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Abstract
Themovement of themacroscopicmagneticmoment in ferromagnetic systems can be described by
the Landau–Lifshitz (LL) or Landau–Lifshitz-Gilbert (LLG) equation. These equations are strictly
valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL
or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to
micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion
regarding simulation cell size and temperature has to be established. Based on energetic considera-
tions, a conversion for ferromagnetic bulk and thinfilm systems is proposed. The conversion is tested
inmicromagnetic simulations which are performedwith theObject OrientedMicromagnetic
Framework (OOMMF). TheCurie temperatures of bulkNickel, Cobalt and Iron systems aswell as
Nickel thin-film systemswith thicknesses between 6.3mono layer (ML) and 31ML are determined
frommicromagnetic simulations. The results show a good agreementwith experimentally determined
Curie temperatures of bulk and thinfilm systemswhen temperature scaling is performed according to
the presentedmodel.

1. Introduction

The classical Landau–Lifshitz equation (LL) describes the precession of amacroscopicmagneticmoment (M) in
a ferromagnet around the effectivemagnetic field (Heff) [1, 2].
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The precession of themagneticmoment (M)with time (t) around an effectivemagnetic field (Heff) is governed
by the gyromagnetic ratio (γ) and the damping parameter (α). The effectivemagnetic field includes
contributions from externalfields, exchange interaction, anisotropies, etc. The phenomenological damping
parameter enables the system to transfer energy and angularmomentum from themagneticmovement to other
degrees of freedom. The LL ismathematically equivalent to the Landau–Lifshitz-Gilbert (LLG) [3] equation and
only differs by the relation of the two parameters,α and γ [2]. The LL and LLG leave the length of the
magnetisation vector unchanged and do not include temperature effects [4]. Therefore they are strictly valid
only at the absolute zero temperature. To include effects of elevated temperatures onmagnetisation dynamics,
which are of importance for various research topics and effects, such as temperature gradients, spin-torque
effects, laser induced change ofmagnetisation dynamics, all-optical switching and heat assistedmagnetic
recording, the LL or LLGhave to bemodified [2, 5–7]. Different approaches exist to include these temperature
effects inmicromagnetic simulations for elevated temperatures. For constant temperatures, theoretically or
empirically determined values of thematerial parameters can be adjusted according to their temperature
dependence and then included as input parameters into the simulation [8]. A second possibility is to use the
Landau-Lifhshitz Bloch equationwhichwas derived from the stochastic formof the Landau-Lifhshitz (sLL)
equation by amean-field approximation [2, 4, 9]. One of themost fundamental approaches is, to include the
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effects offinite temperature on amicroscopic level, as it is done for the sLL. This can be achieved by transforming
the LL or LLG into a stochastic differential equation of Langevin (sLL) type [10]. Here, the interaction of an
isolated spinwith a thermal bath ismodelled by addition of a temperature dependent, stochastic Langevin field
to the effective fieldHeff [2, 4, 5]. This temperature dependent field points for each time step and elementary cell
into a randomdirection. The spatial varying fluctuation leads to a similarly varying precession of themagnetic
moment around the effective field direction. By averaging over a huge number of spins, this random
perturbation results in a decrease of the totalmagnetisation, compared to the unperturbed case at zero
temperature. The average ofmany of these interacting spins leads to a temperature dependence of the
macroscopicmagneticmoment in accordancewith spinwave theory [2]. Due to the high number of spins in
realistic ferromagnetic structures, this approach based on one spin per unit cell results in high computational
costs duringmicromagnetic simulation, and is therefore only applicable to rather small systems [2]. To apply the
sLL tomicromagnetic simulations, where the spin density per unit cell is generally higher, a conversion has to be
established. To express the problemwith thewords of the author of the Langevin extension (thetaevolve
package) forOOMMF [11]:

‘For accurate numerical results (e.g. when trying to determine the Curie-temperature of a system) the
change of saturationmagnetisation with temperature has to be respected. It is not yet clear exactly
how this is done best, but it is clear that itmust be done in someway. Otherwise good results can only
be expected for a density of just a single spin per cell’ [12].

