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Cast near eutectic Al–Si alloys with addition of transition
elements such as Cu, Fe, and Ni are commonly used materials
in the aerospace and automotive industries.[1,2] The microstruc-
ture of these alloys is characterized by a 3D interconnected
network formed by eutectic and primary Si and several Ni-, Fe-,
and Cu-rich aluminides embedded in the Al matrix.[3–7] Under
prolonged service time at high temperature (up to around
300–350 �C), the aluminum matrix is overaged, what deteriorates
its strength and creep properties.

To improve the strength and creep resistance of these Al–Si
alloys, additional ceramic reinforcements such as short fibers
and particles can be used.[8–10] It has been shown that the micro-
mechanical behavior of such composites strongly depends on the
orientation of the fibers, the spatial distribution of the particles,

the individual volume fractions of all rein-
forcement phases, as well as on their mor-
phology and interconnectivity.[3,11,12]

One of the most powerful tools for ana-
lyzing the micromechanical behavior and
predicting the mechanical properties of
such complex materials is micromechani-
cal modeling.[6,12,13] It is therefore of high
interest to use all available microstructural
information as an input to analytical mod-
els, to improve their performance. The most
suitable tool to provide this kind of informa-
tion is X-ray computed tomography (CT),
because of its 3D nature. However, image
segmentation of the CT data, especially in
the case of multiphase materials, remains a

highly challenging task. Ceramic reinforcements, as well as some
intermetallic (IM) phases, have similar X-ray linear attenuation
coefficients, and hence similar gray level in reconstructed CT data.
The same holds for the eutectic Si and Al-alloy matrix. This makes
a threshold-based segmentation of individual phases simply
impossible.[12] Moreover, high interconnectivity and clustering
of all phases also excludes the application of shape-based classifi-
cation. The complexity of the microstructure requires manual seg-
mentation, which is at its turn impractical and time consuming.
In addition, in the case of 4D CT with high temporal resolution,
manual segmentation and successive analysis can only be done for
small subvolumes, leading to statistically insufficient results.

Recently, increasing interest in the application of deep learn-
ing (DL)-based algorithms[14] has been observed for image clas-
sification and segmentation tasks, due to their strong ability to
learn high-level features from raw input data. These methods
have been very successfully applied to solve material science prob-
lems. Azimi et al. used DL for microstructural classification of
steel by semantic segmentation of different phases with accuracy
exceeding 93%.[15] Iglesias et al. applied deep convolutional neu-
ral network (CNN) for the discrimination of quartz and resin in
iron ore optical micrographs.[16] Chowdhury et al. used DL for the
recognition of dendritic morphologies,[17] and Furat et al. showed
the application of CNNs for grain-wise segmentation of 3D CT
data on Al–Cu alloy.[18]

In this study, we investigate the 3D microstructure of an
AlSi12CuMgNi alloy reinforced with 7%vol of Al2O3–Saffil short
fibers and 15%vol of SiC particles. We show the application of an
advanced DLmethod for the semantic segmentation of all phases
present in this multiphase material.

The investigated composite was produced by squeeze casting.[12]

Saffil short fibers, which consist of 96–97% of Al2O3 and 3–4%
of SiO2 binders, have planar-random orientation, whereas SiC par-
ticles are expected to be randomly distributed within the volume.
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The quantitative analysis of microstructural features is a key to understanding the
micromechanical behavior of metal matrix composites (MMCs), which is a
premise for their use in practice. Herein, a 3D microstructural characterization of
a five-phase MMC is performed by synchrotron X-ray computed tomography
(SXCT). A workflow for advanced deep learning-based segmentation of all
individual phases in SXCT data is shown using a fully convolutional neural
network with U-net architecture. High segmentation accuracy is achieved with a
small amount of training data. This enables extracting unprecedently precise
microstructural parameters (e.g., volume fractions and particle shapes) to be
input, e.g., in micromechanical models.
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Figure 1. a) SEM micrograph of the five-phase composite and b) enlarged view with indicated constituent phases. Note that the micrographs are
taken for the sample’s cross-section parallel to the fiber plane (XY ); c) SEM of the deep-etched sample and d) enlarged view with indicated constituent
phases.

Figure 2. a) Orthogonal planes of the reconstructed SXCT dataset; b) Threshold-based segmentation: Al2O3 Fibers, SiC particles, and IMs could not be
separated; c) Histogram of the gray-intensity level of the reconstructed SXCT slice. Note that XY plane is parallel to fiber plane.
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Five different phases can be identified in scanning electron
microscopy (SEM) micrographs of a polished composite sample:
Al2O3 fibers and SiC particles in dark gray, the eutectic Si in light
gray, and IMs in white (Figure 1a, b). It is shown that SiC par-
ticles tend to agglomerate and build clusters between Al2O3

fibers. Micrographs of the sample with chemically removed
Al-alloy matrix (deep-etched using a solution of H2O and HCl
with a ratio of 80:20 during 90min) reveal the complexity of
the reinforcing network (Figure 1c,d). Different IM particles
are interconnected with eutectic Si and ceramic reinforcements.
The eutectic Si appears between SiC particles and in the form of
bridges between Al2O3 fibers, building an interconnected net-
work. However, these observations are only qualitative, as SEM
does not allow extracting any volumetric quantitative information
concerning distribution, orientation, or interconnectivity of differ-
ent phases. Truly 3D imaging methods are therefore needed.
We used synchrotron X-ray computed tomography (SXCT).

