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Abstract: This paper demonstrates that the instrumented indentation test (IIT), together with a 
trained artificial neural network (ANN), has the capability to characterize the mechanical 
properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. 
Aside from force-indentation depth curves generated from the IIT, the profile of the indented 
surface deformed after the indentation test also has a strong correlation with the materials’ plastic 
behavior. The profile of the indented surface was used as the training dataset to design an ANN to 
determine the material parameters of the welded zones. The deformation of the indented surface in 
three dimensions shown in images were analyzed with the computer vision algorithms and the 
obtained data were employed to train the ANN for the characterization of the mechanical 
properties. Moreover, this method was applied to the images taken with a simple light microscope 
from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the 
automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile 
of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the 
images taken by a simple light microscope. The results show that there is a very good agreement 
between the material parameters obtained from the trained ANN and the experimental uniaxial 
tensile test. The results present that the mechanical properties of an unknown steel can be 
determined by only analyzing the images taken from its surface after pushing a simple indenter 
into its surface. 

Keywords: deep learning; computer vision; artificial neural network; clustering; mechanical 
properties; high strength steels; instrumented indentation test 

 

1. Introduction 

Thermal manufacturing processes of high strength steels such as welding or cutting lead to the 
local deterioration of the mechanical properties [1]. By knowing the local mechanical properties, not 
only can the full potential of lightweight constructions be exploited, but also important and hardly 
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accessible local stress–strain relations of welded joints can be obtained for the prediction of the 
strength of the welded components [2]. 

The instrumented indentation test (IIT) is a well-known semi-destructive method that enables 
the determination of the mechanical properties [3] of small areas such as welded zones [4]. In 
general, the indentation response depends on the material mechanical properties such as the stress–
strain curve. By correctly analyzing the indentation response, it is possible to predict the causing 
parameters that cannot be directly calculated [5]. 

The indentation force and penetration depth are constantly measured during the execution of 
the IIT to create the force–indentation depth curve. Three main methods have been introduced to 
evaluate the mechanical tensile properties from the experimentally measured force–indentation 
depth curve [6]. The first two methods are the representative stress–strain approach based on 
Tabor’s work [7] and the inverse simulation using the finite element analysis [8]. In the 
representative stress–strain method, the true stress–strain diagram can be calculated by determining 
the contact angle, the pile up or sink in [9] height, and the contact area. Numerous experiments 
[10,11] have proven the robustness of this method for a wide range of materials. In the inverse 
simulation method, the quality of the numerical simulation results of the indentation test depends 
on the modeling of the pile up and sink in effect as well as considering the friction between the 
indenter and substrate [12]. Although it is possible to implement any material model or use a 
different type of indenter [13], this method is numerically expensive and needs long-standing 
experience in the field of numerical simulation. Moreover, it is necessary to determine the starting 
parameters properly and use an additional optimization algorithm to find acceptable material 
parameters. There is enough experimental evidence [14–17] to prove the applicability of this method 
for metals and ceramics. 

The other method implemented in this paper is the evaluation of the data by means of an 
artificial neural network (ANN). The ANN has demonstrated great potential to predict the 
mechanical properties of the indented surface. Huber et al. successfully determined the Poisson ratio 
[18,19], the parameters of a viscoplastic material model [20,21], and the strain hardening properties 
[22,23] from the indentation test. Moreover, there is good agreement between the experimental data 
and the ANN prediction of the local stress–strain properties of the resistance spot [24] and friction 
stir welded joints [25]. In addition, the application of an ANN has been widespread in 
computational mechanics to solve various inverse problems such as the crack growth analysis of 
welded specimens [26]. Moreover, a method was proposed by Li et al. [27] to characterize the 
mechanical properties of heterogeneous materials through images taken from a mesoscale structure. 
In another example, Ye et al. [28] correlated the stress–strain diagrams with the images taken from 
the complex microstructures of the composites. Xu et al. [29] applied the convolution neural network 
on images obtained from the chemical composition of hot rolled steel to predict their mechanical 
properties. Furthermore, Chun et al. [30] predicated the residual strength of the structural steels by 
visual inspection of the damage and analyzing the taken images with a convolutional neural 
network (CNN). In another work, Psuj [31] introduced a novel approach for the characterization of 
defected areas in steel elements. He implemented the material state evaluation model by using a 
deep CNN. 