In the followingwewill derive such a conversion for bulk and two dimensional thin film systems from energetic
considerations at the Curie temperature. The conversionwill be applied in temperature dependent simulations
withOOMMF.Nickel, Cobalt and Iron bulk andNickel thin film systemswith varying cell sizes are simulated. It
will be tested if, and under which conditions, the given conversion has the power to estimate theCurie
temperatures of the different systems, which is not possible in standardmicromagnetism.

2. Theory

2.1. Temperature scaling
Todetermine the scaling between the effective physical temperature (Teff) and the input parameter used as
simulation temperature (Tsim) in dependence of the lattice constant (aeff) and the length of a elementary
simulation cell (asim)we follow arguments as given in chapter VII of [13]: above theCurie temperature (TC) the
ferromagnetic behaviour of the respectivematerial vanishes, because the energy originating from thermal
excitation overcomes the exchange interaction, which favoursmagnetic ordering.With otherwords: for a cubic
crystal at theCurie temperature (TC) the order ofmagnitude of the product of themacroscopic exchange
interaction (A) and the square of themagnetisationM2 per area a2 (with length a) are equal to the averaged
energy per volume (k T aB c

3) [13]:
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With kB as Boltzmann’s constant, A as the exchange stiffness,M as themagnetisation and a as the characteristic
length of the system. In a real world system, the characteristic length is identifiedwith the lattice constant. In
micromagnetic simulations the characteristic length is given by the edge of the elementary simulation cell. The
magnetisation and exchange stiffness are independent of the characteristic length of the system, due to their
definition asmagneticmoment density and energy per length, respectively. Thus, following equation (2) the
relation between temperature and length of two systems (simulation (sim) and effective/physical (eff)
parameter) can be expressed as
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Hence, the temperatureTsim as used in the simulation as input parameter can be determined from the physical
temperatureTeff and the respective lattice constant aeff and simulation cell length asim as follows:

T
a

a
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Todetermine the rangewhere scaling can be applied, one has to consider the temperature effects on the
exchange length of the system,which depends on various simulation parameters [14–16] aswill be discussed in
the following.
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2.2. Thermal exchange length
To obtainmeaningful results frommicromagnetic simulations, the deviation of the direction of two
magnetisation vectors of neighbouring simulation cells has to be small. This can be achieved by decreasing the
size of the simulation cells. At T=0 K for systemswhere the exchange interaction dominates over other
anisotropies, an upper limit for the reasonable size of a simulational cell is given by the exchange lengthλex [17]:

A

M

2
5ex

S0
2

l
m

= ( )

Here,μ0 is themagnetic permeability of the free space, andMS the saturationmagnetisation. The exchange
length gives the distance over which the abovementioned condition of small deviations of the directions of two
neighbouringmagneticmoments is fulfilled. The exchange lengths of all simulatedmaterials are in the range of
nanometers (see table 1).

When temperatures are above 0 K, thermal excitation’s and the resulting disorder have to be considered as
well. Therefore, the length of a simulation cell asim has to be smaller than the length over which thermal
fluctuations decay in space [14, 15]:

a 6sim thex l ( )

Whereby the characteristic lengthλthex is called thermal exchange length. The interplay of simulation cell size
with thermal effects was investigated by different authors [14–16]. For example, Tsiantos et al [14] definedλthex
in analogy to equation (5) as
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and the simulation time stepΔt. By replacingTsim via equation (4)withTeff the dependence of Tsiantos thermal
exchange length on the simulational cell length asim,Teff, andΔt can be expressed as

a T t . 9thex sim eff
1 1 2l µ D-( ) ( )

For givenmaterial parameters the condition of equation (6) can be strictly fulfilled only by a certain set of
temperatures, and simulational parameters. Especially when it is considered that the upper limit for the
simulation parameterΔt has to be chosen, such that for a given set offixed parameters the absolute value of the
equilibriummagnetisation converges, whenΔt is decreased further. To asses if the given set of appliedmaterial
parameter for bulkmaterials (table 1) allows a simulational cell size to be chosen, such that it fulfils equation (6),
the thermal exchange length for differentΔt and asim (figure 1 left) andTeff (figure 1 right)was calculated. It can
be seen, that especially at elevated temperatures, it cannot be avoided that the thermal exchange length becomes
smaller than the simulational cell size.