The reconstructed SXCT dataset is shown in Figure 2a.
Similar to the SEM micrograph all five phases are visually distin-
guishable. However, as mentioned earlier, individual phases can-
not be segmented based on the gray-level threshold (Figure 2b).
The normalized histogram of the gray-intensity levels (Figure 2c)
shows only one peak, corresponding to the Al matrix. Clear peaks

for gray values of any individual reinforcement phase or voids
(related to the fabrication process) could not be found.

One of the main segmentation challenges in this work is to
distinguish between Al2O3 fibers and SiC particles, which have
exactly the same gray value. Moreover, the cross-section of most
fibers is highly similar to the cross-section of SiC particles. This
similarity would limit the application of any 2D CNN in case of
composites with randomly oriented fibers. Fortunately, in our
material, fibers possess planar random orientation, the cross-
sections of fibers and particles differ in the SXCT slices parallel
to the fiber plane (XY section in Figure 2a). This allows slice-wise
segmentation by the application of 2D DL algorithms, which
in comparison with 3D algorithms, require significantly less com-
putation resources and training data. Therefore, for the semantic
segmentation of individual phases in the composite, a 2D fully
convolutional neural network (FCNN) with a U-Net encoder–
decoder architecture implemented in FIJI ImageJ was used,[19]

see Figure 3. The network architecture consists of two parts.
First, the encoder (contracting) part allows analyzing the whole
image, and second, decoder (expanding) part is used to produce
a full-resolution segmentation (Figure 3c). The contracting path
follows the typical architecture of a convolutional network.[21]

It consists of the repeated application of two 3� 3 convolutions,

Figure 3. Procedure of the DL-based segmentation. a) The original reconstructed 3D SXCT dataset of the five-phase composite; b) Single manually
segmented reconstructed 2D SXCT slice, used for training of the CNN; c) Schematic U-Net architecture;[20] d) The result of the segmentation using
the U-Net.
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each followed by a rectified linear unit (ReLU) and a 2� 2 max
pooling operation. At each downsampling step, the number of
feature channels is doubled. Every step in the expansive path con-
sists of an upsampling of the feature map followed by a 2� 2
deconvolution that halves the number of feature channels, a
concatenation with the correspondingly cropped feature map
from the contracting path, and two 3� 3 deconvolutions, each
followed by a ReLU. At the final layer, a 1� 1 convolution is used
to map each feature vector to the desired number of classes.[20]

The schematic segmentation workflow is shown in Figure 3.
As training data, one manually annotated SXCT slice of
2000� 2000 pixels was used. The network was trained with
5000 epochs using the GPU Nvidia GeForce GTX 1050 Ti with
4 GB GDDR5 memory. The full training process took �1 h.
As only a limited amount of training data was available, we used
excessive data augmentation by applying random rotation around
the z-axis in the full 360� range and elastic deformation with
random seed displacement vectors, resulting in a total amount
of 46 images. After training, the segmentation of the recon-
structed volume was performed slice by slice. The segmentation
of 1 slice with the dimensions of 2000� 2000 pixels took �20 s.

The assessment of the DL segmentation results is shown
in Figure 4. In comparison with a manually annotated slice
(Figure 4b), the DL segmentation (Figure 4c) shows only a
few discrepancies. Note that this SXCT slice with manual anno-
tations was only used for the evaluation of the DL segmentation
and not for training of the CNN. A qualitative analysis of the DL
segmentation (Figure 4d) shows that most objects, except a few
fibers, are detected, and the difference against manual annota-
tions occurs only at the object’s borders.

For quantitative assessment of the U-Net segmentation result,
we used the DICE coefficient, which is a common evaluation
metric to assess the performance of convolutional networks in
semantic segmentation tasks. It measures how well the segmen-
tation matches the ground-truth annotations and is defined as

DICE ¼ 2TP
2TPþ FPþ FN

(1)

where TP is the number of true positive pixels, FP is the number
of false-positive pixels and FN is the number of false-negative
pixels. Note that DICE¼ 0 means no overlap; DICE¼ 1 means

Figure 4. Qualitative assessment of the segmentation result. a) Original 2D SXCT slice; b) Manually segmented 2D SXCT slice: Al2O3 fibers in lilac, SiC
particle in white, Si in red, and IMs in green; c) U-Net segmentation result; d) Qualitative example of U-Net segmentation performance for Al2O3 fibers,
SiC particles, IMs, and Si. Green: true positive, blue: false negative, and red: false positive (d). Note that regions shown in (d) are also indicated in (a) by
color-coded frames.
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perfect match. At the current stage of DL development, values
higher than 0.7 correspond to acceptable segmentation results.
For all segmented phases, the DICE coefficient exceeded 0.7
(Table 1). In the case of IMs, which have the best contrast
and unique shape, it even exceeded 0.8. Despite the fact that
Al2O3 fibers, SiC particles, and some IMs could only be differ-
entiated by their morphology, the U-Net was able to correctly
assign the class to most of the elements.

