Analytical and Bioanalytical Chemistry

Electronic Supplementary Material

Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry

Katrin Hoffmann, Nithiya Nirmalananthan-Budau, Ute Resch-Genger

Content

- 1. Control images of non-modified beads (Figure S1)
- 2. Fluorescence data of candidate calibration beads in ensemble and at single particle level (Table S1)
- 3. Information on fluorescence quantum yields and on bead staining homogeneity (Table S2)
- 4. Microscopic investigation of candidate calibration beads (Figure S2)

Fig. S1 Control images of an exemplary mixture of non-modified polystyrene (PS) beads (8 μ m) and PS beads with encapsulated Dye D: transmission image (left), fluorescence image (middle) and their overlay (right). No emission signal can be detected from the non-modified PS beads

Table S1 Fluorescence data (emission wavelengths) of dyes measured in different environments, in ethanolic solution, and in 8 μ m polystyrene (PS) beads in aqueous suspensions in the ensemble and at single particle level

		emission wavelength λ_{max} /nm		
fluorophore	EtOH	8 μm PS (ensemble)	8 μm PS (single bead level)	
DyeA	329±2	330±0.5	n.d.	
DyeB	390±2	370±0.5	n.d.	
DyeC	456±2	420±0.5	422±0.8	
DyeD	530±2	480±0.5	485±2	
DyeE	636±2	575±0.5	576±0.8	
DyeO ClO4	664±2	668±0.5	669±3.6	
DyeO ClO4 US	-	654±0.5	-	
DyeO PF6	-	668±0.5	-	
DyeO BARF	-	673±0.5	-	
DyeO BARF US	-	672±0.5	678±0.8	
Dyel ClO4	766±2	726±0.5	719±0.5	
Dyel ClO4	-	724±0.5	-	
Dyel PF6	-	733±0.5	-	
Dyel BARF	-	772±0.5	742±0.8	

*) Standard deviations derived from the wavelength accuracy of the fluorescence instrument

**) Standard deviations derived from evaluation of single bead spectra ($N \ge 5$)

***) US: ultrasound

Table S2 Fluorescence quantum yields (QY) of dispersions of dye-encoded 8 μm polystyrene (PS) beads absolutely measured with a C11347 (Hamamatsu Photonics K.K.) integrating sphere setup (error represents the standard deviation (SD) of twelve independent measurements). The integral and average intensities of different bead-related regions of interest (ROI) of the dyes-stained bead batches were obtained to estimate bead staining homogeneity

fluorophore	Quantum yield/%		Staining homogeneity (integral bead intensity)		
	$\lambda_{\text{exc}}/\text{nm}$	8 μm PS (ensemble)	ROI integration	ROI average	
DyeC	355	87±3	5.40E+06±3.28E+05	2.64E+03±1.60E+02	
DyeD	488	31±2	2.99E+06±1.61E+05	1.98E+03±1.02E+02	
DyeE	515	66±2	5.29E+06±3.05E+05	2.87E+03±1.66E+02	
DyeO*)	633	5±1	5.11E+06±1.08E+06	1.94E+03±4.08E+02	
Dyel*)	633	12±1	4.17E+06±1.74E+06	2.33E+03±9.72E+02	

*) counterion ClO₄

Counter anion	ClO ₄ ⁻	BF_4^-	PF_6^-	BARF
DyeO				
Dyel	10um		TOPH CALL	19µm
Hydrophobici ty				

Fig. S2 Visual, microscopic investigation of candidate calibration beads during the course of counter anion exchange studies (confocal laser scanning Microscope OLYMPUS FV1000; UPLSAPO 40x/0.9; excitation wavelength 633 nm)