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Summary
In this paper, the impact problem and the subsequent wave propagation are
considered. For the contact discretization an intermediate non-uniform rational
B-spline (NURBS) layer is added between the contacting finite element bodies,
which allows a smooth contact formulation and efficient element-based inte-
gration. The impact event is ill-posed and requires a regularization to avoid
propagating stress oscillations. A nonlinear mesh-dependent penalty regular-
ization is used, where the stiffness of the penalty regularization increases upon
mesh refinement. Explicit time integration methods are well suited for wave
propagation problems, but are efficient only for diagonal mass matrices. Using a
spectral element discretization in combination with a NURBS contact layer the
bulk part of the mass matrix is diagonal.
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1 INTRODUCTION

The simulation of the structural response for impact scenarios strongly requires an accurate simulation of both the impact
event as well as the subsequent wave propagation.

The numerical modeling of the impact event is intrinsically ill-posed due to the instantaneous changes of velocities
in the contact area, leading to unbounded accelerations for decreasing time steps which causes oscillations in the con-
tact stresses. These oscillations then propagate into the bulk material. Using a rate-dependent material model, they might
lead to significant errors and a wrong prediction of the structural response. A regularization is thus required to avoid
oscillations in the contact stresses. Several approaches were proposed for this purpose. One technique is based on a redis-
tribution of the mass at the interface, where due to the lack of inertia in the contact area the oscillations are reduced.1,2

Another possibility is to replace the exact contact condition by a penalty formulation to allow a smooth contact stress dis-
tribution during the transition from the no-contact to the contact state, Otto et al.3 Alternatively, artificial damping may
be used to reduce the contact stress oscillations, Idesman et al.4

Another issue is related to the numerical computation of the contact conditions. In impact simulations, the nonlin-
ear contact computation needs to be evaluated in every time step. A segmentation technique of the contact area as, for
example, used in References 5-7 is accurate but time consuming and may result in a bottleneck for the simulation and
implementation, especially for three-dimesnisonal (3D) problems. Alternatively, an isogeometric discretization can be
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used, where the geometry and its discretization coincide and the higher continuity delivers advantages for the enforce-
ment of the contact constraints, see De Lorenzis et al.8,9 However, the generation of an isogeometric discretization for
complex 3D problems still has not reached the same level of automation as in the standard finite element (FE) analysis.
Promising approaches are given in References 10,11 using triangular isogeometric discretizations.

According to Belytschko et al,12 a hyperbolic system of partial differetial equations (PDEs) can be classified as a struc-
tural dynamics problem or a wave propagation problem. A structural dynamics problem is characterized by a frequency
spectrum of the input, which is below the resolution limits of the mesh. Classical examples of a structural dynamics
problem are seismic response or vibration problems. In a wave propagation problem, high frequency waves are part of
the spectrum. The impact event is a classical example, where the sudden collision leads to high frequency waves in the
material. While implicit methods are preferred for structural dynamics problems benefiting from a time step that is sig-
nificantly larger than the critical time step, explicit methods are preferred for wave propagation problems due to the
small time step, which is required to accurately track the high frequency waves in the body. Using explicit time integra-
tion for systems of ordinary differential equations (ODEs) with a diagonal mass matrix, no solution of a linear system is
required and the explicit time integration becomes more efficient for wave propagation problems. Using a standard FE
discretization, a lumping technique like the Hinton-Rock-Zienkiewicz13 mass lumping is used to obtain a diagonal mass
matrix. Alternatively, the spectral element discretization can be used, where the Lobatto integration points and FE nodes
coincide.14-16 This naturally provides a diagonal mass matrix. Using an isogeometric discretization along with explicit
time integration, several techniques have been proposed like collocation Auricchio et al17 or lumping procedures.18-20

However, using higher-order isogeometric spatial discretizations a lumping procedure for the mass matrix gives only a
limited accuracy, thus a modification of both the stiffness and mass matrices is required. Finally, for the wave propagation
problem, the interaction between the spatial and time discretizations needs to be considered. Using the popular central
difference method (CDM) with linear FEs for impact simulation results in apparently accurate results due to the com-
pensation of spatial and time discretization errors, as shown in Otto et al.3 Higher frequencies are only captured using
smaller time steps, which leads to oscillations and increased numerical error.

The aim of this paper is to combine several methodologies to accurately simulate 2D/3D impact problems. The
nonlinear and mesh-dependent penalty regularization for 1D impact problems, see Otto et al,3 is extended to 2D and
3D impact problems. The coupled FE-NURBS approach, see Otto et al,21 is extended to dynamic contact with a zero
mass interface layer. The global system matrices, in particular the mass matrix is derived for this approach. The coupled
approach uses an intermediate NURBS layer to compute the contact forces between the contacting bodies discretized
by FEs (Figure 1). The bulk part is discretized by spectral elements, as a consequence, the advantages of a smooth iso-
geometric contact formulation are combined with efficient spectral element formulations that are simple to generate as
well as very efficient for wave propagation problems. Mesh tying conditions are used to tie the NURBS layer to one of the
bodies. The contact conditions are then enforced between the NURBS layer and the other body. Thus, the NURBS layer
is the master side for both the mesh tying and the contact formulation. Smooth interelement boundaries and a smooth
normal field can be provided. A complex 3D NURBS geometry is not needed and the tying conditions are computed
only once and remain constant throughout the simulation. Using a well-established spectral element discretization, a

F I G U R E 1 Coupled FE-NURBS approach for contact problems
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diagonal mass matrix is obtained for the bulk part of the discretization. The interpolation order of the spatial
discretization can be easily increased and a higher order explicit time integration scheme, the classical Runge-Kutta (RK)
method, is used.

This paper is organized as follows: In Section 2, the contact conditions for frictionless contact and its variational
formulation are summarized. Afterwards, the spatial FE and NURBS discretizations are discussed in Section 3. The
contact discretization is described in Section 4 followed by the coupled FE-NURBS approach for impact simulation in
Section 5. The explicit RK time integration for the simulation of wave propagation problems is given in Section 6 and the
mesh-dependent penalty regularization in Section 7. Finally, the performance of the method is discussed for selected 2D
and 3D examples in Section 8.