Nevertheless, according toMartinez et al [15]λthex as defined by Tsiantos et al [14], does not necessarily
represent the true scale over which thermally introduced fluctuationswithin a ferromagnet decay in space [15].
With otherwords, solutionsmay converge even if equation (6) is not strictly fulfilled.

Table 1.Overview over the simulation parameters for bulkmaterials. Shown are from left to right, thematerial and its crystal structure, the
length of the elementary cell, themagnetisation, anisotropy constant, exchange constant, the simulated, scaled and experimental Curie
temperatures, the exchange length and the thermal exchange length at TC

exp . The sources of the experimental data are given next to the
respective value. All other simulation parameters are given throughout the text.

Type aeff (nm) M0 (A/m) K (Jm−3) A (J/m) TC
sim (K) TC

eff (K) TC
exp (K) λex (nm)

λthex

(nm)

Fe (bcc) 0.286 [18] 1700×103 48×103 (cubic) 21×10−12 4300 1230 1043 [19] 3.4 0.55

Ni (fcc) 0.345 [18] 490×103 −5.7×103 (cubic) 9×10−12 1800 630 627 [19] 7.7 0.59

Co (hcp) 0.250a 1400×103 520×103 (uniaxial) 30×10−12 6000 1500 1388 [19] 4.9 0.65

Note.
a For the hcp lattice, aeff is given by the shorter lattice vector a0=0.250 nmcompared to b0=0.406 nm [20].
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Therefore, in the following sections wewill address the question if the proposed temperature scaling
(equation (4)) can successfully reproduce theCurie temperatures3 of differentmaterials andwhether it is
necessary to strictly fulfil the condition given in equation (6).

Figure 1. Shown are the dependence of the thermal exchange length according to equation (7) in dependence ofΔt and asim at
Teff=1 K (left) andTeffand asim atΔt=10 fs (right) forNickel (top), Iron (middle), Cobalt (bottom). The bulk simulation
parameter are given in table 1. The line in each graph indicates the isoline forλthex=1 nm.

3
Wenote here, that generally the objective ofmicromagnetism is indeed not to determine theCurie temperature, still it represents the

natural test for any temperature scaling performed in ferromagnetic systems.
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3.Micromagnetic simulations

To test the presentedmodel variousNi bulk and thinfilmswere simulatedwith the version 1.2b2 of theObject
OrientedMicromagnetic Framework (OOMMF) [11]which implementsmicromagnetic simulations inmagnetic
solids described by thefinite-differencemethod. The temperature effects were simulatedwith the thetaevolve
extension [12]which adds the possibility to perform simulationswith the sLL. To test themodel for the
temperature scaling, as presented above, different simulations ofNi, Co and Fe bulk systems andNi thin films

were performed. For a given temperature, themagnetisation (M M M Mx y z
2 2 2= + + )was determined in all

simulations from the average over the last hundred values before reaching the end of the simulations at 50ps. As
initial condition themagnetisationwasmaximumalong the x axis, whichwas oriented in plane. Under the
influence of the temperature themagnetisation in each simulation cell gets disturbed by the fluctuating field and
the totalmagnetisation, averaged over all cells, decreases. As an example the time evolution of a nickelfilmwith
6.3 ML is shown for four simulated temperatures infigure 2.Within the first picosecond’s, themagnetisation
decreases quickly. Afterwards the approach towards the equilibriummagnetisation slows down and the
influence offluctuations becomes visible. As expected, fluctuations are stronger for higher temperatures.

3.1. Effects of the cell size
To asses the general power of the Langevin extension to estimate theCurie temperature without any scaling, a
simulation of a bulkNickel systemwith ‘atomic’ dimensions of the simulation cell (asim=aeff=0.354 9 nm)
and no temperature scaling (Tsim=Teff) a system size of 30×30×10 cells, a time step ofΔt=0.1 fs and
damping parameterα=0.05 [21, 22]was performed (figure 3 red squares). All other simulation parameters of
the simulated bulk systems are given in table 1. This systemwas comparedwith a similar system (figure 3 black
circles)with increased cell size (asim=1nm) and time step (Δt=1 fs). After temperature scaling for the system
with asim=1 nmaccording to equation (4), both simulations show the same decrease of themagnetisation in
dependence of the effective temperature (figure 3).