The works described above demonstrate the application of machine learning in the field of 
material characterization. In the current research, we would like to present a novel approach to 
determine the mechanical properties in a more practical way by using less complex equipment and 
focusing on the macroscale, which can be used easily in the industry. 

ANN is one of the machine learning (ML) algorithms inspired by the biological neuronal 
network in the brain. ML has gained much popularity these days due to its capability to perform 
specific tasks without modeling the specific problem, instead relying on patterns or trends of the 
examples [32]. The learning process of ML can be mainly distinguished between the supervised and 
unsupervised methods. The supervised learning algorithm learns from the training data containing 
the inputs and desired outputs. The goal of supervised learning is to approximate functional 
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dependency between the input and the output. However, the training data that do not have outputs 
can be identified based on its pattern by the so-called unsupervised learning approach [33]. 

ANN is one of the supervised learning algorithms since the output is required in the training 
procedure. During the training, the ANN adjusts its weights or hidden layers in order to minimize 
the error between the desired and the calculated output. The hidden layer is located between the 
input and output layer where artificial neurons receive a series of weighted inputs and produce an 
output. Furthermore, the weight shows the influence of the neurons on each other. If an input has a 
greater weight, this means that this input is more important when compared to other inputs. The 
trained ANN has this ability to predict the output of an unknown input within the training data 
space, despite the non-linearity and noise in the data. This capability of the ANN is called 
generalization [34]. 

Increasing the number of neurons or hidden layers enhances the complexity of the network and 
has been found to greatly affect the performance of the ANN [35]. Therefore, variables of the training 
datasets have to be dimensionally reduced without missing any important information. To train an 
ANN with training data in the form of a curve, the data points in a curve must be given to ANN for 
the training. The other alternative is to use parameters that define a curve through a function such as 
material model parameters that define the stress–strain curve. 

Furthermore, to identify objects with a large number of variables such as images, deep learning 
algorithms with CNN can be applied. Within CNN, the images are passed through multiple hidden 
layers to extract the local features of the image before they are finally identified. A typical CNN 
consists of convolution layers, pooling layers, and fully connected layers [36]. For instance, by using 
the images of a steel surface as the training data, a CNN can be trained to classify the steel [37] or 
detect a surface defect such as cavities on a rail [38]. However, feature extraction with CNN layers 
requires a handful of labeled images for the training procedure [39]. Another alternative is to use 
image segmentation as one of the computer vision algorithms. With segmentation, an image is 
decomposed into multiple parts (segments), which can be more efficiently used for further analysis 
[40]. Clustering is one of the most common unsupervised methods to perform image segmentation. 
Within clustering, one can recognize the pattern in large amounts of data and partition them based 
on its similarity into groups called clusters. Besides image segmentation, clustering is used in many 
fields of application such as text information classification [41] and mobile data analysis [42]. This 
approach has been shown to be effective to perform clustering by employing a square error criterion 
[43]. 

The basic procedure for training an ANN to determine the mechanical properties of materials is 
described in [44] and was implemented in this paper. Initially, numerous correlations between the 
indentation path and the mechanical behavior were required to train the ANN. Therefore, in order to 
generate data, it is necessary to start with the numerical simulation model of IIT and validate the 
model through a comparison with the experiment. The validated model was used to generate the 
force–indentation depth curves in large quantities to perform the training. Therefore, further 
imaginary stress–strain curves were generated randomly at certain intervals. By defining the 
material model parameters as input to the simulation model, the corresponding force–indentation 
depth curve was calculated numerically. In addition to the generation of these curves, the 
deformation of the indented surface by the indentation test was also obtained from the simulation. 