2 FRICTIONLESS CONTACT FORMULATION

A linear elastic material with Young's modulus E and Poisson's ratio 𝜈 is used. The contact problem is defined between
a slave body and a master body for contact, Ωi with i = {s,m}. The deformation field of the slave and master bodies is
described by

𝝓i(X i) = X i + ui(X i) = xi(X i), (1)

where 𝝓i is the mapping from the initial configuration X i to the current configuration xi with the displacements ui. Since
small deformations are assumed, the strain 𝜺 is defined by

𝜺i = 1
2

(
∇ui +

(
∇ui)T

)
. (2)

The normal gap is given by

gN = (xs − xm) ⋅ nm
, (3)

where xs is a position on the slave contact zone and xm denotes the closest point to xs on the master side. The normal
at xm is denoted by nm. For an elastic material, the frictionless contact problem can be written as a constrained energy
minimization problem

Π(us,um) → MIN subject to gN ≥ 0. (4)

A sufficient condition for the equilibrium is given by the following equations

𝛿Π = 𝛿Wkin − 𝛿Wint − 𝛿Wext − 𝛿Wc = 0 ∀𝛿ui (5a)

gN ≥ 0 pN ≤ 0 gNpN = 0 ∀X s ∈ Γc, (5b)

where 𝛿Wkin and 𝛿Wint denote the kinetic and internal virtual work, respectively, 𝛿Wext the external virtual work, 𝛿Wc the
contact contribution to the overall virtual work, and 𝛿ui the kinematically admissible variation of the displacement fields.
The conditions in Equation ( 5b) are called the Karush-Kuhn-Tucker conditions, where the normal contact traction pN is
an additional unknown in the system and is interpreted as a Lagrange multiplier. The virtual work of the normal contact
traction is given by

𝛿Wc = ∫Γc

pN𝛿gN dΓ, (6)

where Γc denotes the potential contact surface on the slave body in the reference configuration. For detailed treatment,
we refer to the monographs.22,23

In this paper, the penalty method is used to regularize the contact conditions (5b). The normal contact traction pN is
computed by

pN(gN) =

{
a ⋅ gq

N, gN ≤ 0
0, gN > 0

. (7)
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The normal contact traction pN is a power function of the normal gap gN with degree q and factor a. The impenetrability
condition gN ≥ 0 is enforced only approximately, since the contact traction increases with the penetration. The stiffer the
function pN(gN) is, the smaller is the penetration.

3 SPATIAL DISCRETIZATION

In the proposed spatially discretized model, a coupled FE-NURBS approach is used.21 The NURBS layer is coupled to the
FE mesh by mesh-tying conditions. The NURBS layer is the master side for mesh tying and contact conditions. The bulk
part of the geometry is discretized by spectral FEs. In this section, first the FE discretization is discussed, followed by the
description of the NURBS layer.

3.1 FE discretization

The spectral FE method was originally proposed by Patera14 for fluid dynamic problems. As for the standard FE dis-
cretization, the domain is discretized by nonoverlapping elements. The shape functions of the spectral elements are
computed by Lagrange interpolation at the nodes that coincide with the integration points of a Gauss-Lobatto quadrature
scheme. Due to the identical positions of FE nodes and quadrature points an orthogonal relation for the shape functions is
achieved:

𝜙i(𝜉p)𝜙j(𝜉p) = 𝛿ij, i, j = 1,… ,n, (8)

where 𝜙k(𝝃p), k = 1,…,n are the shape functions of the spectral FE with n nodes and 𝜉p denotes the integration point
coordinates on the reference bi-unit domain. This orthogonality of the shape functions at the quadrature points results
in a diagonal element mass matrix Me:

Me =
n∑

i,j=1
∫Ωe

𝜌𝜙i(𝜉)𝜙j(𝜉) det J(𝜉) dΩ ≈
n∑

i,j=1

n∑
p=1

𝜌𝜙i(𝜉p)𝜙j(𝜉p) det J(𝜉p)𝜔p =
n∑

i,j=1

n∑
p=1

𝜌𝛿ij det 𝐽 (𝜉p)𝜔p. (9)

The diagonal element mass matrices Me are assembled to a diagonal global mass matrix M. A Gauss-Lobatto quadra-
ture with n integration points is accurate for polynomials up to degree 2n − 3, thus the diagonal mass matrix is the result
of underintegration. Nevertheless, the total mass is conserved and the spectral convergence of the method is still ensured,
see Maday et al.24 Using an explicit time integration, a diagonal mass matrix M is advantageous in terms of computational
efficiency.

3.2 Discretization with NURBS

The NURBS contact layer is represented by a curve for 2D problems or by a surface for 3D problems. In this section, the
main terminology and notations are introduced. A more detailed description of NURBS can be found, for example, in
Piegl and Tiller.25 For mechanical problems, the first spatial discretization with NURBS was introduced by Hughes et al.26

The integration of IGA in existing FE codes is described in Cottrell et al27 and Borden et al.28

3.2.1 NURBS basis functions

The NURBS basis functions are determined by the weights wj, j = 1,…,n, the degree p and the knot vector 𝚵, with

𝜩 = {𝜉1 = ⋅ ⋅ ⋅ = 𝜉p+1, 𝜉p+2,… , 𝜉n, 𝜉n+1 = ⋅ ⋅ ⋅ = 𝜉n+p+1}, (10)

where the first knot is assumed to be 𝜉1 = 0 and the last knot to be 𝜉n+p+1 = 1. The first and last p + 1 knots in 𝚵 are
equal. The nonvanishing spans in the interior knot vector {𝜉p+1,…, 𝜉n+1} can be interpreted as elements. In the case
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𝜉p+1 < 𝜉p+2 < … < 𝜉n < 𝜉n+1, the number of elements is n − p. One repeated interior knot reduces the number of elements
by one. The NURBS basis functions are given by

Ri(𝜉) ∶=
Ni(𝜉)wi∑n
j=1 Nj(𝜉)wj

, (11)

where the B-Spline basis functions are denoted by Ni, i = 1,…,n. Efficient evaluation methods of Ni are presented in Piegl
and Tiller.25

The local support of the NURBS shape functions include p + 1 elements or knot spans. This increases the bandwidth
of the stiffness matrix if p > 1, but results in a p−1 continuity of the basis functions.