Another method to assess the segmentation quality is the com-
parison of the volume fractions of phases with nominal values.
In addition, all phases were manually segmented in available
SEM micrographs and added to the comparison (Table 1). The
nominal and calculated volume fractions of Al2O3 fibers are in
good agreement. The same holds for the values obtained from
DL segmentation of SXCT and manually segmented SEM data
for IM and Si phases. A significant discrepancy between nominal
(supplier) and experimental values was found for the SiC phase.
This can be caused by the inhomogeneous distribution of the SiC
particles in the cast billet. There is little alternative to check

whether the supplier’s data are correct, other than investigating
a large number of specimens all throughout the billet.

As shown by a 3D rendering of the segmented reinforcing
phases (Figure 5), the eutectic Si builds bonds between SiC par-
ticles and Al2O3 fibers, creating additional 3D interconnectivity.
This leads to a significant improvement of the material’s strength.
The interconnectivity of individual phases can be assessed based
on the segmentation result by considering the ratio of the volume
of the biggest particle to the total volume of the phase. The inter-
connectivity of eutectic Si in the investigated composite was
around 78% and of the IM phase was 61%. The interconnectivity
of the IM phase appeared to be lower than the one for the matrix
alloy (previously calculated and reported in the study by Evsevleev
et al.[22]). This can be caused by the presence of the large amount
of ceramic reinforcement in the composite, which hinders the
free growth and connection of the IM particles.

The SiC particles are partially agglomerated in small clusters,
which are nevertheless homogeneously distributed and ran-
domly oriented within the Al-alloy matrix. The data in Table 1
represent a radical improvement over the state-of-the-art,[23]

and can be directly fed into micromechanical models.[12,23]

In summary, we showed the successful application of the
DL approach to a segmentation problem, which could not be
solved by any conventional method (apart from lengthy manual
approach). The achieved accuracy is sufficient to estimate the
volumetric characteristics of every individual phase in a five-
phase composite. The 3D rendering of the phases revealed
the formation of an eutectic Si phase between ceramic

Table 1. Quantitative assessment of the U-Net segmentation result.

Phase metric Al2O3 fibers SiC particles IMs Eutecticþ primary Si

DICE 0.77 0.78 0.85 0.76

VF (nominal) 7% 15% – –

VF (SXCT) 6.8% 10.8% 4.3% 6.1%

VF (SEM) 7.5% 10.9% 3.7% 5.7%

Figure 5. 3D rendering of phases segmented by CNN: a) Al2O3 fibers; b) SiC particles; c) Al2O3 fibers in blue, SiC particles in white, Si in red, and IMs in
green; d) Enlarged view showing the Si bridges between ceramic reinforcements.
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reinforcements and IMs. Similar observations have been done
by SXCT in Al alloy matrix composite with single ceramic rein-
forcement phase.[24] The results obtained in this work
open a host of possibilities in quantitative 3D microstructural
characterization of complex materials by means of CT. As an
outlook for future work, we envisage the use of important
microstructural features extracted from segmented CT data
(e.g., volume fractions, fiber orientation and distribution, and
interconnectivity of phases) to refine the previously developed
analytical models and create new finite element models. This
will lead to a significant improvement in the ability to predict
the micromechanical behavior of multiphase metal matrix com-
posites, which is a key for their use in practice.

Experimental Section
The AlSi12CuMgNi alloy reinforced with 7%vol of Al2O3 and 15%vol SiC

particles was produced by squeeze casting. The molten alloy was infiltrated
in a hybrid preform with planar-random-oriented Al2O3 short fibers and
SiC particles randomly distributed in the volume.[12]

Microstructural characterization of the composite was performed by
both SEM and SXCT. Two different sample preparations were used for
the microstructural characterization by the SEM. On one side, a sample
was embedded in bakelite and finally polished with a 1 μm diamond paste.
On the other side, a sample was chemically deep etched using a solution
of H2O and HCl with a ratio of 80:20 for 90 min. Both types of samples
were then studied in a HITACHI S 4800 scanning electron microscope.

The 3D microstructural characterization was conducted by means of
SXCT. Cylindrical samples with a diameter of 1 mm were prepared from
the bulk material using electrical discharge machining (EDM) with the
planes of randomly oriented Al2O3 fibers perpendicular to the rotation
axis. SXCT experiments were conducted on the BAMline (BESSY II,
HZB Berlin, Germany). The energy of the monochromatic X-ray beam
was set to 25 keV, and an effective pixel size of (0.44 μm)2 was achieved
using an optical detector system with a charge-coupled device camera and
a 10� objective. 2400 projections were acquired with an exposure time of
3 s per projection. The reconstruction of 3D volumes was performed by an
in-house developed software based on Paganin’s phase retrieval method
and the filtered back-projection algorithm. The achieved spatial resolution
was �1 μm. Prior to segmentation, noise in the reconstructed CT data was
suppressed by the application of a nonlocal means filter.
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