To be able to perform simulations for systemswith increased size it is often beneficial to be able to use shorter
simulation time steps and increased simulation cell sizes. Therefore, further simulationswere performedwith
increased number of cells (50×50×10), and settings optimised for higher simulation speed (Δt=10 fs,
α=0.5) for four different cell sizes (figure 3: 1 nmpink stars, 2 nmgreen cross, 4 nmblue triangles, 8 nmblack
diamonds). TheTeff dependentmagnetisation for cell sizes of 1 nm and 2 nm systems andΔt=10 fs show good
agreementwith themagnetisation dependence of the simulationswith shorter time steps despite the fact that
asim>λthex. All systems approach the region of the phase transition, whereM(T) drops below 5%ofM(0 K),
between 630 K–670 K. This results are comparable with theCurie temperature ofNi (T 627 KC

Ni = ) [19].
We note here, that simulational and experimental results are in agreement despite the fact that

a Tsim thex Cl> ( ). For asim=4 nm themagnetisation decreases slower, with transition temperatures above
700 K. The cell length of 8 nm,which is even above the non-thermal exchange lengthλex (table 1), leads to an
even stronger overestimation of theCurie temperature above 1000 K.

Figure 2.Time evolution of the normalisedmagnetisationM(t)/M0 and the componentMx of aNifilmwith 6.3 ML for different
simulation temperatures. Given are four example for increasing (top to bottom) simulation temperatures (Tsim) from top to bottom:
100 K (M:yellow,Mx:ochre), 1000 K (M:light blue,Mx:pink), 1500 K (M:light green,Mx:dark blue), 1800 K (M:black,Mx: red). The
averagemagnetisation approaches theirfinal value after about 20 pswhenMandMx start to deviate. Fluctuations increase with higher
temperature.
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3.2. Bulk ferromagnets
To test weather this parameter set (1 nmcell size, 50×50×10 cells,Δt=10 fs,α=0.5) is capable to
estimate theCurie temperature of other ferromagneticmaterials temperature dependent simulationswere
performed forNickel, Cobalt and Iron. The results are displayed together infigure 4with Bloch’s T3/2 law and
Curie temperatures from the literature [19]. After temperature scaling according to equation (4), the simulation
predicts the phase transition ofNickel aroundT 630 KC

eff = (green diamonds), overestimates the value for

Cobalt (T 1500 KC
eff = ) slightly by about 8%and for Iron (T 1230 KC

eff = ) by about 20%. In comparison, the

non scaled values overestimate theCurie temperatures strongly: NiT 1800 KC
sim = , FeT 4300 KC

sim = and

CoT 6000 KC
sim = .

3.3. Thin ferromagneticfilms
The behaviour of ferromagnetic systemswith thickness values of a couple ofmono layer (ML) is of high interest
due to the possibility to tunemagnetic properties such as the crystalline anisotropy orCurie temperature by
changing their thickness [23, 24]. For example, the type and orientation of crystalline anisotropy of thinNifilms
increases by a factor of twenty in thin film systems compared to the bulk, and between 6–40ML it is best
described as uniaxial, which leads to a perpendicular easy axis [24, 25]. Thismakes them a promisingmaterial for
applications in data storage or electronics [2, 26]. Due to their reducedCurie temperature [23, 27] inclusion of
temperature effects becomes evenmore important than for bulk systems. To test weather the temperature
scaling is applicable to low dimensional systems, or iffinite size effects have to be included, the behaviour ofNi

Figure 3.Magnetisation in dependence of the scaled temperature (Teff) forNi for different simulation cell sizes, damping parameter
and simulation steps. Simulationswithα=0.05were performed for 10×30×30 cells. Simulations withα=0.5were performed
for 10×50×50 cells. Additional simulation parameters are given in table 1. The given temperature (Teff)was calculated from
equation (4) from the simulation temperature (Tsim).