3.2.2 NURBS curves and surfaces

A NURBS curve is given by

C(𝜉) =
n∑

i=1
Ri(𝜉)xi, (12)

where xi, i = 1,…,n are the control points. Since the first and last p + 1 knots in 𝜩 are assumed to be equal, the first and
last control points are interpolated.

The parametric coordinates of a NURBS surface are condensed in the vector

𝝃 =
(
𝜉1 𝜉2)T

. (13)

A NURBS surface has a knot vector in each parametric direction d = 1, 2:

𝜩d =
{
𝜉d

1 = ⋅ ⋅ ⋅ = 𝜉d
pd+1, 𝜉

d
pd+2,… , 𝜉d

nd , 𝜉
d
nd+1 = · · · = 𝜉d

nd+pd+1

}
, d = 1, 2, (14)

where pd denotes the corresponding degree and nd the number of control points. The control points and weights are
denoted by xkl and wkl, where k = 1,…,n1 and l = 1,…,n2. Bivariate NURBS basis functions Rkl are defined by a tensor
product of the univariate basis functions in Equation (11):

Rkl(𝝃) ∶=
Nk(𝜉1)Nl(𝜉2)wkl∑n1

r=1
∑n2

t=1 wrtNr(𝜉1)Nt(𝜉2)
. (15)

Finally, a NURBS surface is given by

S(𝝃) =
n1∑

k=1

n2∑
l=1

Rkl(𝝃)xkl. (16)

3.2.3 Generation of the NURBS layer and the normal projection

In this work, an auxiliary NURBS layer is added to the contact problem of two FE bodies. Mesh-tying conditions are
used to couple the NURBS layer with one of the FE bodies and contact conditions are applied between the NURBS layer
and the second FE body. As presented in Otto et al,21 the NURBS layer can be constructed in several ways. For simple
geometries of the FE tying interface, as, for example, circles, arcs, lines, a NURBS representation can be found with a
small number of elements. This NURBS representation is adapted to the FE mesh using the knot insertion technique.
A matching parametrization of the NURBS is achieved, where each FE boundary in the tying zone is projected on exactly
one NURBS element. Another possibility is generating the NURBS layer by interpolation of the FE nodes in the tying
zone. The algorithm for NURBS interpolation is described in Piegl and Tiller.25 First, the parameters 𝝃i, i = 1,…,nti are
defined for which the NURBS S takes the values of the FE nodes xti

i . In this work, the chord length method is used to
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compute 𝝃i and the knot vector is determined by averaging of 𝝃i. 25 The control points are determined by solving a linear
system of equations

S(𝝃i) = xti
i , i = 1,… ,nti. (17)

The interpolation is required in each parameter direction and is applicable to a wide range of geometries. It can be
used in the manner of a black-box, but the number of elements in the NURBS layer is in general higher then using the
knot insertion approach.

For the calculation of the normal gap between the FE mesh and the NURBS layer a normal projection is required.
Newton's method is applied to determine the parameter of the projected point on the NURBS layer. Only for linear inter-
polations an analytical solution is feasible. A given point xs is projected onto the NURBS surface S(𝝃) by minimizing the
distance

d(𝝃) = ||xs − S(𝝃)||2 = ||r(𝝃)||2. (18)

A sufficient condition for a minimum is d′(𝝃) = 0. This is equivalent to

fd(𝝃) = S𝜉d ⋅ r(𝝃) = 0 for d = 1, 2. (19)

Here, S𝜉d denotes the derivative of S with respect to the coordinate 𝝃d and Newton's method is applied to find the
parameter vector 𝝃. For a detailed description see the study of Piegl and Tiller.25

4 CONTACT DISCRETIZATION

The normal gap between the slave FE domain and the NURBS layer is given by

gN,h(𝝃s) =
⎛⎜⎜⎝

ns∑
i=1

Rs
i (𝝃

s)xs
i −

niga∑
j=1

Riga
j (𝝃)xiga

j

⎞⎟⎟⎠ ⋅ niga(𝝃). (20)

Here, xs
i and Rs

i denote the FE nodal positions and the appropriate shape functions on the slave side. The control point
positions and shape functions of the NURBS layer are xiga

j and Riga
j . The integration point 𝝃s on the slave side is projected

onto a point on the NURBS layer with the parameter 𝝃 and the normal vector niga(𝝃). The variation of the normal gap
gN,h(𝝃

s) is

𝛿gN,h(𝝃s) =
⎛⎜⎜⎝

ns∑
i=1

Rs
i (𝝃

s)𝛿xs
i −

niga∑
j=1

Riga
j (𝝃)𝛿xiga

j

⎞⎟⎟⎠ ⋅ niga(𝝃). (21)

Using the vector

N =
(

Ns

−N iga

)
, (22)

with the components

Ns
i = Rs

i (𝝃
s)niga(𝝃), i = 1,… ,ns (23a)

N iga
j = Riga

j (𝝃)niga(𝝃), j = 1,… ,niga, (23b)

the normal gap and its variation can be written in matrix form

gN,h(𝝃s) = NTxc 𝛿gN,h(𝝃s) = 𝛿xT
c N. (24)
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The vector
xc =

(
xs

xiga

)
, (25)

contains the positions of the slave nodes and the master control points, its variation is denoted by 𝛿xc. Only a limited
number of FE and NURBS basis functions is not vanishing for specific parameters 𝝃s and 𝝃, which results in a sparse
vector N.

