

MMC sample.

Angular range Histogram entropy

FBP SIRT CG DIRECTT

180◦ 4.0 4.1 3.9 2.9

120◦ 4.2 4.4 4.1 3.2

V. DISCUSSION

A. Missing wedge reconstruction – MMC sample

A first evaluation of the quality of the reconstructed images

is attempted using the histogram entropy metric26. The his-

togram entropy is defined as

H =−

∫
p(µ) log[p(µ)]dµ , (2)

where p(µ) is the distribution function of the grey values.

The presence of homogeneously distributed noise maximizes

the entropy, while the presence of sharp edges minimizes it27.

Since both noise and blur cause the entropy to increase, a low

value of the metric should indicate a good balance between

the two. The histogram entropy values for all images in Figs 3

and 4 are listed in Table II. The DIRECTT-reconstructed im-

ages have the lowest entropy for both angular ranges of pro-

jection.

Because the 3000 projections acquired during the mea-

surement using a 4008×2672 CCD camera are significantly

fewer than the optimal number according to the Nyquist
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Reconstruction from limited number of projections with DIRECTT 5

FIG. 5. Slice through the concrete sample volume as reconstructed

from 3000 projections by (a) FBP, (b) SIRT (500 iterations), (c) CG

(70 iterations), and (d) DIRECTT (151 iterations). The framed re-

gion in a) was used as a reference for the calculation of the quality

metric values (see Discussion section). The µ scales described by

the bars on the right were set equally for all subfigures.

FIG. 6. Slice through the concrete sample volume as reconstructed

from 500 projections by (a) FBP, (b) SIRT (500 iterations), (c) CG

(70 iterations), and (d) DIRECTT (147 iterations). The µ scales de-

scribed by the bars on the right were set equally for all subfigures.

criterion, no reconstructed image, including the one recon-

structed by FBP, can be adequately close to the ground truth.

The evaluation of any image using a full-reference met-

ric is therefore meaningless. Instead, to evaluate the qual-

ity of the images reconstructed with the simulated missing

wedge of 60◦, their Radon transform over the full range

of 180◦ was computed. A circular mask of approximately

the same radius as the actual sample was applied on all

reconstructed images, except for the one reconstructed by

DIRECTT, in order to diminish the effect of the distortion

caused by the missing wedge. The transforms of a slice

through each reconstructed volume (Fig. 4) are shown in

Fig. 7 along with the measured projections. It is evident that

the lower part of the sinograms, corresponding to the range

between 120◦ and 180◦, differs significantly from the original

ones. The projections are blurred, and it is very difficult, if not

impossible, to trace the continuation of any of the trajectories

that are discernible in the upper part of the sinograms. This

is much less the case for the projections of the DIRECTT-

reconstructed volume. Even though the simulated missing

projections are more blurred than the original ones, this lower

part of the sinogram appears to be a reasonable continuation

of the upper part, and certain trajectories can be traced all the

way through it.

The fidelity of the simulated projections to the original

ones, and thus the quality of each reconstructed volume, can

be assessed by calculating the Pearson correlation coefficient

(PCC)28 between the corresponding projections according to

the relation

PCCM,R =
σM,R

σMσR

, (3)

where σM,R is the covariance, and σM , σR the standard de-

viation of the measured projections and the computed Radon

transform, respectively. The PCC can range from +1 to -1,

where 1 signifies total linear correlation, 0 no linear correla-

tion, and -1 total negative linear correlation. The PCCs be-

tween each projection of the slice through the reconstructed

volume and its corresponding measured projection are plot-

ted as a function of the projection angle in Fig. 8. Within the

range from 0◦ to 120◦, the coefficients for all four reconstruc-

tion algorithms are around the optimal value of 1. However,

they abruptly decrease within the range that corresponds to the

missing projections. This decrease is lower for the DIRECTT-

reconstructed volume, even after the circular mask has been

applied to the other three volumes, proving that DIRECTT

performs better than the rest of the algorithms at compensat-

ing for the missing wedge.

