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Abstract. Due to the short wavelength compared to the dimensions of the structure, the simulation of ultra-
sonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical
Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a
computational domain is discretized using �nite elements, while the interior is described by an analytical
ansatz. Hence, the number of degrees of freedom is reduced signi�cantly compared to the classical Finite
Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ul-
trasonic guided waves was developed. The method constitutes an e�cient algorithm for prismatic structures
of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can
be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an e�-
cient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic
wave propagation in �uids as well as acoustic-structure interaction in terms of SBFEM is still missing. In
principle, the �uid can be described by a displacement-based formulation and thus be implemented in ex-
isting SBFEM algorithms for solid bodies. However, due to the discretization with classical �nite elements,
spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spuri-
ous modes can be suppressed using a penalty parameter. Although very accurate results were achieved for
some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose
a di�erent approach in this contribution. We employ a pressure model to simulate the acoustic behavior
of �uids. The implementation of the pressure model results in a higher e�ort due to the necessity of in-
corporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of
the method is demonstrated in comparison with analytical solutions and results obtained using the FEM.

Introduction

The goal of non-destructive testing (NDT) is to detect �aws, such as cracks or pores, inside a component
without destroying it. Besides other physical phenomena ultrasound can be used in NDT for this pur-
pose. So-called guided waves are hereby of special interest for NDT as they travel long distances. Guided
waves are found in structures with a thickness in range of the wavelength e.g. plates or pipes, so-called
waveguides. However, the behavior of guided waves is very complex as they exhibit a strong dispersion.
The possibilities to analytically describe the complex dispersion behavior is limited. An e�cient simula-
tion tool for this tastk is therefore essential to further develope NDT methods. Besides other methods
the classical Finite Element Method (FEM) can be used to investigated the wave behavior. However,
it results in general in large numerical systems, due to �ne mesh needed at ultrasonic frequencies. An
e�cient alternative presents the Scaled Boundary Finite Element Method (SBFEM). In the SBFEM, a
semi-analytical method, only the boundary of the computational domain is disretized with �nite elements.
The physical behavior inside the domain is described analytically. A special formulation for guided waves
in prismatic geometries was developed by Gravenkamp and Krome [1, 3, 4]. In [3] it was shown that it
presents an e�cient alternative to the FEM to compute guided waves.
The method was shown to be an e�cient tool for the simulation of guided waves in solids. However, a
stable method for the simulation of acoustic behavior in �uids is still missing. In a �rst try a displacement-
based ansatz was used to describe the �uid. This ansatz results in spurious modes, widely reported in
literature. By applying a penalty parameter the spurious modes can be suppressed. Despite good results
for 2D and axisymmetric geometries [6], for the case of 3D geometries the implemented method did not
show results without spurious modes.
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We, therefore, in this work implement the Helmholtz equation to describe the acoustic �uid into the
SBFEM.

1 Theoretical framework

The SBFEM relies on a coordinate transformation. In general the cartesian coordinates are mapped
onto the so-called SBFEM coordinates, η and ξ. η is the local coordinate of the �nite elements on the
boundary. ξ is the scaling direction pointing from so-called �scaling center� to the boundary. In the
case of prismatic geometries the scaling center is placed at x −∞. It follows that ξ is equivalent to the
cartesian x coordinate. In 2D the local coordinate η is parallel to the y coordinate, respectively in 3D
the η lies in the y-z-plane .

1.1 Acoustic-structure interaction

How to handle dynamic behavior in solids can be found in [1, 3]. It is therefore not repeated here.
The acoustic behavior of a �uid is described by the Helmholtz equation

K∆p− ρf p̈ = 0 , (1)

where K is the bulk modulus and ρf the density of the �uid. By applying the coordinate transformation
and performing some computation steps (equivalent to the computation steps for solid found in [1]), the
SBFEM equation is obtained.

E0ppn,xx(x)−E2ppn(x)−M0pp̈n = 0 (2)

E0p, E2p andM0p are coe�cient matrices integrated over the �nite elements and pn is a vector containing
the integrated nodal pressure values. A solution algorithm for the dispersion behavior can be found in
[1].
The boundary condition between �uid and solid reads as

K
∂p

∂n
= −ρfnᵀü (3)

where n is the normal vector pointing from the �uid domain into the solid domain. For the SBFEM this
results in following equation system.[
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where E0s,E1s,E2s and M0s are the coe�cient matrices of the solid domain. The coupling matrix Q is
given by

Q = NᵀnNp (6)

where N are the shape functions of the solid element and Np the shape functions of the �uid element. By
transforming (5) into the frequency domain an eigenvalue problem is obtained, which yields the dispersion
behavior of acoustic waves inside the geometry.

2 Examples

2.1 Liquid-layer between two plates - dipsersion behavior

To begin with the dispersion curves of two aluminium plates with a thin liquid layer in between are
calculated (see Fig. 1a). Both plates have a thickness of h = 5 mm, whereas the liquid layer is d = 1 mm



thick. The material parameters for aluminium are given by: (E = 70 GPa, ν = 0.33, ρ = 2700 kg

m3 ). The

liquid layer is made from water (K = 2.1904 GPa and ρf = 1000 kg

m3 ).
The phase velocity is shown in Fig. 1b. The results are in perfect agreement with dispersion curves
computed with COMSOL Multiphysics R©.

(a)

(b)

Figure 1. Dispersion behavior of plate with a �uid layer in between. a) simulated geometry b) phase velocity over
frequency.

2.2 Liquid-�lled pipe

Guided waves can be used very e�ciently to investigate or monitor piping systems. For this purpose the
wave behavior in such a structure is of interest. In Fig. 2b the dispersion behavior of an brass pipe �lled
with motor oil (ρf = 870 kg

m3 and K = 2.634 GPa) is displayed. The pipe is made of brass (ρ = 8400 kg

m3 ,

ν = 1
3 and E = 108.42 GPa). The inner radius r of the pipe is 5 mm and the wall thickness h is 1 mm

(see Fig. 2a). Here, an axisymmetric model is used, where in the SBFEM only one radius of the pipes
has to be discretized with one-dimensional �nite elements [2]. The results of SBFEM are compared to
results from DISPERSE [5], which relies on the analytical Global Matrix Method (GMM), and COMSOL
Multiphysics R©. Both, SBFEM and COMSOL Multiphysics R©, yield one mode more than DISPERSE.
It is the �uid mode M1 [Woekel.2015].
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