The discretization of the virtual work of the normal contact traction Equation (6) is given by

𝛿Wc,h =
ns∑

i=1
pNi𝛿gNiAi, (26)

where the nodal normal gap gNi and its variation are

gNi =
∫Γc

Rs
i (𝝃

s)gN,h dΓ

Ai
(27a)

𝛿gNi =
∫Γc

Rs
i (𝝃

s)𝛿gN,h dΓ

Ai
. (27b)

The tributary area Ai of a node i is given by

Ai = ∫Γc

Rs
i (𝝃

s) dΓ. (28)

In this paper, the contact integrals are evaluated on Γc (Equation (6)). The same notation is used for the discretized
slave contact boundary in the reference configuration. The nodal contact pressure pNi is defined by one of the following
formulations:
Gauss-point-to-surface (GPTS) formulation: In the GPTS formulation, see Fischer et al,29,30 the contact is enforced at
each predefined Gauss integration point located on the slave side. Only Gauss points with a negative gap are contributing
to the contact force. The nodal contact pressure for the GPTS formulation is given by

pNi =
∫Γc

Rs
i (𝝃

s)pN(gN,h) dΓ

Ai
. (29)

Mortar formulation: Using the mortar formulation the contact constraints are projected to the control points.8,9 The
nodal contact pressure is given by

pNi = pN(gNi). (30)

In the mortar formulation, the contact conditions are enforced by penalizing the nodal gap gNi.
The discrete contact pressure ph is given by

ph =
ns∑

i=1
Rs

i (𝝃
s)pNi. (31)

In this paper, the contact constraints are enforced approximately by means of the penalty method. Using the mortar
formulation, the nodal gap gNi is penalized. In the GPTS formulation, contact constraints are enforced by the penalty
function at each integration point.

4.1 Matrix form

The discretized virtual work of the normal contact traction (Equation (26)) is expressed in matrix form as:21

𝛿Wc,h = 𝛿xT
c f c. (32)
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The contact force f c is the product of the gap matrix G and the vector of the nodal contact pressures pN:

f c = GTpN. (33)

The vector pN is assembled using the GPTS or the mortar formulations (Equations (29) or (30)). The gap matrix G is
given by

G = ∫Γc

RsNT dΓ, (34)

where

Rs
i = Rs

i (𝝃
s), i = 1,… ,ns. (35)

The gap matrix G is split into submatrices D and M with

G = (D − M) (36a)

D = ∫Γc

Rs(Ns)T dΓ (36b)

M = ∫Γc

Rs(N iga)T dΓ (36c)

5 COUPLED FE-NURBS APPROACH FOR IMPACT SIMULATION

In the coupled FE-NURBS approach,21 a NURBS layer is tied to one of the contacting bodies discretized by FEs. The
NURBS layer is the master side for the mesh tying and contact conditions. Due to the smooth normal field of the NURBS
layer, a robust and simple computation of the normal gap is ensured. Additionally, the NURBS layer provides smooth
shape functions at element intersections, which leads to an accurate element-based contact discretization.

5.1 Mesh tying of the NURBS layer

In Otto et al,21 two different methods are discussed for the tying of the NURBS layer: pointwise tying and mortar mesh
tying. It is shown that the mortar tying is a robust method, giving accurate results for different NURBS layer parametriza-
tions. The pointwise tying is computationally more efficient but only accurate for specific NURBS meshes with a matching
parametrization or in cases when a node to node tying is achieved. Due to its robustness and general applicability, the
mortar method is used for the tying of the NURBS layer to the FE mesh. The constraints resulting from the mortar mesh
tying are given by

Dmtdti = Mmtdiga
, (37)

where dti are the FE node displacements at the tying zone and diga are the NURBS control point displacements. The tying
matrices Dmt and Mmt are given by

Dmt = ∫Γmt

N ti(N ti)T dΓ (38a)

Mmt = ∫Γmt

N ti(N iga)T dΓ. (38b)

Here, the FE shape functions at an integration point 𝝃ti are condensed in the matrix N ti and the NURBS shape functions
at the projected integration point 𝝃 are condensed in the matrix N iga with

N ti
i
|||= Rti

i (𝝃
ti)Idim, i = 1,… ,nti (39a)
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N iga
j

|||= Riga
j (𝝃)Idim, j = 1,… ,niga. (39b)

The number of FE nodes in the tying zone is given by nti and the number of control points is given by niga. The dimension
dim quantifies whether it is a 2D or 3D problem. The Equation (37) may also be reformulated as

dti = D−1
mtMmtdiga ∶= Pdiga

. (40)

Thus, the FE displacements dti at the tying interface are calculated by means of the isogeometric displacements diga.
A time-consuming part of the calculation of P is the inversion of Dmt. Although the computation of P is performed only

once in the simulation, the inversion for large matrices Dmt is computationally not affordable and the storage due to the
dense structure might exceed the computational resources. An alternative proposed in Wohlmuth31 is to use bi-orthogonal
dual basis functions on the slave side, which then renders the matrix Dmt diagonal so that no inversion is needed to
compute the operator P. The bi-orthogonality condition is typically applied for each slave element. Consequently, the
computation of the whole bi-orthogonal basis becomes a problem with linear complexity. In this paper, the focus is placed
on impact problems with a relatively small ratio between contact surface nodes and the total number of nodes, which
allows to use standard FE shape functions. In this case, the matrix Dmt is relatively small and its inversion can be carried
out. In other situations, such as shell-like structures, where the modeling of the impacting wave is less relevant compared
to the structural dynamics response (with much lower frequencies), implicit schemes might be more beneficial.

5.2 Coupled FE-NURBS formulation

In this work, the coupled FE-NURBS discretization, as introduced in Reference 21 for static problems, is applied to
dynamic problems involving contact. Explicit time integration is used in this work. Thus, no solution of a system of
nonlinear equations and its linearization is required. In this section, the dynamic equilibrium equation involving con-
tact conditions and the mesh-tying constraints due to the NURBS layer are discussed. A linear elastic material model is
assumed. The variational form of the dynamic equilibrium is given by

𝛿Wkin,h + 𝛿Wint,h + 𝛿Wext,h + 𝛿Wc,h = 0. (41)

The discrete kinetic and internal energies are denoted by Wkin,h and Wint,h. The discrete external energy due to Neu-
mann boundary conditions or body forces is denoted by 𝛿Wext,h. The contribution of the normal contact to the virtual
work 𝛿Wc,h is given by Equation (26). The variation of the kinetic energy is expressed by

