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ABSTRACT: Half-cell potential mapping (HP) is the most popular non-destructive testing 
method (NDT) for locating corrosion damage in concrete. It is generally accepted that HP is 
susceptible to environmental factors caused by salt-related deterioration, such as different 
moisture and chloride gradients. Additional NDT methods are able to identify distinctive areas 
but are not yet used to estimate more accurate test results. We present a Supervised Machine 
Learning (SML) based approach to data fusion of seven different signal features to obtain higher 
quality information. SMLs are methods that explore (or learn) relationships between different 
(sensor) data from predefined data labels. To obtain a representative, labelled data set we 
conducted a comprehensive experiment simulating the deterioration cycle of a chloride exposed 
device in the laboratory. Our data set consists of 18 measurement campaigns, each containing HP, 
Ground Penetrating- Radar, Microwave Moisture and Wenner resistivity data. We compare the 
performance of different ML approaches. Many outperform the best single method, HP. We 
describe the intrinsic challenges posed by a data-driven approach in NDT and show how future 
work can help overcome them. 

1 INTRODUCTION  

Reinforced concrete is one of the most widely used building material. The main cause for 
deterioration is the corrosion of reinforcing steel (Nelson, 2013). Buildings in marine 
environments and traffic structures are particularly affected because they are exposed to large 
amounts of salt from seawater and de-icing agents. The most popular NDT method for the 
detection of active corrosion processes is half-cell potential mapping (HP) - where the 
electrochemical potential of the embedded reinforcement is measured against a reference 
electrode at the components surface. A highly negative potential indicates an active corrosion 
spot. It is generally accepted that the measurements are influenced by environmental factors (such 
as moisture and chloride gradients in the component, oxygen availability, etc.) and structural noise 
(caused by varying surface properties such as inhomogeneity, varying concrete cover, etc.) 
(DGZFP B03E (2014)). Theoretically, many of these influencing parameters can be determined 
with additional measurements. Nevertheless, a thorough physical understanding of the signal-
environment interaction in the sheer variety of test scenarios is not available for data 
interpretation.  
 
Earlier work demonstrated that even simple supervised machine learning (SML) functions 
outperform individual sensors in the detection of pitting corrosion in concrete under various 
controlled environmental conditions due to the use of correlation patterns in multi-sensor data 
sets (Völker, 2018). However, the use of more advanced approaches is by no means an 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rt

ic
le

: 
ht

tp
://

w
w

w
.n

dt
.n

et
/?

id
=

24
89

0

https://creativecommons.org/licenses/by/4.0/


   

2 
 

implementation problem - numerous methods are freely available - but depends mainly on the 
variability contained in the training data. This means that predictions of SMLs are essentially only 
as expressive as the data from which they were derived. The acquisition of variable NDT training 
data involves considerable effort as damaging process are slowly and the test specimens in civil 
engineering are large. It is therefore particularly worthwhile to take a closer look at the 
mathematical effects which also influence the prediction quality. This work compares several 
methods from SML and provides empirical advice how these methods can improve our test data 
analysis. The reciprocal effect of these methods on small sample size (in our case 18 experiments), 
high dimensionality (seven features), heterogeneity (experiment contains the whole life cycle), 
and unequal group sizes (0.5 million intact VS. 2000 defect pixels) on the data side are analyzed. 
Our analyses complements existing studies (Völker et al. 2017 and 2018) in data-driven approach 
in NDT focusing on highly sensitive data analysis by exploring possibilities of improving the 
sensitivity of NDT methods with data fusion of multiple sensing methods through machine 
learning. Thus, the general objective to accomplish in this research project is to exhibit the 
possibilities to improve the sensitivity of NDT techniques for active corrosion detection through 
the process of multi-sensor data fusion with supervised machine learning.   
 

2 THEORETICAL BACKGROUND  

The experimental work is based on a case study conducted by the Federal Institute for Materials 
Research and Testing (BAM), which simulates the accelerated life-cycle of salt-exposed concrete 
under various controlled environmental conditions (Völker 2017). The design of the concrete 
specimens (L x W x H = 1.4 x 1.0 x 0.3 m³) is based on a traffic structure according to DIN 
Technical Report 102 - as these structures are exposed to large amounts of de-icing salt and are 
particularly susceptible to chloride-induced corrosion. The reinforcement is 10 mm structural 
steel (BST 500) spaced crosswise at15 cm. 

