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Abstract

In recent years, laser beam welding has found wide applications in many industrial fields. Solidification cracks are one of the most frequently
encountered welding defects that hinder obtaining a safe weld joint. Decades of research have shown that one of the main causes of such cracks
is the strain and the strain rate. Obtaining meaningful measurements of these strains has always been a major challenge for scientists, because
of the specific environment of the measurement range and the many obstacles, as well as the high temperature and the plasma plume. By
applying novel metrology based on optical flow (OF) algorithm, the critical strain conditions for solidification crack formation for the stainless
steel 1.4828 in the immediate vicinity of the solidification front was identified. The developed two-dimensional technique allows for obtaining
full strain distribution in the hot cracking critical zone.
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1. Introduction ROI Region Of Interest
DIC Digital Image Correlation
The prevention of hot cracks in the production and
processing of metallic materials is an essential requirement for
the safety of components or constructions. The topic of
"solidification cracking" was a highly controversial issue for
many years, especially in view of the reasons for the
formation of hot cracks. The phenomenon of solidification
cracking is complex because it is influenced by the interaction
of mechanical, thermal and metallurgical factors [1].

From a thermomechanical point of view, according to
current theories, the critical strain as well as strain rate
occurring during welding in the vicinity of the solidification
front are the cause of solidification cracking. The theory of
Prokhorov [2]-[5] which holds the critical strains within a
material-specific "Brittleness Temperature Range" (BTR) as a
responsible for the solidification cracking formation. Fig. 1.
shows schematically the strain development within the BTR

Nomenclature regarding to the theory of Prokhorov and the critical strain
(CS) and critical strain rate (CST) required for the

€ strain solidification cracking. The theory of Rappaz et al [6], shows

Ecritical critical strain even more direct connection between strain rate and hot crack

critica .

Ecritical critical strain rate formation. . . .

CTW controlled tensile weldability While the theories deal with local thermomechanical and

OF optical flow metallurgical processes, the hot cracking test methods used in
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practice are based on global concepts with measurable basic
test criteria such as critical stress [7]-[9], strain [4], [10] and
strain rate [11]-[13]. Recent studies have indicated that strain
rates play a relatively direct role in hot crack initiation and
propagation [6], [14]. The critical strain and the strain rate are
used as a measure of weldability, with higher values indicating
better solidification cracking resistance.
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Fig. 1. The concept of the brittleness temperature range (BTR) during
solidification of metals in the strain-temperature regime [5]

Because of the importance of the thermomechanical factors
influencing the formation of solidification cracking, as
mentioned, such as, the strain and strain rate, different
measuring methods are developed to determine those critical
values. However, the measurement or investigation techniques
used until today cannot be realized directly from the process
side without difficulties.

The experimental determination of local critical strains and
strain rates in the high temperature range, which are relevant
for hot crack formation, is generally difficult with the usual
measuring methods, such as inductive displacement sensors or
strain gauges (SG). These methods cannot be used to
determine values in the immediate vicinity of a molten bath
because of the high temperature conditions that occur.

The contactless measuring techniques and especially those
based on image processing are appropriate for this task.
However, the strain measurement is often carried out from the
back of the weld seam in order to exclude the influence of
laser light and possibly resulting plasma on the image quality.

Quiroz et al. [15] used the Digital Image Correlation (DIC)
technique to measure the strain distributions on the bottom of
the specimen surface during bead-on-plate partial penetration
welding  conducted in  the  Controlled  Tensile
Weldability (CTW) test facility but circumventing the
influence of laser light and plasma on the image quality. Bakir
et al. [16], [17] used the digital image correlation technique to
conduct in-situ measurements of strains during the formation
of solidification cracks. The experimental setups used allow
measurements of the displacement and the strain
approximately 2 mm from the fusion line.

A suitable optical measurement technique for determining
local critical straining condition for solidification cracking is
the so-called MISO (Measurement by Means of In-Situ
Observation) technique which was developed from Matsuda et
al. [18], [19]. In this method, a high-speed camera in
combination with an optical magnification is used to record
the formation of hot cracks. However, the MISO method leads
to generally increased measuring errors due to the difficult
light-optical conditions in the vicinity of the weld pool and the
high magnifications. With the help of the MISO method,
strains can only be measured at points, whereby it must be
noted that the critical strain is location dependent.

2. Experimental setup

The tests were carried out on austenitic steel grade 1.4828
(AISI 309) plates having a thickness of 1.5 mm. The chemical
composition of the tested alloy is given in Table 1.

Table 1. Chemical composition (in wt-%) of the investigated material.
C Cr Ni Mn Mo Si P S Fe

0.05 1932 11.06 097 0.11 2.07 0.027 0.004 Bal

Free edge test was used for the welding experiments. The
specimen with the dimension of 90 mm x 45 mm was fixed
from one side and then welded 4mm parallel to the free edge
as shown in Fig. 2 schematically. A high-power Yb:YAG disk
laser TruDisk 16002 with a maximum output power of 16 kW
was used as laser source with a wavelength of 1030 nm and a
beam parameter product of 8 mm x mrad. The laser radiation
was transmitted with an optical fibre with a core diameter of
200 um.