B. Sparse-sampling data – concrete sample

The histogram entropy values for the concrete sample as

reconstructed from 3000, 1500, 1000, 750, 600 and 500 pro-

jections are listed in Table III. As the number of projections

decreases, the image noise increases and the edges become

less sharp, causing the histogram entropy to increase. The

DIRECTT-reconstructed images have the lowest entropy for

any number of projections.

Because the 3000 projections acquired during the measure-

ment using a 2024×2024 detector are very close to the opti-

mal number according to the Nyquist criterion, the quality of

each reconstructed volume can be assessed through the calcu-

lation of two full-reference metrics:
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Reconstruction from limited number of projections with DIRECTT 6

FIG. 7. (a) Measured projections of a slice through the MMC sample

volume in the form of a sinogram. The projections below the dashed

line were not used for the reconstruction of the images in Fig. 4, in

order to simulate an acquisition with a missing wedge of 60◦; (b)-(e)

Radon transforms of the reconstructed slices of Fig. 4 over the whole

range of 180◦. The lower part of each sinogram differs in varying

degrees from the corresponding measured projections.

TABLE III. Histogram entropy for the reconstructed images of the

concrete sample.

Number of projections Histogram entropy

FBP SIRT CG DIRECTT

3000 3.20 3.20 2.97 2.47

1500 3.33 3.26 3.12 2.51

1000 3.43 3.33 3.25 2.56

750 3.48 3.40 3.32 2.59

600 3.54 3.46 3.35 2.63

500 3.59 3.53 3.46 2.68

1. the mean squared error (MSE) calculates the average

squared difference between the estimated values and the

reference values29;

2. the universal quality index (UQI) is calculated accord-
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FIG. 8. The Pearson correlation coefficient between each projection

of a slice through the reconstructed MMC sample volume and its

corresponding measured projection.
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FIG. 9. Quality assessment of each reconstruction algorithm by the

MSE and UQI metrics.
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Reconstruction from limited number of projections with DIRECTT 7

ing to the relation

UQI =
2µrefµrec

µ2
ref + µ2

rec

2σref,rec

σ2
ref +σ2

rec

, (4)

where µref and µrec are the mean values of the reference

and the reconstructed image, respectively. The first fac-

tor of Eq. 4, which takes a value between 0 and 1,

compares the luminance between the reference and the

reconstructed image. The second factor has the same

value range and measures how similar the contrasts of

the images are30,31.

Both metrics were calculated for a region of interest in the

centre of the volume. The corresponding region of the

FBP volume as reconstructed from the full 3000 projections

(shown in Fig. 5a) was used as a reference. The calculated

values for each metric and each reconstruction algorithm are

plotted in Fig. 9 as functions of the number of projections

which the volumes were reconstructed from.

According to the MSE, already for half the original num-

ber of projections, all four algorithms return an equally good

result. After this point, the quality of the FBP reconstruc-

tions decreases much faster than the ones by the iterative al-

gorithms. Both SIRT and DIRECTT appear to outperform CG

slightly, but DIRECTT does so in a fraction of the iterations

performed by SIRT.

According to the UQI, the quality of the FBP-reconstructed

images decreases somewhat slower than estimated by the

MSE. Their quality appears to be roughly linearly propor-

tional to the logarithm of the number of projections. Still,

the quality of the iterative reconstructions for 750 projections

are at least as good as the ones by FBP. For a larger number

of projections, CG appears to outperform DIRECTT, but the

two algorithms return equally good results for fewer projec-

tions. However, DIRECTT needed to perform twice as many

iterations as CG. In conclusion, DIRECTT returns the best re-

constructed images from sparsely sampled data according to

both the MSE and the UQI.

VI. SUMMARY

We have presented a new approach to the DIRECTT algo-

rithm which has decreased the running time per iteration by

more than half. We have successfully applied the algorithm

on data sets of XCT projections in which two different types

of limitations were introduced: a missing wedge of 60◦ (over

the ideal 180◦) in a case of a parallel-beam XCT, and a de-

creasing number of projections in a case of cone-beam XCT.

Our results demonstrated that DIRECTT can outperform the

standard FBP algorithm, as well as other established iterative

algorithms.
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