From the generated data, training datasets for the training of ANN were extracted. A training 
dataset contains material parameters that describe a stress–strain diagram as the output and a 
corresponding force–indentation depth curve or indented surface profile as the input. The ANN 
then learns from these training datasets. Finally, the performance of the trained ANN was tested 
with the parameters of real materials. 

After establishing the relationship between the indented surface and material behavior, the 
images of the indented surface were used for the training of the ANN. The images were captured 
with a three-dimensional (3D) measuring optics sensor and additionally with a simple light 
microscope. In this step, an image segmentation was performed before training the ANN. The 
training images were divided into several clusters due to the similarity of the color with the k-means 
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algorithm. After segmentation, the image contains fewer variables, but are representative of the 
original image. This information was then used as input for the training of the ANN. The k-means 
algorithm identifies k clusters and then assigns each data point of the dataset to the nearest cluster. 
Figure 1 shows the general workflow of the ANN training with the four different types of database 
presented in this paper. 

 
Figure 1. General workflow of the ANN training with the four different types of database. 

The aim of training the ANN with four different datasets was to show the development of the 
methodology and also to make the procedure of material characterization less complicated. In the 
first method (force–indentation depth), it is necessary to perform the indentation test with the 
instrumented indentation machine. In the second method (profile of the indented surface), we do 
not need this machine, but the indentation must be performed in the same way for all samples. The 
third method (3D measurement image) is easier to use for the user, because only a 3D image from 
the sample surface has to be taken. The fourth method, on the other hand, presents an approach that 
can be performed without a 3D measuring sensor. For this method, we only need a simple light 
microscope, which is available in many research institutes or companies. In summary, an attempt 
was made to simplify the process of quantifying the mechanical properties for the user by using less 
complex equipment. 

2. Training of the ANN and Application of Computer Vision 

As explained in [45], the IIT was performed on the welded, cold rolled, and zinc coated steel 
plates of DP600 and DP800 with thicknesses of 1 and 1.5 mm, respectively. Moreover, the blank 
plates of DP1000 with a thickness of 2 mm as well as blank plates of high strength steel S690 with an 
8 mm thickness were used. The chemical compositions of used materials are summarized in Table 1. 

Table 1. Chemical compositions of used materials, in weight %. 

Material C Si Mn Cr Mo Al Fe 
DP1000 0.11 0.5 2.14 0.03 0.002 0.04 balance 

DP800 + ZE 0.14 0.8 1.47 0.1 0.01 0.015 balance 
DP600 + ZE75/75 0.1 0.14 1.4 0.16 0.18 0.02 balance 

S690QL 0.2 0.8 1.7 1.5 0.7 - balance 

The samples were welded with the resistance spot welding (RSW) and laser beam welding 
(LBW) methods as one of the most common joining technologies in the automobile industry. For the 
RSW, a C-type servo motor spot weld gun with a frequency of 1000 Hz direct-current transformer 
(SWAC, Oberhaching, Germany) was used. The LBW was carried out with a Yb:YAG disk laser 
(Trumpf, Ditzingen, Germany). The beam source of the system had a maximum power of 16 kW and 
a wavelength of 1030 nm. Tables 2 and 3 summarize the welding parameters used. 

Table 2. Welding parameters for the RSW. 
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Material Force in kN Hold time in ms Current in kA Electrode Cape 
DP1000 5 140 9 F16 
DP600 3.5 260 8 F16 

Table 3. Welding parameters of the LBW. 

Material Power in kW Focusing in mm Speed in m/min 
DP1000 2.4 0 1.8 
DP600 1.6 0 1.8 
S690 8 0 2 

2.1. Validation of the Simulation Model of IIT 

The validated numerical simulation model of the IIT from [45] was used in this work in order to 
generate the training datasets in a large quantity (250 datasets). The experimental force–indentation 
depth curves as well as the profile of the indented surface were compared with the result of the 
simulation model to validate it. If the difference between two results is in a satisfactory range of 
accuracy, the FEM (finite element method) model of the IIT, as seen in Figure 2, can be utilized as a 
validated model to generate the training data. 

