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A B S T R A C T   

Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy 
production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat 
conduction problem. The quality of the reconstruction is closely related to the information content of the 
observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect 
depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a 
metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as 
prior information to overcome the diffusion-based information loss partially. The reconstruction is based on 
simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave 
field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation 
methods for image reconstruction.   

1. Introduction 

In recent decades the number of industrial applications of the non- 
destructive testing method active thermography has significantly 
grown [1,2]. For active thermography the specimen is stimulated, e.g. 
by a flash lamp, laser or induction of eddy current, to obtain a temper-
ature rise compared to the initial state. This change in temperature or 
more precisely the change in electromagnetic radiation in the infrared 
regime, is then detected on the surface of the specimen using an infrared 
(IR)-camera. Since defects like, e.g. cracks, have different physical 
properties compared to the bulk material of the specimen they can be 
detected. The advantages of active thermography are that large com-
ponents can be quickly tested due to the focal plane array of the 
IR-camera. The specimen can also be inspected contactless, and the 
resulting images are readily assessable by non-experts. 

The detected surface temperature fulfils the diffusion equation. Here, 
the disadvantage of thermography becomes visible. The heat diffusion 
equation describes an irreversible process that is characterized by en-
tropy production, that is directly connected to information loss [3]. This 
loss of information is responsible for the thermal detection limit. For a 
spatially homogeneous and temporally Dirac-delta-like heating of a 
specimen there exists a basic rule for the thermal detection limit that 

states: The defect diameter-to-depth ratio must be greater than 2 [1,4]. 
Otherwise, the defect cannot be detected reliably. 

In state-of-the-art thermal NDE methods, a one-dimensional (1D) 
thermal model is used for depth estimation and in some cases for the 
characterization of the thermal resistance between the bulk material and 
the defect [5,6]. These 1D approaches become inaccurate for defect 
visualization when the inspected objects have a complex shape or the 
defects have a finite or irregular boundary, taking into account that the 
anisotropic heat conduction of composites amplifies these effects [7]. To 
overcome these problems, Kaiplavil and Mandelis [8] reported a 
depth-resolved photothermal imaging modality, the so-called trunca-
ted-correlation photothermal coherence tomography (TC-PCT), which 
enables a 3D visualization through the deconvolution of thermal re-
sponses from axially discrete sources. This improves the depth resolu-
tion to overcome image blurring limitations [9]. Another approach for 
more accuracy regarding the effects of lateral heat diffusion is the so-
lution of the multi-dimensional heat conduction equation for a 
model-based image reconstruction [10]. Several studies use the 
finite-element method for the numerical solution of the heat conduction 
problems to realize the defect reconstruction [11–13]. Thermographic 
image reconstruction based on analytical solutions of the temperature 
field is applied for buried heat sources [14] and also for defects in 
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composite materials [15]. The multi-dimensional thermal wave field 
modelling always results in large-scale reconstruction problems, which 
are computationally intensive and severely ill-posed. To partly 
compensate for the information loss and to improve the quality of the 
multidimensional reconstruction, Burgholzer et al. introduced a new 
approach for thermographic imaging, the so-called virtual wave concept 
(VWC) [16]. The idea of VWC is to transform the surface temperature 
detected by an IR-camera into a virtual wave field. The first applications 
of a transformation of the diffusive electromagnetic wave into a wave 
field was shown by Lee et al. [17,18] and Gershenson [19] for 
geophysical applications. While the surface temperature fulfils the 
diffusion equation, the virtual wave field obeys the wave equation. In 
contrast to the diffusion equation, the wave equation describes a 
reversible process. Due to this fact, reconstruction methods well known 
from ultrasonic testing can be employed for 3D thermographic imaging. 
Thus, in principle VWC is a two-step inverse process. The first inverse 
problem is severely ill-posed due to information loss that is equal to the 
entropy production during heat diffusion. 