The core aspect of the study was to achieve a high variability of the environmental factors 
moisture and salt on the one hand and to obtain referenceable conditions for later data labelling 
on the other hand. The first was achieved by accelerated chloride migration with potentiostatic 
polarization - a method that has been proven to accelerate the determination of the diffusion 
coefficient of concrete samples (e.g. according to ASTM C1202). This uses the endeavour of ions 
to strive for electric potential equalization. The migration of negatively charged chloride ions is 
accelerated by the build-up of an electric field in which they move to the positive pole (anode). 
In the experiment the embedded rebar was anodically polarized against a saline solution on the 
specimen (see figure 1 bottom, left.). Monitoring of the chloride penetration front to prevent 
unwanted corrosion was conducted using self-built anode leader sensor (marked in blue in  
figure 1, top, left).  

A referenceable defect position was ensured by the eventual corrosion initiation at a predefined 
location according to Figure 1 bottom, right, on an electrically insulated rod (marked red in Figure 
1 top, left). The rod was anodically polarization against a counter electrode beyond the critical 
corrosion causing potential. After the reaction started, the bar was short-circuited with the 
reinforcement cage to form an active corrosion system. 

This simulated life cycle of a chloride exposed structure was regularly monitored with NDT-
methods. The data set contains NDT methods that are commonly used for corrosion detection, 
namely ground-penetrating radar, HP, Wenner-resistivity (WR)  and microwave-moisture (MW). 
A-priori Information for data labelling is available. GPR measurements were carried out using a 
GSSI, Inc. SIR20 device with a 2 GHz palm antenna (GSSI 2005). The data consist of two 
perpendicular polarizations per measurement that were collected subsequently with an automated 
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scanner system with a lateral measurement spacing of 5 mm and a line spacing of 2 cm. The HP, 
WR and MW measurements were collected manually along a predefined measuring grid with a 
spacing of 10 cm. The HP data were collected using a Canin+ corrosion analysis system from 
Proceq. The reference electrode is a copper sulfate rod electrode (Proceq 1, 2016) DGZfP 
Merkblatt B 03. The WR measurements were collected using the Resipod probe from 
Proceq (Proceq 2, 2016) and the MW measurements were performed using an ID10 probe from 
HF-Sensorsimpermeability and porosity, which are due to the production-related higher 
compaction of the bottom part. The first campaign includes 10 measurements and second one 
consists of 8 measurements. The size of the measurement field is 126 x 86 cm². The measuring 
dates and the corresponding specimen conditions are listed in table 1. , the second consists of  
8 measurements. The size of the measurement field is 126 x 86 cm². The measuring dates and the 
corresponding specimen conditions are listed in table 1.  

Figure 1: Different stages of corrosion experiment; top left: specimen before concreting with corrosion rod (red) and 
chloride migration sensors (blue); top right: automated data collection on specimen with scanner system; bottom left: 
salt water bath with counter electrode mesh for potentiostaticly accelerated chloride migration; bottom right: sketched 
corrosion initiation through anodic polarization of embedded corrosion rod (+) against counter electrode (-). 

 
The data set contains 18 independently collected measurement campaigns with four different 
NDT methods on a specimen with varying conditions including moisture, chloride content, 
concrete quality and corrosion activity. Seven features were extracted from the NDT methods and 
are summarized in table 1. A representation of the features in spatial coordinates is provided in 
Figure 2. The characteristics grid-shape results from the fact that the features are with regard to 
the position of the reinforcement which is installed crosswise. The top row contains features from 
a pre-damaged condition of the specimen. The lower row shows the features in a scenario where 
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environmental conditions have changed and corrosion has occurred. The dataset contains in total 
50,037 observations, of which 1954 were labeled as defect/corroding pixels. 

 

Figure 2: Example feature set in spatial coordinates; top: seven features (see table 1) for intact condition (campaign 2); 
bottom: seven features for corroding condition (campaign 5) with red-marked corrosion spot. 

3 RESEARCH METHOD AND DATA  

The basic hypothesis of this work is to evaluate the possibilities of improving the sensitivity of 
NDT methods with data fusion through machine learning; in this case for detection of the active 
corrosion in reinforced concrete. Based on the previously presented experiment for corrosion 
detection, the obtained results for the tested specimen in various controlled environmental 
conditions were used for data fusion. The realization of data fusion can be accomplished by 
heuristic approaches, such as supervised learning techniques.  
 
Dependencies between features are typically represented in the feature space (FS). The FS is a 
mathematical vector space in which the measured features for each point are plotted over each 
other. A common application is regression analysis, in which a two-dimensional FS is used to 
describe the relationship between two features. However, the FS is a general concept that allows 
to describe the relationships between any number of variables. The key concept is that different 
classes (such as corrosion and no corrosion) populate different areas in the FS. SML algorithms 
estimate a so-called decision boundary (DB) to discriminate between these regions. So-called 
classification assigns new data to a class depending on which side of the boundary they appear 
on. In this study, we use support vector machines (SVM) as a machine learning tool for 
classification, which can recognize the relationships in data, based on the given labels (corrosion and 
no corrosion). SVMs provides prediction models, which can distinguish between intact and defect 
pixels in the dataset. The estimation of the DB with SVMs is based on the appropriate choice of 
kernels that transform regions in the FS into higher dimensional spaces. While it may be difficult 
to develop an intuitive understanding of this approach, it is a widely accepted and powerful 
technique for the estimation of DBs.  
 