The penetration tests were carried out with the ZHU2.5 machine (ZwickRoell, Ulm, Germany) 
and a diamond indenter with a tip radius of 0.2 mm. The maximum penetration depth of this 
indenter was 60 μm. The maximum load (F) was set to 120 N and the speed of the indenter to 0.05 
mm/min. 

In order to simulate the indentation test, a two-dimensional numerical simulation was 
performed by using eight-node axisymmetric elements. A linear–elastic material behavior was 
selected for the indenter with a Young’s modulus of 1140 GPa and a Poisson’s ratio of 0.07. The 
geometry and dimensions of the simulation model are shown in Figure 2. A mesh size of 0.0057 mm 
in the area of the contact between the indenter and specimen and 0.018 mm in the remaining 
specimen was used. 

 
Figure 2. Geometry of the simulation model of IIT. 

In this work, the parameters of the Voce nonlinear isotropic hardening material model [46], as 
shown in Equation (1), were used to describe the behavior of the welded steels as well as the 
indented samples. 𝜎 = 𝑅 .  + 𝑅 · 𝜀 + 𝑅  · ( 1 − 𝑒  ∙ ) (1) 

The parameters Rp0.2 stand for the yield strength, the stress at which the plastic deformation 
begins. R0 is the slope of the saturation stress and 𝑅   stands for the difference between the initial 
yield strength and saturation stress. The parameter b is a hardening parameter that characterizes the 
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saturation rate and 𝜀  describes the plastic strain. The material model parameters of the base and 
weld metal from the RSW and LBW techniques are listed in Table 4, according to [45]. These 
parameters were used to validate the accuracy of the trained ANN. 

Table 4. Material model parameter sets for the validation of the ANN [45]. 

Material Rp0.2 in MPa R0 in MPa R∞ in MPa b 

DP1000 
base 630 1100 390 72 
LBW 850 175 437 96 
RSW 906 175 437 96 

DP800 base 531 440 422 27 

DP600 
base 360 710 268 22 
LBW 600 75 420 90 
RSW 867 65 420 110 

S690 
base 690 393 184 17 
LBW  1000 200 400 100 

2.2. Generation of Datasets and Training of the ANN 

To generate the training data with the validated FEM model, first, a large variety of imaginary 
material parameter sets (250 parameter sets) were produced within the interval shown in Table 5. 

Table 5. Intervals of material model parameters variation. 

Parameter Interval 
Rp0.2 in MPa [340; 1050] 
R0 in MPa [50; 1150] 
R∞ in MPa [170; 460] 

b [15; 115] 

For each material model parameter, 250 parameter sets were randomly chosen as the input of 
the FEM model. In Figure 3, these parameter sets were depicted into 250 imaginary stress–strain 
curves in gray by inserting the parameters into the Voce nonlinear isotropic hardening model 
introduced in Equation (1). As seen, the stress–strain curves of the test material (blue) are located 
between the imaginary curves (gray). However, they have to be excluded, since they must stay 
unknown to the ANN. Moreover, the stress–strain diagrams of these imaginary materials were 
stored as the outputs for the training of the ANN, as shown in Figures 4 and 5. 

 
Figure 3. Stress–strain curves from the variation of the material model parameters. 
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Both corresponding force–indentation depth curves and the indented surface profiles were 
numerically calculated. The selected data points of these curves, as shown in Figures 4 and 5, were 
stored as the inputs to train the ANN. With this step, the 250 training datasets that consisted of input 
and output for the ANN were created. 

In the training phase, 15 data points on every curve were chosen as an input for the training of 
the ANN. As seen in Figure 4, the data points were distributed throughout the loading and 
unloading parts. The tenth data point was set as at the end of the loading phase at the maximum 
force level. The complete force release is represented by the fifteenth data point. 

 
Figure 4. Force–indentation depth curves generated by the FEM model and the corresponding 
stress–strain diagrams as the training datasets of the ANN. 