To enhance the quality of the inverse solution one can introduce 
prior information, such as positivity and sparsity [20,21]. In contrast to 
the 1D virtual wave field, the 2D acoustic virtual wave exhibits negative 
data points with respect to time, hence the additional information pos-
itivity is not direct applicable. For one IR-camera pixel the information 
gain incorporating positivity is only a factor of two, but if we consider 
the n-pixel of the camera we have an information gain of 2n. In order to 
apply positivity, these data sets have to be transformed. For 3D this is 
readily done by spherical projections that correspond to a time integral 
of the 3D virtual wave. In 2D, the Abel transformation or circular pro-
jection has to be applied in order to increase the information content for 
the regularization process [22,23]. Note, in the discrete case positivity is 
introduced by a simple matrix multiplication using the Abel-trafo matrix 
which has full rank. Hence, the inverse of the Abel-trafo matrix exists. 
Moreover, the prior information sparsity is introduced, because usually 
we have only a few defects in practise related specimens, e.g. de-
laminations or cracks. Consequently, we have only a few point scatterers 
which leads to a sparse virtual wave field. Sparsity is introduced by an 
appropriate formulation of the objective function using L1 norm 
minimization. 

In this work we show 2D reconstructions of rectangular slots in a 
metallic sample with different defect width-to-depth ratios. An overview 
of the process steps using VWC for a 2D reconstruction problem is 
illustrated in Fig. 1. In the first section we give an overview of the reg-
ularization and reconstruction tools used. We show how additional in-
formation can be incorporated into the regularization process. 
Moreover, we discuss the link between the virtual wave field and its 
projection on positive data points. Heat conduction simulations with the 
Finite Element Method (FEM) and experimental investigations based on 
pulsed thermography measurements are used to validate the modified 
virtual wave concept. 

2. Virtual wave concept 

Referring to the virtual wave concept (VWC), one can compute the 
multidimensional temperature distribution Tðr; tÞ based on so-called 
virtual waves Tvirtðr; t’Þ for the same position vector r but different 
time scales t and t’, respectively. According to Ref. [16], the formal 
relationship is given by a Fredholm integral of the first kind: 

Tðr; tÞ ¼
Z∞

� ∞

Kðt; t’ÞTvirtðr; t’Þ dt’

with Kðt; t’Þ ¼
c
ffiffiffiffiffiffiffi
παt
p exp

�

�
c2t’2

4αt

�

for t > 0:

(1) 

Kðt; t’Þ is the transformation kernel between temperature and virtual 
waves. It contains the characteristic parameters thermal diffusivity α 

and virtual speed of sound c, which describes the speed of heat and 
virtual wave propagation. 

2.1. Incorporating positivity as prior information 

Thermal diffusion causes entropy production and hence information 
loss. In contrast to the 1D virtual wave field [24], the 2D and 3D virtual 
wave fields contains negative data points. To increase the information 
content in the regularization process, the data set is projected via 
spherical or circular means onto positive data points. 

In this work we consider 2D photothermal temperature data of an 
opaque material with embedded slots. Thermal waves are introduced at 
the sample surface. Simultaneously, the data is recorded on the obser-
vation plane that correspond to the sample surface. The thermal waves 
propagate through the solid until their flow is perturbed by the slots. 
Consequently, secondary thermal wave sources are introduced at the 
boundaries of the slots [25]. Due to the fact that the superposition 
principle is valid for both heat and wave equation, we can imagine the 
secondary thermal wave sources as accumulation of point scatterers that 
introduce heat in the semi infinite body. According to VWC we trans-
form these point scatterers into an “acoustic” virtual wave. Conse-
quently, the secondary thermal waves sources exhibit the bimodal 
characteristic of a 2D photoacoustic wave form (see Fig. 1 middle-left 
box) [26]. As one can see the 2D photoacoustic wave exhibits negative 
data points. In this section, we show how the bimodal virtual waves can 

Fig. 1. Overview of the process steps using VWC for a 2D problem incorpo-
rating additional information. 
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be projected onto a positive data set in order to incorporate positivity in 
the regularization process. We consider a 2D data set. The corresponding 
virtual wave field Tvirtðx; y; tÞ is described by the 2D photoacoustic wave 
equation: 
�

Δ2D �
1
c2

∂2

∂t’2

�

Tvirtðx; y; t’Þ¼ �
1
c2

∂
∂t’

T0ðx; yÞδðt’Þ; (2)  

where T0ðx; yÞ is an initial temperature distribution. The solution of the 
wave equation is given by Ref. [27]: 

Tvirtðx; y; t’Þ ¼

∂
∂t’

"
1

2πc

ZZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x’Þ2þðy� y’Þ2
p

<ct’

T0ðx’; y’Þ dx’dy’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t’2 � ðx � x’Þ2 � ðy � y’Þ2
q

#

: (3) 

Now let us consider a finite number of n ¼ 1;2;…;N detection points 
ðxn; ynÞ which are positioned on a closed or open detector curve outside 
the specimen. According to Ref. [28] we can write: 

Tvirtðxn; yn; t’Þ ¼
∂

∂t’

�
1
c

Z ct’

0

rðMnT0Þðxn; yn; rÞ dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t’2 � r2
p

�

with

ðMnT0Þðxn; yn; rÞ ¼
1

2πr

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � x’Þ2þðyn � y’Þ2
p

¼r

T0ðx’; y’Þ dC’;

(4)  

where ðMnT0Þðxn; yn; rÞ are the circular means of T0 at detection point 
ðxn; ynÞ with radius r. Eq. (4) is of Abel-type and can be written as 

Tvirtðxn; yn; t’Þ ¼
∂

∂t’
1
c
A fðMnT0Þðxn; yn; rÞ g

with A fðMnT0Þðxn; yn; rÞ g ¼
Zct’

0

rðMnT0Þðxn; yn; rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t’2 � r2
p dr

(5) 

Herein, A f⋅g is the Abel transformation operator. Based on the in-
verse Abel transformation the circular means ðMnT0Þðxn; yn; rÞ can be 
calculated explicitly [22,28]: 

ðMnT0Þðxn; yn; rÞ ¼
2c
π

Zr=c

0

Tvirtðxn; yn; t’Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2t’2
p dt’: (6) 

Due to Eq. (5) we can see that the projection onto positive data points 
(the circular means) and the virtual wave field, which fulfils the 2D 
wave equation, are connected by the Abel transformation. The Abel 
transformation relates the computed virtual wave signals, that are a 
function of time, to its circular projection and consequently to the cir-
cular integrals of a photothermal source with radius r and center point 
ðxn;ynÞ. 

2.2. Discrete data 

Let us consider the Fredholm integral of the first kind, shown Eq. (2). 
Due to the fact that thermography data is discrete in time and space, Eq. 
(2) is first discretized: 

T¼KTvirt: (7) 

The aim is to calculate Tvirt based on the measured temperature field 
T. This is a severely ill-posed inverse problem. To incorporate additional 
information the inverse problem must be reformulated. Therefore, we 
compute the circular projections of the virtual wave Tvirt with respect to 
Eq. (5) with the inverse Abel-trafo matrix A� 1 in the following manner 
[22]: 

Mvirt¼A� 1Tvirt: (8) 

Consequently, we can substitute Tvirt by AMvirt in Eq. (7). This yields 

the new inverse problem 

T ¼ KAMvirt ¼ KMvirt
with K ¼ KA: (9) 

Note, the discrete Abel-trafo matrix already respects the time de-
rivative ∂

∂t’ in Eq. (5). 

2.3. Solve the inverse problem 

Computing the circular projection Mvirt with positivity constraint 
based on the linear matrix equation Eq. (9) is a severely ill posed inverse 
problem. Therefore, we need some kind of regularization to get an 
appropriate solution for Mvirt. Basically, one can distinguish direct and 
iterative regularization methods. Here we use the alternating direction 
method of multipliers (ADMM) [29,30], that is an iterative regulariza-
tion scheme to incorporate the additional information sparsity. The 
intention of ADMM is to split the objective function and to introduce a 
constraint. The following objective function is minimized [21]. 

