Electronic supplementary material Waste and Biomass Valorization, Springer

Potential use of incineration bottom ash in construction – Evaluation of the environmental impact

Ute Kalbe and Franz-Georg Simon

Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87,

12205 Berlin, Germany

Corresponding author: ute.kalbe@bam.de

Table S1: Composition of artificial rainwater (AR)

Substance	Concentration (µmol/L)
KCl	40.0
$CaSO_4 \cdot 2H_2O$	50.0
NH ₄ Cl	39.9
NaNO ₃	60.0
$MgSO_4 \cdot 7H_2O$	10.0
HNO ₃ (63%)	2.0
pН	5.7

Fig. S1: Concentrations of chloride and calcium in leachate fractions taken from two replicates of laboratory-scaled lysimeter experiments (Lys1, Lys2) at increasing L/S (liquid to solid) ratios

Fig. S2: Concentration of substances in eluate fractions taken from column percolation experiments (two replicates S1, S2) at increasing L/S ratios using demineralized water MilliQ) and artificial rain (AR) as eluent

Figure S3: Cumulative release of substances as a function of L/S ratio in column percolation experiments (two replicates S1, S2) using demineralized water (MilliQ) and artificial rain (AR) as eluent

Fig. S4: Concentration of substances in eluate fractions taken at increasing L/S ratios in lysimeter experiments using artificial rain (AR) as eluent (two replicates Lys1, Lys2)

Fig. S5: Cumulative release of substances as a function of L/S ratio in a lysimeter experiments using artificial rain (AR) as eluent (two replicates Lys1, Lys2)