The performance assessment is based on the error rates sensitivity (a.k.a. true-positive-rate, TPR) 
and specificity (a.k.a. true-negative-rate, TNR) from test data that had not been used to calculate 
the DB. However, the data set is relatively small (18 experiments) and very heterogeneous (data 
for the entire life cycle are included). Thus, performance is determined in terms of an average 
performance using cross validation where all combinations of test and training campaigns are 
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considered. More specifically, the dataset contains seven features, which are summarized in  
Table 1. From the overall 50,037 intact observations, 1954 observations were classified as defect 
pixels. Different feature constellations were tested for the application of SVM. The 
implementation of the classifier for supervised machine learning technique, as well as the 
preparation of the data basis, are done with the help of RStudio (version 1.1.456).  

Table 1. The extracted Features from the underlying NDT signals 

  NDT-Method Parameter 
Feature 1 Ground-penetrating radar (GPR) energy of direct wave 
Feature 2 GPR dominant frequency of direct wave 
Feature 3 Half-cell potential (HP) rebar potential 
Feature 4 HP change of rebar potential 
Feature 5 Wenner-resitivity (WR) electrical resistivity 
Feature 6 Microwave-moisture (MR) relative moisture of concrete 
Feature 7 GPR depth-corrected top rebar reflection 

4 RESULTS  

The aim of this study was to improve the sensitivity of the prediction results. This corresponds to 
an improvement of wrong classification of defect pixels as intact. This type of misclassification 
is more problematic for chloride-induced pitting corrosion. Nevertheless, the balance between 
maximum sensitivity and appropriate false alarm rate should be treated on a case-by-case basis. 

For the application of the machine learning technique, seven different feature constellations were 
tested. The large amount of data may contain information that does not contribute to the creation 
of the model. Reducing redundant information can therefore help to improve the model and to 
facilitate the pattern recognition. For the given database, the best result was achieved using all 
features.  
 
Table 2. Prediction results using a linear SVM-Kernel for different feature selections. We report the True 
Positive Rate (TPR) of pixels that were rightfully detected as corroded and the True Negative Rate (TNR) 
of pixels that were correctly identified as non-corroded.  

Used Features TPR not detected  
defect pixels 

TNR not detected  
intact pixels 

All 0,688 609 0,987 460 
3-7 0,682 622 0,992 381 
3-6 0,588 1214 0,983 409 
1-4,7 0,604 1018 0,995 245 
3,4,7 0,544 1496 0,987 605 
2-4, 6-7 0,644 1009 0,986 313 
3,4,5 0,622 1198 0,985 460 

  
For a higher accuracy in SVM based classification results may be possible by using more 
advanced kernels the transform FS with a non-linear function. Table 3 shows the result from 
various more advanced kernels which are detailed in Shalev-Schwartz et al. (2014).  
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Table 3. Prediction results for different kernels by using all features. We report the True Positive Rate 
(TPR) of pixels that were rightfully detected as corroded and the True Negative Rate (TNR) of pixels that 
were correctly identified as non-corroded. 

kernel TPR not detected  
defect pixels 

TNR not detected  
intact pixels 

Vanilladot 0,688 609 0,987 460 
Anova 0,546 888 0,981 1385 
Bessel 0,312 1345 0,972 1345 
Laplace 0,643 697 0,985 171 
Polydot 0,688 609 0,987 460 
Rbf 0,576 828 0,983 242 
tan - 1954 - 1644 

 
The creation of additional features based on mathematical transformation of existing features can 
help to improve the detection performance of the prediction models. Following, two features will 
be presented that have a positive effect on the prediction model. 
 
The first feature (F1) determines the difference between each two data points of a feature and 
creates a new feature from it. The underlying assumption is that the slope of a feature may be a 
more sensitive indicator. However, it should be considered that the determination of the difference 
does not make a distinction in the coordinate system of the measuring field, as in some cases the 
compared pixels are spatially separated and not adjacent to each other. The application of F1 has 
shown an improvement in the detection performance. In the case of LR, the sum of the wrong 
classified pixels could be reduced from 1036 to 960, which corresponds to a decrease of 7.34%, 
compared to the results of LR without further feature engineering. To the same extent (7.28%), 
the detection rate of the unrecognized defect pixels could be reduced. The application of SVM 
showed that the number of total errors were decreased by 26.15%, while the unrecognized defect 
pixels decreased by 9.6%. 
 