1
2

�
�
�
�

�
�
�
�KMvirt � T

�
�
�
�

�
�
�
�

2

2
þ λ
�
�
�
�

�
�
�
�Mvirt

�
�
�
�

�
�
�
�
1

subject  to Mvirt � z ¼ 0

(10) 

In Eq. (10) the 2-norm represents the residual norm and the 1-norm 
represents the solution norm. The 1-norm incorporates sparsity, so we 
assume that the solution matrix is sparse. λ is a regularization parameter, 
that can be determined e.g. by the L-curve-method [31]. To get an iter-
ative procedure we form the Lagrangian using the objective function and 
the constraint. The optimization of the dependent variables yields the 
subsequent iteration steps [21]: 

Mkþ1
virt :¼ ðK⊺Kþ ρIÞ� 1�K⊺Tþ ρ

�
zk � uk��

zkþ1 :¼ Sλ=ρ
�
Mkþ1

virt þ uk�

ukþ1 :¼ uk þMkþ1
virt � zkþ1:

(11) 

In Eq. (11) ρ is a penalty parameter, that makes the algorithm faster 
and more robust. Sλ=ρ is a soft-threshold operator. The thresholding is 
applied only onto positive entries. Negative entries are set to zero, hence 
positivity is enforced. The u vector contains the Lagrangian multipliers. 

2.4. Image reconstruction 

The use of image reconstruction techniques is intended to simplify 
the interpretation of the measurement result and to increase the signal- 
to-noise (SNR) ratio. This makes inner structures visible, which cannot 
be found in the classic B-scan image. To improve the sensitivity and 
resolution of the virtual wave field, we use the synthetic aperture 
focusing technique (SAFT) [32,33]. The principle of time domain 
(T)-SAFT is depicted in Fig. 2. 

Thermography allows the simultaneous acquisition of a large num-
ber of signals (up to 106) over the surface of a test specimen, which is 
equivalent to a large aperture. In the case of optically excited pulsed 
thermography the generation and detection of the virtual waves are 
focused on the same location on the surface (z ¼ 0). The virtual wave 
field originates from every point of the surface simultaneously as a plane 
wave. A diffraction source, e.g. the tip of a defect, is located at a position 
r’ inside the specimen (Fig. 2). This disturbance re-radiates the virtual 
wave field originating from the specimen surface with a time delay. The 
theoretical scattering hyperbola can be calculated for each voxel with 
the coordinates ðx’; y’; z’Þ if the speed of sound c is known. Along this 
curve, an integration of the scalar measurement data Tvirt is then carried 
out: 
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T0ðx’; y’; z’Þ ¼
ZZ

SM

Tvirtðx; y; 0; t’Þdx dy

with t’ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x’Þ2 þ ðy � y’Þ2 þ ðz � z’Þ2
q

c
:

(12) 

In principle T-SAFT is a trial and error method [34]. The assumption 
is that any defect consists of a number of independent (discrete) point 
diffraction sources. So, in the first step, the reconstruction space (sample 
volume) is discretized with Δy ¼ Δz. We prescribe any discrete point r’. 
If this point is equal to r, the integral of Eq. (12), or in discrete cases, the 
sum yields a high value. Otherwise the value is low. Performing this 
operation for each point r’ gives the final reconstruction image. In this 
work we apply frequency domain (F)-SAFT. Here, the virtual wave field 
is transferred into Fourier domain for time and space. The F-SAFT pro-
cedure gives the same results as T-SAFT [34], but the F-SAFT method is 
much faster than T-SAFT [35]. 