𝛿Wkin,h = 𝛿d ⋅ Md̈, (42)

where M is the mass matrix and d a block vector, containing the displacements of the NURBS layer diga, the FE tying
zone dti and the remaining FE nodes din:

d =
⎛⎜⎜⎝
diga

dti

din

⎞⎟⎟⎠ . (43)

The acceleration vector is denoted by d̈. The variation of the internal and external energies is given by

𝛿Wint,h = 𝛿d ⋅ f int,h (44a)

𝛿Wext,h = 𝛿d ⋅ f ext,h, (44b)

where f int,h and f ext,h are the internal and external force vectors. The contact contribution to the virtual work is given by
Equation (32). Reformulating the matrix G and the nodal contact pressures pN with respect to the vector d, which virtually
adds some zero entries and reorders the entries, results in the variational form of the dynamic equilibrium problem:

𝛿d ⋅ Md̈ + 𝛿d ⋅ f int,h + 𝛿d ⋅ f ext,h + 𝛿d ⋅ GTpN = 0 ∀𝛿d, (45)
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where 𝛿d is the kinematically admissible variation of the displacement vector d. According to Equation (40), the FE nodes
at the tying interface are calculated by means of the NURBS layer displacements. This is represented by the constraint
matrix C:

Cdind = d, (46)

where

C =

( I 0
P 0
0 I

)
and dind =

(
diga

din

)
. (47)

Applying Equation (46) to the variational form of the dynamic equilibrium Equation (45) results in

𝛿dind ⋅ CTMCd̈ind + 𝛿dind ⋅ CTf int,h + 𝛿dind ⋅ CTf ext,h + 𝛿dind ⋅ GTpN = 0 ∀𝛿dind, (48)

where 𝛿dind is the kinematically admissible variation of the independent displacements dind. The dynamic equilibrium
equation with contact and mesh tying conditions follows from Equation (48):

CTMCd̈ + CTf int,h + CTf ext,h + GTpN = 0, (49)

which is a second-order ODE. For the numerical solution the initial displacements and velocities are required as initial
conditions.

The mass matrix M is assembled according to the block structure of the displacement vector d in Equation (43).
Additionally, the off-diagonal block entries of M are zero due to the spatial discretization with spectral FEs (Section
3.1). The NURBS layer does not have any mass, which results in the block entry Miga,iga = 0. Thus, M has the following
structure:

M =
⎛⎜⎜⎝

0 0 0
0 Mti,ti 0
0 0 Min,in

⎞⎟⎟⎠ . (50)

The matrix CTMC is expressed as

CTMC =
(

PTMti,tiP 0
0 Min,in

)
. (51)

The projection matrix P (Equation (40)) is generally nondiagonal, which results in a nondiagonal block matrix
PTMti,tiP. The size of the nondiagonal block matrix is (dim ⋅ nti) × (dim ⋅ nti). Using a NURBS layer on a narrow region
on the boundary results in a relatively small nondiagonal submatrix. Obviously, there are mechanical problems, where
the contact boundary is larger than the bulk part, for example, shell structures in contact. In these cases, the nondiagonal
submatrix becomes larger than the diagonal submatrix of the mass matrix CTMC. In those cases, the advantage of using
a bulk discretization with spectral elements is rather limited.

6 EXPLICIT TIME INTEGRATION

In this work, numerical methods are presented to model wave propagation effects after impact in linear elastic materials.
Due to the impact event and its rough response, the wave spectrum contains high frequency waves. Implicit schemes are
unconditionally stable and do not require a minimum time step for a stable time integration. Due to accuracy reasons,
the time step of the implicit scheme has to be adapted to the highest frequency, to track the whole spectrum. Moreover,
due to the contact conditions, a system of nonlinear equations has to be solved in the implicit method. The starting value
for the numerical solution of this nonlinear system of equations is mostly the equilibrium of the last time step. Using a
large time step in the implicit method means that the equilibrium state, which has to be computed in a recent time step, is
probably far away from the last equilibrium state. This can result in convergence issues. The required small time step and
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the computational effort to solve a nonlinear system of equations in each time step makes implicit methods for nonlinear
wave propagation problems very time consuming.

Explicit methods are only conditionally stable and require a time step below a critical time step, which depends
on the chosen explicit time integration scheme. The critical time step Δtc is determined by the highest frequency
𝜔max in the wave spectrum: Δtc ∝ 1∕𝜔max. This is required anyway to accurately track the whole wave spectrum.
Using explicit schemes, no solution of a nonlinear system of equation is needed in each time step. Additionally,
explicit time integration in combination with a diagonal mass matrix does not even require the solution of a system
of linear equations in each time step, which makes the explicit time integration very efficient for wave propagation
problems.

The dynamic semidiscretized equilibrium equation is a second-order ODE. A very popular explicit time integra-
tion scheme is the second-order CDM. As shown in Otto et al,3 the popular combination of CDM with linear elements
results in a compensation of spatial and temporal errors. Combinations of higher order methods in space and time are
computationally more efficient.

6.1 Runge-Kutta time integration

As discussed in Otto et al,3 the RK explicit time integration schemes of minimum order 3 are applicable to Equation (49).
The classical explicit RK method of order 4 gives accurate results for different FE interpolation orders and is superior to
the CDM.

The application of the RK method needs a transformation of the second-order equation (Equation (49)) to a first-order
equation:

ẏ = f (y), (52)

with

y =
(

d
v

)
and f (y) =

(
v

(CTMC)−1(−CTf int,h − CTf ext,h − GTpN)

)
, (53)

where v is the velocity vector. The RK method applied to Equation (53) gives

Y i = yn + Δt
i−1∑
j=1

aijf (Y j), i = 1,… , k (54a)

yn+1 = yn + Δt
k∑

i=1
bif (Y i). (54b)

Here, Δt denotes the time step, aij and bj denote constants defined by the well-known classical RK scheme of order
k = 4. The coefficients aij and bj are taken from table 1. The mass matrix M and the projection matrix P are constant
throughout the simulation and the bulk part of the mass matrix CTMC is diagonal due to the spectral FE discretization
(Equation (51)). To ensure the efficiency of the explicit time integration, the nondiagonal part of the mass matrix PTMti,tiP
is not inverted. Instead, it is prefactorized and a forward and backward substitution for the affected (dim ⋅ nti) degrees of
freedom is carried out in each time step.