The second feature F2 uses a mathematical transformation of the data values of selected features. 
In particular, the decimal logarithm function is applied to the data values. The logarithmic 
transformation is used to modify the distribution of a feature when the original data values have 
an asymmetry in the distribution function. In case of LR, it can be seen that both the total number 
of misclassified pixels and the unrecognized defect pixels could be reduced by the application of 
the logarithmic transformation. Compared to the difference feature F1, the improvement is 
slightly smaller. The same effect can be observed in case of SVM. In general, using F2 coupled 
with SVM, the best overall results can be achieved. The summary results of the conducted 
experiments is summarized in Table 4.  
   
 
 
Table 4. Prediction results by using F1 and F2 

Feature 
 selection 

applied on 
feature  

TPR not detected 
defect pixels 

TNR not detected  
intact pixels 

Prediction results by using F1 (kernel: vanilladot) 
3-7 3 0,693 599 0,988 382 
3-7 3,7 0,703 580 0,988 364 
3-7 3,4,5,6,7 0,702 583 0,988 384 
2-4 , 6-7 3,7 0,639 705 0,986 71 
2-4 , 6-7 7 0,616 750 0,985 131 
all 3,7 0,709 569 0,988 364 
all (laplace kernel) 3,7 0,718 552 0,989 89 
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Prediction results by using F2 
all (laplace kernel) 3,7 0,734 518 0,734 169 
all (laplace kernel) 3 0,735 517 0,735 169 
all (polydot kernel) 3,7 0,882 541 0,822 492 
all (polydot kernel) 3 0,760 467 0,760 413 

5 DISCUSSION  

The reported study shows that an improvement in the detection of defective pixels is possible, by 
the fusion of data collected from different sensors. The results could further be improved by using 
additionally engineered features based on mathematical transformations. The prediction accuracy 
for the not detected defect pixels could be reduced by up to 43%, by using the designed feature 
F2. However, compared to the values without using F2, it must be noted that the number of total 
errors has been increased. In these cases, incorrect categorizations of the intact pixels were 
increased. For practical application, this would correspond to a false forecasting corrosion that 
would in fact be absent. The balance between the proportion of false reports compared to the 
highest possible rate of corrosion detection should be considered in every specific case. In 
principle, it is also possible to reduce the degree of false alarms while improving the detection 
rate of defect pixels. The best compromise between these two parameters might be achieved by 
using our engineering feature F1. In this case, the rate of not detected defect pixels was reduced 
by 33%, while the rate of not detected pixels was reduced by approximately 18%.  
 
The practical applications of this work facilitate opportunities for future research into leveraging 
the potential of data fusion. Multi-sensor data fusion can be used for automated and improved 
measurement evaluation. The availability of large multisensory data sets, as well as the high 
degree of development of NDT methods forms the basis for new methods of damage detection. 
In the case of corrosion detection, the diagnosis is carried out in practice based on the standards 
of DGZfP (Merkblatt B 03 E) and ASTM (C876). However, Völker (2017) was able to show that 
the localization of corrosion based on these standards was unsuitable for the presented 
experiment.  
 
The applicational limits of the SVM algorithm on new data sets for corrosion detection is not part 
of this work, which is why the generalization remains limited to measurements with similar 
constraints to the presented experiment. In particular, material properties such as concrete 
strength, pore composition, carbonation depth, as well as design parameters such as reinforcement 
thickness and concrete cover, might be parameters which can influence the prediction 
performance significantly. An extension of the data set by these parameters promises a higher 
generalization, as well as an improvement of prediction model itself. However, through the use 
of conventional and unmodified sensors it is conceivable to transfer the procedure of data fusion 
to new data set, by considering the restrictions to the generalizability. 
 
Furthermore, data fusion could be used in other testing problems, whenever single measurement 
information cannot provide sufficient information. This applies, for example, to the determination 
of reinforcing diameters, the detection of alkali-silica reactions or the detection of gravel nests in 
concrete. Ideally, data fusion models will be used in combination with autonomous robot 
platforms to determine the building conditions more accurate. 

In addition, the application of data fusion is also applicable outside structural engineering 
problems when automated tasks are to be performed on complex data sets with numerous 
boundary conditions. 
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6 CONCLUSION AND OUTLOOK 

Taken together, our novel and interesting results demonstrate a significant improvement in 
corrosion detection in comparison to different international standards as well as single sensor 
measurements. Our data fusion model using the SVM machine learning technique, is applicable 
in automated and improved measurement evaluations. In this paper, the data fusion model has 
been successfully tested for detection of active corrosion in reinforced concrete.  
 
The practical applications of this work facilitate opportunities for future research into leveraging 
the potential of data fusion. Subsequent studies must be carried out to investigate the performance 
of the SML approach based on new data sets with different experimental and environmental 
conditions.  
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