3. Numerical simulation 

To test the virtual wave concept with noisy temperature data by 
respecting prior information, numerical simulation with the FEM are 
carried out. To do this we consider the 2D model, depicted in Fig. 4 a). 
The specimen has a length of 100 mm and a height of 10 mm. All 
boundaries have adiabatic conditions. The slots of the investigated 
specimen have a width of 3 mm and a height of 0.5 mm with a horizontal 
distance of Δy ¼ 10 mm. The vertical distances with respect to the 
inspected surface ðz¼ 0Þ are zi ¼ ð1:75þiÞ mm ði ¼ 0; 1; …; 6Þ. The 
corresponding defect width-to-depth ratios are sketched in Fig. 4 a). The 
objective of the FEM simulations is the solution of the direct problem to 

determine the transient temperature field Tðy; z; tÞ in the region of the 
slots. The initial temperature Tðy; z; t¼ 0Þ is zero. The plane z ¼ 0 is 
heated with an instantaneous and locally uniform pulse. An appropriate 
simulation time was estimated by tend ¼ L2=α. The physical parameters 
are listed in Table 1. Since the virtual speed of sound c can be chosen 
arbitrarily, we prescribed the dimensionless virtual speed of sound with 
~c ¼ 1. 

The time resolution Δt was 2e-3 s. The temperature data T that is 
depicted in 4 a), was evaluated at z ¼ 0 with an equidistant grid and 
Ny ¼ 564 data points. Additionally, the surface temperature was su-
perposed by white Gaussian noise with a standard deviation of σ0 ¼

0:0097 K in order to achieve the same signal to noise ratio SNR ¼
maxðTÞ=σ0 as for the experimental temperature field. Referring to Fig. 1, 
the K-matrix is set up using the physical parameters listed in Table 1 and 
the corresponding spatial and temporal resolution. This matrix has to be 
multiplied by the Abel trafo matrix A in order to incorporate the addi-
tional information positivity. Next, the regularization parameter λ has to 
be estimated based on the observed temperature data. Therefore, the L- 
curve method, Fig. 3, is applied. For the preparation of the L-curve the 
toolbox of [36] was used. For the regularization process applying 
ADMM, we prescribe the penalty term ρ with 0.0039. Subsequently, the 
linear severely ill posed problem, namely the calculation of the virtual 
wave field based on temporal surface temperature data, is solved. 

The solution of the inverse problem yields the circular projection 
Mvirt of the 2D virtual wave field Tvirt. Due to this, Mvirt is multiplied by 
the Abel-trafo matrix A to obtain the physically correct 2D virtual wave. 
The resulting virtual wave field is illustrated in Fig. 4 b). The illustration 
can be interpreted as superposition of point scatterers. A point scatterer 
yields a characteristic hyperbola (see Fig. 2), that is rudimentary visible 
for the first three slots with the highest width-to-depth ratios. In Fig. 5 A- 
Scans, where virtual waves for different slot positions are represented as 
a function of depth z ¼ c⋅t’, are shown. The graphs exhibit a good 
approximation of the typical 2D wave form. 

Referring to Eq. (12), Tvirt is the input for the image reconstruction 
tool F-SAFT. Since the heat was introduced at z ¼ 0, the heat or virtual 
wave travels to the defect were it is reflected to the surface. Hence, to 
obtain the correct position of the defect we have to halve the distance or 
the dimensionless speed of sound ~c ¼ 0:5 for F-SAFT. Fig. 4 d) shows the 
final image. Let us compare the processed images using the virtual wave 
concept Fig. 4 c) and the image reconstruction Fig. 4 d). It is visible that 
F-SAFT improves both sensitivity and the lateral resolution and slots 
with a defect width-to-depth ratio of 0.52 are detectable. The defect 

Fig. 2. Principle of T-SAFT.  

Fig. 3. The regularization parameter λ is found at the edge of the L-Curve. At 
the edge the best trade off between solution norm and residual norm is located 
[37]. For the preparation of the L-curve, the Toolbox of [36] was used. 
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depths were estimated using an A-Scan based on circular projection 
Fig. 5 a). For the estimation of the defect depths the local maxima after 
the front-wall echo was evaluated, because these maxima correspond to 
the reflection at the slot boundaries. The corresponding virtual wave 
field is shown in Fig. 5 b). 