(a) General structure (b) Fourth order T A B L E 1 Butcher tableau of the classical fourth-order Runge-Kutta
scheme
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6.2 The critical time step

Explicit time integration methods require the time step to be smaller than a critical time step to guarantee the stable
integration of the ODE. For linear wave propagation problems, the critical time step is not deformation dependent and is
given for the classical RK method by

Δtc =
2.8√
𝜆max

, (55)

where 𝜆max is the maximum eigenvalue of the system

(K − 𝜆M)x = 0. (56)

For linear wave propagation, the stiffness and mass matrices K and M are constant. The dynamic equilibrium
equation (49) is nonlinear. Thus, the maximum eigenvalue 𝜆max is not constant throughout the simulation and is affected
by the mesh density and the penalty formulation, which is used to enforce the contact conditions.

7 MESH-DEPENDENT PENALTY FORMULATION

In this work, the contact constraints are enforced by the penalty method. As shown in Otto et al,3,21 a mesh-dependent
penalty formulation is computationally advantageous. For dynamic problems, a nonlinear penalty regularization is pro-
posed in Otto et al.3 As shown in Figure 2, the penalty function is composed of a nonlinear part and a linear part. For
the nonlinear part, a polynomial regularization pN(gN) = a ⋅ gq

N of degree q is used. This formulation has the advantage
that the transition between no contact and contact is q−1 smooth. The transition between the nonlinear and linear part
is determined by the penetration gmax. As soon as gmax is reached, the penalty function becomes linear with the constant
maximum stiffness kmax.

The parameters of this penalty function are the penetration gmax and the appropriate pressure pmax = pN(gmax). The
pressure pmax is problem dependent and has to be estimated by the user. The penetration gmax is chosen as

gmax = m ⋅ Δtc ⋅ v0, (57)

where m is a user-defined constant, Δtc the critical time step without taking into account the contact conditions and v0
the initial impact velocity.

The factor a of the penalty function pN is determined from the equation pN(gmax) = pmax and the maximum penalty
stiffness is given by kmax = p′

N(gmax). The smaller m, the stiffer the formulation. A stiffer penalty formulation is also
achieved by mesh refinement. The critical time step Δtc of the linear dynamic equilibrium problem is not deformation
dependent, but choosing a finer mesh increases the maximum eigenvalue 𝜆max and decreases the critical time step Δtc.
Thus, also gmax decreases for finer meshes and a stiffer regularization is achieved. In Reference 3, it is shown for 1D
impact problems that for a constant factor m the critical time step of the penalty enforced impact problem remains

F I G U R E 2 Nonlinear penalty formulation

−

nonlinear

linear

−•

pN

gN

pmax

gmax

kmax
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constant upon mesh refinement. Thus a stiffer penalty formulation is achieved for finer meshes, but the critical time
step of the impact problem remains constant when m is constant.

For 2D and 3D impact problems with penalty regularization, an estimation of the critical time step can be based on
diagonalization of the penalty stiffness and the element eigenvalue inequalities, which is virtually equivalent to a 1D
impact problem.32 The bipenalty approach, where both inertia and stiffness terms are penalized to guarantee a constant
critical time step upon the increase of the penalty stiffness, is valid for 1D impact problems.33 Another possibility to
guarantee a stable time integration is based on monitoring of energy balance or linear stability during the simulation and
a possible restart with an adjusted time step.

8 RESULTS

8.1 Comparison of the GPTS and the mortar formulations

The static Hertz contact problem (Figure 3) is used to compare the GPTS and the mortar contact discretizations for the
nonlinear penalty function pN = a ⋅ g2

N. The NURBS layer is generated by interpolation and tied to the structured mesh
region of the halfspace (Figure 3). In Temizer et al,34 the enforcement of the contact conditions at each integration point
resulted in a stiff formulation with convergence problems. In this section, the stiffness of the nonlinear penalty function
is increased to compare to the results in the literature. The parameter pmax = 592 of the penalty function is chosen slightly
above the analytical maximum pressure of 591.43. The stiffness of the penalty function pN is controlled by the second
parameter gmax, which is chosen as−10−5 or−10−6. Since pmax is slightly above the maximum contact pressure, the param-
eter gmax corresponds to the maximum penetration. An element-based contact discretization with eight Gauss-Legendre
integration points per element is used.

Figure 4 shows the contact stresses using the GPTS and the mortar formulations. The contact stresses are scaled by
the analytical maximum contact stress p0 and the contact width is scaled by the analytical maximum contact width a.
Using gmax = −10−5 (Figure 4A) the results of the GPTS and mortar methods are similar and convergence is achieved for
both methods after seven iterations in Newton's method. Using gmax = −10−6 (Figure 4B), the mortar method shows some
more oscillations in the stresses, but converges in 10 iterations compared to 12 iterations needed for the GPTS method. For

NURBS layer

E = 105

ν = 0.3

E = 105

ν = 0.3

t = 10

R

H

(A) Geometry

X
Y
Z

(B) Close-up of the FE mesh in the contact and

tying region

F I G U R E 3 Two-dimensional Hertz
contact—cylinder and elastic substrate with plain
strain assumptions (H = 1 and R = 1). Contact
zone with 18 × 18 elements in the rectangle
contact region and 22 × 22 elements in the
quarter circle contact region
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F I G U R E 4 Contact
stresses computed by GPTS and
mortar methods using
gmax = −10−5 or gmax = −10−6

[Color figure can be viewed at
wileyonlinelibrary.com]
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moderate penalty stiffness, the accuracy and convergence behavior of the mortar and GPTS methods are similar. Using
higher penalty stiffness, the GPTS method needs more iterations but the stresses are free of artificial oscillations, as also
reported by Kopačka35 for a linear penalty formulation. Using an explicit time integration, no solution of a nonlinear
system is required, thus the convergence behavior of the formulation is of minor importance.