Determination of the local strain conditions were normally
carried out in combination with an externally loaded hot
cracking test [20], [21]. The use of self-loaded hot crack test is
employed usually for the classification of various materials to
their hot cracking susceptibility. However, the utilisation of
the self-loaded hot cracking test for local determination
reduces the time and effort required for such measurements.

The welding parameters were chosen so that a fully
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Fig. 2. Schematic representation of the experimental setup with the free edge
test using the digital camera and the laser illumination

penetrated weld was produced. Here, 1.8 kW laser power and
a constant welding speed of 1.2 m/min were applied. Argon
was used as shielding gas. The measurement of the local
strains was carried out with the usage of a digital camera and
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external laser illumination (diode laser 808 nm) and
appropriate filtering (interference filter).

3. The optical measurement technique

The optical measuring technique is based mainly on image
processing algorithm. During the welding process, the
installed camera records the molten pool area and its
surroundings. An optical flow (OF) algorithm based on
Lucas-Kanade (LK) [22] was used to calculate the optical OF
and then the displacements. The displacements were
estimated for Region Of Interest (ROI) behind the weld pool
and covered the hot cracking critical zone. Normally during
welding, the workpiece is fixed, and the laser head moves
over or vice versa. Therefore, the evaluation technique was
also adapted and improved to determine the displacements for
moving images. The selected ROI consists of inlet and outlet
(see Fig. 3). Just after solidification and behind the
solidification front, the inlet receives the new pixels
(solidified material) and they take the displacement value of
0. The new pixels were tracked as long as they are located
within the ROI. Based on the determined full-field
displacement, the full-field strains were calculated.
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Fig. 3. Schematic representation of the static ROI concept during the welding
process, adapted from [23], [24]

4. Results and discussion

Because of the speckle effect provided from the
effect of the coherent laser illumination on a rough surface, a
special preparation of the measured object, as is the case of
DIC, is not required (see Fig. 4). The Speckle effect creates a
speckle pattern with good contrast. This speckle pattern
remains constant over several consecutive image sequences
which allows the calculation of the optical flow.

Welding direction
—— =

Fig. 4. A sequence from the recorded video shows the solidification crack and
the speckle effect on a specimen during the welding process

Fig. 5 shows the calculated full-field displacement and
full-field strain for a sequence during the welding process. By
using the free edge test, a crack along and parallel to the free
edge is expected as shown in Fig. 4 and Fig. 5. Since a crack
has formed, the narrow sheet metal part moves away from the
specimen. That can be observed clearly in the Fig. 5 as the
displacement increases linearly starting from the solidification
front. The calculated strains which based on the estimated
displacements can also be seen in the Fig. 5.

The strain distribution corresponds to the displacement
distribution as a strain concentration in the transition region of
the displacement, in other words, along the crack. The strain
distribution shows a concentration directly behind the weld
pool tail, which also increases moving away from the weld
pool. However, the strain development from the solidification
front till the crack tip will be considered, since the strains
after that are not relevant.
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Fig. 5. The obtained full-field strain and full-field displacement distribution
using the OF in immediate vicinity of the solidification front

For better determination of the critical strain (&.,;;icq;) that
causes solidification cracking for the tested steel grade, the
strain development along a line AB for four measurements on
four specimens are shown in the Fig. 6. Since the point A are
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Fig. 6. The strain development from the solidification front (weld pool tail)
till the crack tip (along the line AB) for four trials.
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located on the weld pool tail and B on the crack tip.

The strain development corresponds to the strain
distribution as the strains increase after solidification till the
crack tip. The crack tip’s locations are in red point in the
diagram indicated. These points indicate also the critical local
strain required for solidification cracking. The determination
of critical strains at four specimens shows very high
repeatability as listed in Table 2. The critical Strain (€criticar)
for hot crack initiation for this steel grade is 0.0157+0.00118.
This critical strain values have been reached after
1.1£0.07 mm from the weld pool tail. Based on the two
determined values, the critical strain and the crack tip
location, and considering the welding speed, the critical strain
rate can be also calculated.

Table 2. The critical strain for four trials and the distance of the crack tip
from the weld pool tail.

Critical Distance of crack tips in
strain mm
Ecritical
Trial 1 0.0150 1.04
Trial 2 0.0155 1.08
Trial 3 0.0148 1.2
Trial 4 0.0174 1.08
Average 0.0157 1.1
Standard deviation +0.00118 +0.07

Assuming that the strain increases from 0 to 0.0157 over
1.1 mm which corresponds to 0.055 s, the critical strain rate
(£criticar) 18 €qual to 0.28 s

5. Conclusion

A self-restraint hot cracking test (free edge test) was used
in combination with a novel optical measurement technique to
determine the critical straining conditions for solidification
cracking for the stainless steel grade 1.4828 (AISI 309).

The Lucas-Kanade algorithm for the optical flow (OF)
calculation was implemented to obtain the full-field
displacement and then the full-field strain.

The use of external laser illumination with appropriate
filters allows to obtain good image quality with good contrast.

The critical straining conditions required for solidification
cracking can be obtained by means the proposed technique in
the immediate vicinity of the solidification front.

A very good repeatability was demonstrated for the used
measurement technique. The critical straining conditions for
solidification cracking for the tested steel und under this
welding conditions has been detected
0.0157, Ecriticar = 0.28 s71).

( Ecritical =
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