Fig. 4. a) Image reconstruction based on simulated 
data. Model of the examined specimen with the cor-
responding boundary conditions. b) Running temper-
ature contrast [1] based on simulated temperature 
data that is superposed with white Gaussian noise 
(standard deviation σ ¼ 0:0097). c) Dimensionless 
virtual wave field (B-Scan) computed using ADMM 
and the Abel transformation related to the maximal 
data point as function of spatial coordinates y; z. d) 
Reconstructed field computed applying F-SAFT as 
function of spatial coordinates y;z. The colorbars have 
the unit Kelvin.   

Table 1 
Physical parameters for FEM simulation.  

Parameter Value Unit 

thermal conductivity k 15 W m� 1 K� 1 

density ρM  7800 kg m� 3 

specific heat capacity cp  500 J kg� 1 K� 1 

thermal diffusivity α 3.85e-06 m2 s� 1  

Fig. 5. a) Waterfall plot of the circular projections based on simulated temperature data for different slot positions according to the white dashed line in Fig. 7 b). The 
numerical markers show the estimated position of the slots. b) Waterfall plot of the Abel transformed circular means or virtual wave field. At z ¼ 0 the initial pulse 
and at z ¼ L the back-wall echo occurs that is denoted by a raise of amplitude. For a defect (slot) an additional virtual wave amplitude occurs at different depths z ¼
c⋅t’. 
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4. Experimental results 

4.1. Experimental setup 

In order to test the virtual wave concept for pulsed thermography 
data, we have prepared a metallic specimen with slots representing 
defects (Fig. 6). The [100 mm � 30 mm x 10 mm] specimen was pro-
duced using a cobalt-chromium alloy powder for metal additive 
manufacturing, also known as metal 3D printing. Additionally, the 
specimen was coated by diamond-like carbon (DLC). Due to this, the 
absorption of the flash light radiation and the emissivity is increased. 
The coating thickness is approximately 7 μm. Therefore, we can assume 
that the optical material properties of the specimen are homogeneous 
and isotropic. 

In addition to the sample, the experimental setup (see Fig. 6) 
essentially consists of a laser array for heating and an infrared ther-
mography camera for surface temperature measurement. The laser array 
is a VCSEL (Vertical-Cavity Surface-Emitting Laser) array with a nomi-
nal output power of 2.4 kW [38]. The emitting aperture was imaged 
onto the sample (x � y plane @ z ¼ 0) using a pair of lenses (distance 

laser lens approx. 155 mm, distance lens sample approx. 398 mm). The 
image was slightly defocused to achieve a homogeneous irradiance of 14 
� 1 W/cm2 of the entire sample surface, the magnification corresponds 
to approximately 2.3. The laser was controlled by Labview with pulse 
lengths of 50 ms. The actual pulse shape was measured using a photo-
diode and was 50 ms. It was stored frame synchronously in the addi-
tional A/D channels of the camera. The temperature-calibrated infrared 
thermography camera used (InSb-based, 2.5–5.5 μm spectral sensitivity, 
100 mm lens, 200 μs integration time) was triggered by the laser pulse 
with a pretrigger of 1000 frames via the photodiode. In each measure-
ment, 21000 frames were recorded at a frame rate of 1000 Hz, i.e. 1 s 
before the laser pulse and 20 s after it. The image was taken in full frame 
mode of 640 � 512 pixels with a spatial resolution of approx. 177 μm per 
pixel. 

4.2. Experimental results 

In Fig. 7 a) the measured transient surface temperature is depicted. 
For the image reconstruction, the mean of 100 surface temperature sli-
ces between the pixels 46:145 in x-direction (see Fig. 6) was calculated 
in order to improve the signal-to-noise ratio. The data set was then 
temporally downsampled, yielding an evaluation frequency of 500 Hz. 
The spatial resolution, the physical parameters and the signal to noise 
ratio SNR ¼ maxðTÞ=σM, where σM is the standard deviation of the 
measurement data, are equal to the simulated data set (Table 1). The 
process steps listed in Fig. 1 were then applied again. The corresponding 
virtual wave field Tvirt is illustrated in Fig. 7 b). Fig. 8 a) illustrates the 
circular means of the virtual waves for the different slot positions, 
indicated in Fig. 7 b) by white dashed lines. Fig. 8 b) shows the corre-
sponding virtual waves. At z ¼ c⋅t’ ¼ 0 the characteristic initial pulse 
and at z ¼ L the back-wall echo occur. In the center position of the slots 
y ¼ f20;30; 40;50;60g mm an additional peak occurs in the A-Scan. 
This is because the virtual wave is diffracted at the slot boundaries. The 
nominal and estimated slot depths using VWC, based on simulated and 
measurement data, are visible in Fig. 9. The black-dashed line shows the 
nominal values and is a guide for the eyes. This representation shows, 
that the slot positions can be detected well, for both simulated and 
measurement data. For the slot reconstruction based on simulated data, 