Using segmentation of the contact region, an accurate numerical integration can be achieved, where the oscillations in
the contact stresses are reduced.36,37 The segmentation is an accurate but computationally expensive technique, especially
for 3D problems. In the FE-NURBS approach, the accuracy of the integration is increased by higher order quadrature or
by an increased interpolation order of the NURBS layer.21

8.2 2D cylinder-cylinder impact

In this section, a 2D plain strain impact problem of two collinear cylinders is considered and the GPTS discretization is
used with eight Gauss-Legendre integration points per element. The FE mesh is shown in Figure 5A. The NURBS layer is
tied to the lower cylinder in the structured mesh region and is constructed by interpolation of FE nodes. A cubic penalty
regularization pN = a ⋅ g3

N is used. The factor m = 15 is chosen for the penetration gmax = m ⋅ (2v0)⋅Δtc. The penalty pres-
sure at gmax amounts to pmax = 200. The time integration is done with the classical explicit RK method. The time step is
chosen as Δt = 0.95Δtc, where Δtc is the critical time step of the dynamic equilibrium problem without the penalty term.
According to Belytschko12 a reduction factor of 0.95 is used. The wave propagation after impact is shown in Figure 5B.
The critical time step Δtc,p for the nonlinear equation (49) is also computed during the simulation and the maximum
deviation is 1−Δtc,p∕Δtc = 2 ⋅ 10−7.

For stiffer regularizations m = 5 and 10, the ratio 1−Δtc,p∕Δtc amounts to 2 ⋅ 10−6 and 4 ⋅ 10−7, which shows that also
for increased penalty stiffness the choice of the time stepΔt = 0.95Δtc remains valid and ensures a stable time integration.

8.2.1 Comparison of linear and nonlinear penalty functions

In this section, the linear and nonlinear penalty regularizations are considered and compared to each other.
For the 2D impact problem shown in Figure 5 no analytical solution exists. An approximate solution based on the

conservation of momentum, where small deformations are assumed and no wave propagation is taken into account is
given in Johnson38 or Miyazaki et al39 in the form of an ODE:

𝜋R2𝜌d̈ = 2Fc with d = 2R − 4𝜇
3

Fc − 2𝜇Fc(log(R∕𝜇) − log(Fc)) and 𝜇 = 1 − 𝜈2

𝜋E
. (58)

Here, d and Fc denote the indentation depth and the contact force. The contact width is given by a =
√

Rd and the
maximum contact stress for E = E1 = E2 and 𝜈 = 𝜈1 = 𝜈2 is given by

p0 =
(

E∗Fc,max

𝜋R

) 1
2

, with 1
E∗ =

1 − 𝜈2
1

E1
+

1 − 𝜈2
2

E2
= 2 1 − 𝜈2

E
. (59)

http://wileyonlinelibrary.com
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X

Y

Z

(A) FE mesh (B) Wave propagation in the impacting cylinders at times t = 0.1, 0.2, 0.3, 0.4.
The maximum stress is reached at t = 0.4

F I G U R E 5 Wave propagation
after the impact event for two equal
cylinders moving with the velocity of
v0 = 2 against each other with the
material parameters E = 1000,
𝜈 = 0.2 and 𝜌 = 1. The radius of both
cylinders is R = 4. Symmetry
boundary conditions are applied on
the left side

A polynomial penalty function, as shown in Figure 2, provides a smooth transition between no contact and contact
state. In Figure 6 the mesh from Figure 5A is used along with a cubic penalty function pN = a ⋅ g3

N. The penetration gmax
and the pressure pmax are chosen as: gmax = 15 ⋅ (2v0)⋅Δtc and pmax = 200. For the linear penalty regularization, the penalty
factor kmax = p′

N(gmax) is used. For both regularizations, the time step of Δt = 0.95Δtc is used. As shown in Figure 6A,
the contact force using the linear penalty function is oscillating. Considering the contact stresses at one time step t = 0.4
(Figure 6B), for both the linear and nonlinear formulations the stresses are similar.

The drop of the contact force at approximately t = 0.5 is induced by a stress wave causing an expansion of the material
in the contact zone at that time.

8.2.2 Mesh-dependent formulation

Using a linear penalty regularization, the choice of the penalty factor is often heuristic. As shown in Otto et al.21 for
static contact problems, a mesh-dependent penalty formulation is more efficient. The error in the computations is not
reduced by just increasing the penalty parameter for a constant mesh. After a certain threshold, the error even increases
for higher penalty parameters. Using the nonlinear penalty regularization, the stiffness of the penalty function increases
by mesh refinement. In Figure 7, the contact forces and the maximum contact stresses are illustrated for the problem in
Figure 5. Three different meshes are used with the mesh structure corresponding to Figure 5A: h = 0.33 (six elements in
slave and four elements in master contact zone), h = 0.2 (10 elements in slave and 8 elements in master contact zone),
h = 0.11 (18 elements in slave and 16 elements in master contact zone). A cubic penalty regularization pN = a ⋅ g3

N is used
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F I G U R E 6 Contact forces
Fc and maximum contact
stresses for linear and nonlinear
penalty regularizations, both
with the same maximum penalty
stiffness kmax and same mesh
with minimum element size
h = 0.133 in the slave contact
region (Figure 5A) [Color figure
can be viewed at
wileyonlinelibrary.com]
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F I G U R E 7 Contact forces
Fc and maximum contact
stresses for different meshes
with the minimum element sizes
of h = 0.33, h = 0.2, h = 0.11 in
the slave contact area [Color
figure can be viewed at
wileyonlinelibrary.com]
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with gmax = 15 ⋅ (2v0)⋅Δtc and pmax = 200. As in the previous examples, the time step Δt = 0.95Δtc is used. Although the
stiffness is increased by mesh refinement, there are no artificial oscillations in the contact forces (Figure 7A). The contact
stresses are given in Figure 7B. For finer meshes, the contact width is reduced and the contact stresses remain free of
artificial oscillations.

8.2.3 Energy conservation

In Figure 8, internal Ein, kinetic Ekin and total Etotal energies are plotted for the problem in Figure 5. The total energy is
constant throughout the simulation, which shows that energy is conserved in the given framework. Given the material
parameters and the geometry dimensions in Figure 5, the total kinetic energy at the beginning of the simulation amounts
to Ekin = 𝜋R2𝜌v2

0 = 201.06, which coincides with the value of the total energy plotted in Figure 8.