Similarly, as seen in Figure 5, in order to obtain the same dimensions of vectors for ANN 
training, 15 data points between the lowest and highest point of the indented surface were 
considered. Each selected data point has two lots of information, which leads to a total of 30 values 
as the input of the training datasets. 

 
Figure 5. Indented surface profiles generated by the FEM model and the corresponding stress-strain 
curves as the training datasets of the ANN. 
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In addition, the input and the output of the training data were normalized with linear scale 
transformation to increase the performance of the ANN and speed up the calculation [47]. The input 
layer of the ANN comprises 30 neurons, the hidden layer 10 neurons, and the output layer has four 
neurons for the four material model parameters represented in Table 5. In order to avoid overfitting 
during the supervised training, an early stopping method was implemented [48]. In this technique, 
the training datasets were divided into three subsets such as training, validation, and testing, which 
evaluated the generalization of the ANN toward unknown data. The division of the dataset into 
three subsets was performed randomly with the allocation ratio of 8:1:1 to the training (80%), testing 
(10%), and validation (10%) data, respectively. The tan-Sigmoid (Tansig) and linear (Purelin) 
transfer function were used as the activation function in the hidden and output layer. The learning 
rate of the network was 0.01. The backpropagation with the Levenberg–Marquardt optimization 
algorithm [49] was implemented for updating the weights and biases of the ANN. 

2.3. Processing the Indented Surface Images and Training of the ANN 

The surface of the indented specimens was visually analyzed by using the Alicona infinite focus 
as a contactless 3D surface measurement system [50]. The information related to the deformation of 
the indented surface in each point was recorded in 2D and 3D. First, the images were processed to 
bring them into the same color scale as a measurement reference as well as the same size, brightness, 
and pixel. In total, nine images from the surface of the specimens mentioned in Table 4 were 
captured and processed. Each final image had a square shape with the same brightness and 
contained 170 × 170 pixels. The pixels had color values based on a RGB format. The input data 
needed to be dimensionally reduced to have less complexity before employing them as the input to 
train the ANN. By performing k-means clustering, the RGB values in each pixel of the image were 
observed and partitioned into five optimal clusters, which were extracted by analyzing the 
Silhouette index of each data point in each cluster of the k-mean results. The algorithm returned the 
centroid of the clusters based on the RGB values and additionally assigned every pixel to its proper 
group. This transformation is depicted in Figure 6 in the unsupervised training part. 

The clustered colors were then sorted according to the hue-saturation value [51], which was 
used to represent the depth from the 3D-measurement. By sorting the colors, it was guaranteed that 
the first centroid showed the region with the deepest indentation, located mostly in the middle of the 
image. The last centroid defined the highest region of the surface unaffected by the indentation or 
pile-up. Finally, the RGB values of each centroid were used as input for the training dataset. With 
this, the image that originally had 170 × 170 × 3 variables was reduced to a total of 5 × 3 parameters. 
Then, these parameters, shown in the red circle in Figure 6, were packed into a vector (1 × 15) and 
this vector was used as input data. The material parameters of each image were used as the 
corresponding output. In the end, 15 input, seven hidden, and four output neurons were needed to 
train the ANN with images from the 3D-measurement. This procedure is shown in Figure 6. 
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Figure 6. Feature extraction of the images from the 3D measurements and training of the ANN. 

Furthermore, the indented surface was examined under a simple light microscope (Zeiss, Jena, 
Germany) with 40× magnification. All images were captured under the same conditions such as 
lightning and camera position. In total, 11 grayscale images were successfully captured with the 
light microscope from the materials mentioned in Table 4 and the corresponding heat affected zones. 
The images had a square shape with dimensions of 200 × 200 pixels. Image segmentation with 
k-means clustering was also performed on them. The optimal number of clusters, extracted by 
analyzing the Silhouette index of each data point in each cluster of k-mean results, was 5. Since the 
images were in grayscale, the centroids of the clusters had three identical RGB values. This 
parameter represents the brightness, with 0 defined as black and 1 as white. The indented area is 
recognizable with its darker color as well as its surrounding. The size of the indented area is 
different between images and depends on the depth of the penetration. Therefore, instead of the 
color values of each centroid, the number of pixels assigned to each cluster was considered as the 
input of the training dataset. The centroids of five clusters were then sorted from light to dark. In this 
step, the ANN was constructed with five inputs, five hidden, and four output neurons for the 
training with images from the light microscope. The tan-Sigmoid (Tansig) and linear (Purelin) 
transfer function were used as the activation function in the hidden and output layer. The learning 
rate of the network was 0.01. The procedure is described in Figure 7. 