Fig. 6. Metallic specimen (100 mm � 30 mm x 10 mm) with rectangular slots 
representing defects. 

Fig. 7. Image reconstruction based on experimental data. Running temperature contrast based on measured temperature data a), calculated virtual wave field b) 
using ADMM and reconstructed field applying F-SAFT c). The colorbars have the unit Kelvin. 
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we can see a lower intensity of the secondary heat sources for deeper 
lying defects. The reason for this might result from the growing influ-
ence of the back-wall, more precisely from the corresponding boundary. 
Considering, the simulated data we have adiabatic boundaries, which 
cause a stronger reflection at the back-wall than for measurement data 
were the boundaries slightly differ from adiabatic boundaries because of 
heat convection. Consequently, in contrast to the measurement data, the 
heat flow in the domain of the deeper lying slots of the simulated data is 
more affected by the back-wall reflection. We can detect the slots (de-
fects) with a defect width-to-depth ratio of 0.52. Fig. 7 c) depicts the 
final reconstruction applying F-SAFT to the virtual wave field 7 b). In 
contrast to the transient virtual wave field the final reconstruction ex-
hibits a much better localization of the slots (defects). 

5. Conclusion 

In this paper, we have shown an application of the virtual wave 
concept for 2D pulsed thermography data in reflection mode. Heat 
diffusion causes entropy production and hence information loss. To 
compensate the information loss partly, we have incorporated addi-
tional information for the regularization process. For the incorporation 
of positivity as additional information, we have applied the Abel 
transformation. Here the 2D virtual wave is projected onto a positive 
data set. Due to this, the inverse problem was reformulated, which yields 
a new ill-posed inverse problem. 

The thermal waves were locally transformed into virtual waves 
which obey the photoacoustic wave equation. Based on this so called 
virtual waves, the depth of the slots are detectable by the application of 
the time of flight method (TOF). Further, we can apply image recon-
struction methods from ultrasonic testing. Especially, the F-SAFT algo-
rithm was used for defect reconstruction. The 2D heat diffusion in the 
region of the slot is respected by the integration along the scattering 
hyperbolas of the superposed point scatterers. The modified VWC 
reconstruction based on simulated data was validated with a recon-
struction based on experimental data. 
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Appendix. 1. Forward problem 

The aim of the subsequent steps is to solve the forward problem in two dimensions and free space (without boundaries), based on the 3D virtual 
Greens function G3D

virtðr;tÞ, in order to get a deeper insight how the virtual wave concept works. Therefore, we use the Greens function solution equation 
(GFSE) for both, diffusion and wave equation [39]. Inserting the respective GFSEs into Eq. (1), yields for the same position vector r in 3D 

G3Dðr; tÞ ¼
Z ∞

� ∞
Kðt; t’ÞG3D

virtðr; t’Þ dt’ (1)  

and 

G2Dðρ; tÞ ¼
Z ∞

� ∞
Kðt; t’ÞG2D

virtðρ; t’Þ dt’ (2)  

in 2D with position vector ρ. To calculate G2Dðρ; tÞ we need the 2D virtual Greens function G2D
virtðρ; t’Þ. Hence, we start from the 3D virtual Greens 

function 

G3D
virtðr; t’jr’; τ’Þ¼

1
4cπ

∂
∂t’