8.2.4 Comparison of different orders of FE interpolation

As reported in De Lorenzis et al8 for static contact problems, using a higher degree FE interpolation with element-based
integration results in large oscillations in the contact stresses. In this section, three different FE and NURBS interpolation
degrees p are considered: p = 2, 3, 4. The NURBS layer has the same degree as the FE interpolation and is constructed, as in
the previous examples, by interpolation of the FE nodes. The number of elements in the slave contact zone is chosen such
that the number of FE nodes is 25 for all three considered interpolation degrees p. Compared to the previous examples
the factor m = 10 is chosen, but the time step remains Δt = 0.95Δtc. As shown in Figure 9, no artificial oscillations appear

F I G U R E 8 Internal (Ein), kinetic (Ekin) and total (Etotal)
energies for the impact simulation of a collinear impact of two
cylinders [Color figure can be viewed at wileyonlinelibrary.com]
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when the degree of the FE interpolation and NURBS is increased. For all considered interpolation degrees, the contact
stresses show similar results and the absolute values lie slightly above the quasi-analytical solution for the contact stresses.

8.3 3D cylinder-cylinder oblique impact

In this section, a 3D impact problem of crossed cylinders is considered. The meshes and parameters for the linear elas-
tic material of the crossed cylinders are identical and shown in Figure 10. The 3D mesh is obtained by extrusion of
the unstructured mesh and has 10 elements in the direction of the extrusion, as shown in the upper part of Figure 10.
Quadratic FE and NURBS interpolations are used. The upper cylinder is located in the halfspace y ≥ 0 and the lower
cylinder in the halfspace y ≤ 0. The NURBS layer is tied to the lower cylinder. The x − y cross section of the NURBS layer
is an arc and is constructed by interpolation of FE nodes. The x coordinates of the interpolated FE nodes are lying in
the range |x| ≤ 0.8R. In the z direction, the parametrization of the NURBS layer matches the FE mesh and extends in
the coordinates |z| ≤ 0.9L. A nonlinear penalty regularization with pN = a ⋅ g3

N is applied with gmax = 5 ⋅ (2v0)⋅Δtc and
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F I G U R E 9 Maximum contact stresses (at time t = 0.4) for FE and NURBS interpolation degrees p = 2, 3, 4 [Color figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 10 Mesh of the 3D impact problem of two crossed cylinders with
equal radius R = 1 and length L = 2. The material parameters are E = 103,
𝜈 = 0.2, and 𝜌 = 1. Both cylinders are initially moving with the velocity of
v0 = 2.5 against each other in vertical direction [Color figure can be viewed at
wileyonlinelibrary.com]
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pmax = 250. In this example, the mortar and GPTS contact discretizations with the classical explicit RK time integration
are used. The time step is chosen similar to the 2D example as Δt = 0.95Δtc. Due to the linear elastic material model, the
critical time step Δtc is constant when the contact conditions and the appropriate penalty regularization are not taken
into account.

The contact force Fc and the maximum contact stress distribution at time t = 0.113 are shown in Figure 11A,B for
the mortar and the GPTS methods. For the contact discretization, a Gauss-Legendre quadrature rule with six integration
points in each direction is used. For the rather coarse mesh, the contact force Fc and the contact stress are free of artificial
oscillations. The contact stress has a symmetric distribution over the contact area, which corresponds to the symmetric
setup. The GPTS and the mortar methods give virtually identical results. The GPTS formulation leads to slightly smoother
stresses.

The deformations and the wave propagation until the time t = 0.113 as the maximum contact stress is reached are
shown in Figure 12.

F I G U R E 11 Contact
force Fc and the contact stress
for the 3D impact problem of
two crossed cylinders [Color
figure can be viewed at
wileyonlinelibrary.com]
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9 CONCLUSIONS

In this paper, two mechanical problems are considered: the impact problem and the subsequent wave propagation
following the impact event.

For the contact discretization, a FE-NURBS approach is used. The auxiliary NURBS layer provides a robust and
easy normal gap computation and an accurate element-based integration without the necessity to use full 3D NURBS
geometries. An alternative to the element-based integration is segmentation, which is time consuming even for static
3D problems. A GPTS and a mortar contact discretizations are considered. Both methods are shown to provide accurate
results for 2D and 3D impact problems. The numerical modeling of the impact event is intrinsically ill-posed due to the
instantaneous change of velocities in the contact area, which leads to artificial oscillations in the numerical solution. In
this work, a nonlinear penalty regularization is applied with a smooth transition from the no contact to the contact state.
The nonlinear penalty function is defined by two mechanically motivated parameters, which make the nonlinear regular-
ization mesh dependent. The stiffness increases upon mesh refinement. Compared to the linear penalty regularization,
less oscillations appear in the contact forces. For finer meshes, the penalty stiffness is automatically increased without
oscillations in the contact force or contact stresses.

The wave propagation problem requires a small time step for the time integration scheme, which makes implicit
schemes not affordable. Explicit time integration schemes are efficient, provided the mass matrix is diagonal. Moreover,
explicit time integration schemes are only stable for time steps below of a critical time step. For nonlinear problems, like
the impact problem, the critical time step is not known a priori. In this work, a spectral FE discretization is used, thus
the bulk part of the mass matrix is diagonal. Due to the coupled FE-NURBS discretization the part of the mass matrix
corresponding to the contact region is not diagonal. This independent part of the mass matrix is prefactorized and only
a forward and backward substitution is needed in each time step of the explicit time integration. As shown by the 2D
and 3D examples, using the nonlinear mesh-dependent penalty regularization the critical time step is mostly influenced
by the mesh density and not the penalty stiffness. Thus, it is sufficient for the linear elastic material model to compute
the critical time step Δtc without taking into account the contact conditions. The simulations are run with the time step
slightly below of Δtc.

So far this method is applied to linear elastic materials. The application to nonlinear elasticity with finite strain and
friction is an interesting and from our point of view promising extension of the method.
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