Due to the limited training dataset, backpropagation, together with the Levenberg–Marquadt 
optimization and Bayesian regularization was used to construct the ANN. By using the Bayesian 
criterion for stopping the training, the algorithm does not need a further validation subset [52]. This 
algorithm needs more computation time, but is suitable for training with limited data. 

Moreover, the performance of the ANN was analyzed with the cross validation method. Each 
image set taken from the 3D-measurement and the light microscope were trained three times. In 
each training, two of them were randomly excluded from the training and used as test data to check 
the accuracy of the trained ANN. 
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Figure 7. Feature extraction of the light microscope images and training of the ANN. 

3. Results and Discussions 

The trained ANN must be tested and validated to evaluate its performance and accuracy. The 
data used for the testing was not a part of the training dataset and therefore was unknown to the 
ANN. By using the unknown data in the test phase, the precision, generalization, and flexibility of 
the ANN were investigated. 

The validated simulation model of the IIT from [45] was used to generate datasets to train the 
ANN. The results showed very good agreement between the simulated force–indentation depth 
curves as well as the profiles of the indented surface and the measurement, more specifically in the 
heat affected zone and weld nugget. 

3.1. Validation of the ANN Trained with Simulation Data 

The evaluation of the regression value is known as a common method to check the accuracy and 
flexibility of the trained ANN. This is possible by comparing the predicted values by the ANN and 
the desired outputs in a regression plot. The regression coefficient is the slope of the best fit line 
between the predicted values and desired outputs. Table 6 shows the resulting regression 
coefficients of the ANN trained with the data of force–indentation curves and the surface 
deformations obtained from the simulation data. 

Table 6. Regression coefficients obtained by comparing the desired outputs and outputs of the 
trained ANN. 

Data set 
Regression Coefficient 

Rp0.2 R0 R∞ b 
Force-indentation depth curve 0.98 0.9 0.81 0.73 

Profile of indented surface 0.99 0.99 0.98 0.95 

The regression coefficient of yield strength Rp0.2 was bigger than the other parameters and 
indicates that the ANN can approximate yield strength with higher accuracy. Using the information 
related to the surface deformation as the training dataset leads to more precise results compared 
with the force–indentation depth data. Nevertheless, the regression value is only one criterion in 
which to control how well the ANN adjusts its weight and biases toward the training data. A 
detailed evaluation on the accuracy of the ANN must be performed through its evaluation with the 
unknown data. 



Metals 2020, 10, 163 11 of 16 

 

As seen in Figure 8, there was a very good correlation between the predicted material model 
parameters and the reference data. The ANN can predict the yield strength Rp0.2 more accurately 
than the three other parameters. The mean absolute percentage error (MAPE) between the reference 
and prediction of Rp0.2 and R∞ were 7% and 18%, respectively, for the whole test data. Other material 
model parameters, R0 and b, can be predicted with the MAPE of 50%. The larger MAPE value of 
these parameters explains the reason of deviation in the strain hardening part of the stress–strain 
curve. However, this high value of MAPE does not have a considerable effect on the stress–strain 
curve. The sensitivity analysis revealed that Rp0.2 is the most important parameter of the chosen 
material model. The effect of the strain hardening material parameters was minimal, particularly R0 
and b. Therefore, the high value of the prediction error did not lead to the considerable differences in 
the stress–strain curve. 

 
Figure 8. Comparison between the output of the ANN trained with the force–indentation curves and 
the reference values from Table 4. 