δ½cðt’ � τ’Þ � jr � r’jÞ
jr � r’j

: (3) 

To get the 2D Greens function we carry out the integration with respect to z’: 

G2D
virt

�

ρ; t’jρ’; τ’Þ ¼
Z ∞

� ∞
G3D

virtðr; t’jr’; τ’
�

dz’

¼
1

4cπ
∂

∂t’

Z ∞

� ∞

δ
�

cðt’ � τ’Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jρ � ρ’j2 þ z’2
q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jρ � ρ’j2 þ z’2
q dz’

with jρ � ρ’j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x’Þ2 þ ðy � y’Þ2
q

(4) 

Now substitute μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�ρ � ρ’j2 þ z’2

q

and use symmetry with respect to the z’ axes yields: 

G2D
virtðρ; t’jρ’; τ’Þ ¼

1
2cπ

∂
∂t’

Z ∞

jρ� ρ’j

δ½cðt’ � τ’Þ � μ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � jρ � ρ’j2
q dμ ¼ 1

2cπ
∂

∂t’
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2ðt’ � τ’Þ2 � jρ � ρ’j2
q ¼

� c2ðt’ � τ’Þ

2cπ
h
c2ðt’ � τ’Þ2 �

�
�ρ � ρ’j2

i3=2for t’ > τ’ �
1
c
jρ � ρ’j ¼ γ: (5) 

Inserting Eq. (5) into Eq. (2) gives: 

G2Dðρ; tjρ’; τ’Þ ¼ �
π� 3=2

2
ffiffiffiffiffi
αt
p

Z ∞

γ

exp

 

�
c2ðt’ � τ’Þ2

4αt

!

c2ðτ’ � t’Þ dt’

h
c2ðt’ � τ’Þ2 �

�
�ρ � ρ’j2

i3=2
¼ �

exp

 
�
�
�ρ � ρ’j2

4αt

!

2π3=2 ffiffiffiffiffi
αt
p

Z ∞

γ

exp

 
� c2ðt’ � τ’Þ2 þ

�
�ρ � ρ’j2

4αt

!

c2ðτ’ � t’Þ dt’

h
c2ðt’ � τ’Þ2 �

�
�ρ � ρ’j2

i3=2 : (6) 

Now we substitute ξ2 ¼ c2ðt’ � τ’Þ2 �
�
�
�ρ � ρ’j2: 

G2Dðρ; tjρ’; τ’Þ ¼ �
exp

 
�
�
�ρ � ρ’j2

4αt

!

2π3=2 ffiffiffiffiffi
αt
p

Z ∞

0

exp
�
� ξ2

4αt

�

dξ

ξ2

¼ � A
Z∞

0

exp
�
� ξ2

4αt

�

dξ

ξ2 : (7) 

Integration by parts yields: 

G2Dðρ; tjρ’; τ’Þ
A

¼ 2
Z ∞

0

exp
�
� ξ2

4αt

�

4αt
dξ
¼

ffiffiffiffiffiffiffiffiffiffi
4παt
p

erf
�

ξ2

ffiffiffiffiffiffiffi
4αt
p

�

j
∞
0 ¼

ffiffiffi
π
p

ffiffiffiffiffiffiffi
4αt
p (8) 

Replacing A in Eq. (8) gives: 

G2Dðρ; tjρ’; τ’Þ ¼ A
ffiffiffi
π
p

ffiffiffiffiffiffiffi
4αt
p ¼

exp

 
�
�
�ρ � ρ’j2

4αt

!

2π3=2 ffiffiffiffiffi
αt
p

ffiffiffi
π
p

ffiffiffiffiffiffiffi
4αt
p

¼
1

4παt
exp

 
�
�
�ρ � ρ’j2

4αt

!

(9) 

This is exactly the Greens function for a 2D body with infinite extension [40]. We note, that the Greens function for heat conduction in 2D and free 
space is deductible by VWC. Applying the method of images, Eq. (9) is readily extended for Dirichlet and Neumann boundaries or a mix of them [41]. 
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