Additionally, the trained ANN with the information of the indented surface profiles showed 
good performance in terms of generalization, as seen in Figure 9. The better regression values, 
according to Table 6, indicate that the ANN can predict the material model parameters more 
precisely. The yield strength Rp0.2 was again the most accurate parameter with a MAPE value of 4%. 
The Voce nonlinear isotropic hardening material model parameters were also determined, with the 
MAPE value of less than 21%. 

These positive results imply that an ANN trained with the profiles of the indented surface 
predict the material parameters with a higher accuracy. This may be caused by the strong 
dependency between the indented surface and the hardening plastic behavior. 
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Figure 9. Comparison between the output of the ANN trained with the data of the indented surface 
profiles and the reference values from Table 4. 

3.2. Validation of the ANN Trained with the Images of the Deformed Surface 

First, the Mann–Whitney–Wilcoxon test [53] was conducted on the representative clusters of 
each image. The test with the resulting p-value of less than 0.5 showed that each cluster was unique 
and independent of the others. In the next step, in order to evaluate the accuracy of the trained ANN 
with images of 3D-measurement, the predicted values were compared with the reference values 
from Table 4. As seen in Figure 10, the ANN could determine the stress–strain curves with a lower 
accuracy in comparison with the previous section. The prediction MAPE of yield strength Rp0.2 
varied between 3% to 26%. Due to the importance of Rp0.2 in the chosen material model, a small 
variation of this parameter can significantly change the resulting stress–strain curve. This higher 
value of MAPE was mainly due to the limited number of the training dataset. 

 
Figure 10. Comparison between the output of the ANN and the reference values from Table 4, where 
the ANN trained with the features extracted from images shows the deformation of the indented 
surface (3D-measurement image). 

Figure 11 shows the comparison between the predicted material model parameters from the 
ANN trained with the grayscale images taken with a simple light microscope and the reference 
values from Table 4. It seems that the ANN had difficulties in determining the strain hardening 
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parameters such as R0 and b. However, it could predict Rp0.2 and R∞ with a MAPE value less than 16% 
and 25%, respectively. 

 
Figure 11. Comparison between the output of the ANN and the reference values from Table 4, where 
the ANN was trained with the features extracted from images taken with a light microscope from the 
indented surface. 

As seen in Figures 9 and 10, the ANN trained with the data extracted from images could predict 
the material behavior. It is expected that by increasing the number in the training dataset, which was 
less than 10 images in this case, the ANN could predict the material parameters with higher 
precision. Once again, to obtain the ANN with high accuracy performed in Section 3.1, 250 datasets 
were used to train the ANN with the force–indentation depth curves and profile of the deformed 
surface. 

Four independent methods were introduced to characterize the mechanical properties of the 
welded steels locally, in the attempt to make the procedure of material characterization less 
complicated for the user. The last approach (light microscope image) can be undertaken with only a 
simple light microscope. 

4. Summary and Conclusions 

It was shown that it is possible to determine the mechanical properties of welded high strength 
steels with four completely independent approaches: (1) force–indentation curve, (2) profile of the 
indented surface, (3) 3D-measurement image captured from the surface of the indented specimen, 
and (4) image taken from the indented surface with a simple light microscope. Moreover, it is 
necessary to mention that only the first approach needs an instrumented indentation machine. The 
other three methods can be performed by only pushing a simple indenter into the surface of a 
specimen without using the instrumented indentation machine. 

The presented results show that the ANN trained with data of deformed surface profiles or 
force–indentation curves can predict the material behavior of the welded high strength steels with a 
very high accuracy. It was observed that this method is strongly robust for the determination of the 
yield strength. However, it is also possible to calculate the other material model parameters with 
satisfactory precision. 

Furthermore, it was shown that the images taken from the surface of an indented specimen can 
be analyzed with computer vision algorithms to find a correlation between them and the mechanical 
properties of materials. Nevertheless, the accuracy and flexibility of this method can be improved by 
increasing the number in the training dataset. 
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