Figure 4.Magnetisation in dependence of the scaled temperature (Teff) for three bulkmaterials with 1 nm cell size: Ni (green
diamonds), Fe (Red squares) andCo (black circles) together with the respective plot of Bloch’s T3/2 law:
M T M K T T0 1 C

3 2= -( ) ( ) ( ) (Ni: Green solid line, Fe: Red broken line, Co: Black dotted line). For detailed simulation
parameters see table 1.
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thinfilmswith 6 to 36ML (1 nm to 6 nm thickness)were simulated.Withinfilmswith a thickness below the
exchange length, an uniformmagnetisation can be assumed [24]. Therefore in afirst simulation run only one
cell in z directionwas simulated, thewhole systemwas 100×100×1 cells big, the time stepΔt=10 fs, and
the damping parameterα=0.5 andK=1.5×105 Jm−3. During a second simulation run the cell lengthwas
set constant (1 nm) in z direction, and the number of cells was varied (nz=1 – 6), with 100×100×nz cells.
When the simulatedCurie temperatures are comparedwith experimental values, it has to be noted that they
strongly depend on substrate and growth conditions [23, 24, 27]. For example, TC of a 10MLNifilm grown on a
Cu(110) orCu(111) surface can vary approximately over 50 K [27]. Therefore we compare our results with a
model developed byZhang et al [27], for the thickness dependent (n, no ofmono layers) change of theCurie
temperature (TC(n)) of thinfilms:

T n T
N

n
1

1

2
10C C

0= ¥ -
+ l

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( )

WithTC ¥( ) as the bulk value of theCurie temperature,N0 as amaterial dependent constant, andλ as the
‘temperature shift exponent’which depends on the spin-spin interaction of thematerial, and the condition that
n>N0. ForNickel, Zhang et al determinedN0=4.7 ML andλ≈1 [27]. The simulations result and themodel
according to equation (10) are shown infigure 5. It is evident that the simulated thickness dependence of the
Curie temperature in the single cell simulation (figure 5, black squares) is best described by linear dependence
(linear fit, R2=0.99—not shown) instead of themodel given in equation (10). In contrast, themulti cell
simulation (figure 5, blue circles)with homogeneous cell length follows the behaviour of equation (10) (red
curve) forNickel and is therefore a good approximation to themodel, derived from experimental data.

4. Summary

Todescribe themovement of themagneticmoment of a ferromagnet at elevated temperatures, the Landau
Lifhshitz equation can be extended into a stochastic equation of the Langevin type. Temperature effects are
included by addition of afluctuating fieldwithwhite noise properties. The application of such a stochastic
equation inmicromagnetic simulations needs a discretization of the geometry of themagnet into different
simulation cells.When this fundamental simulation cells includemore than one spin [2], a scaling of the
temperature should be performed. Based on considerations of the energy ofmagnetic interactions at the
transition from ferromagnetic to paramagnetic phase, a scaling relation (equation (4)) in linear dependence of
the simulation cell lengthwas proposed. Under considerations of the thermal effects on the exchange length, the
application of the proposedmodel was investigated. The scalingmodel was applied inmicromagnetic
simulations for ferromagneticmaterials of general interest, Nickel, Cobalt and Iron. It was tested for different
cell sizes, temperatures and bulk as well as thin film systems.Within the simulated parameter range, the best
agreements between simulated and experimentally determined bulkCurie temperatures was achieved forNickel
(within 1%), followed byCobalt (overestimated by 8%) and Iron (overestimated by about 20%). The simulation
ofNickelfilms in the range of 6 ML to 36ML reproduced quantitatively the change of theCurie temperature
withfilm thickness as predicted by theoreticalmodels [27]when simulation cell sizes of 1 nm are considered.
Generally, simulation cell sizes below 2 nmgave the best results for the determination of theCurie temperature

Figure 5. Simulation results of the Curie temperature ofNi in dependence of thefilm thickness given inmono layer (ML). Shown are
the single cell (black squares) and themulti cell (blue circles) simulations together with themodel according to equation (10) (red
curve).
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for the simulated systems evenwithout fulfilling the condition regarding the thermal exchange length as defined
in equation (7). This is in agreementwit the results byMartinez et al [15]which concluded that in this form,λthex
‘...does not represent the true scale over which thermal fluctuations decay in space.’[15]Thus, the question how to
obtain a general expression for the determination of themaximal length of a simulational cell size remains
open [15].

In conclusion, the presented scalingmodel for temperature scaling inmicromagnetic simulationwith the
stochastic Landau–Lifshitz equation is, despite its simplicity, able to predict the temperature dependent decrease
of themagnetisation up to theCurie temperature. Nevertheless, care has to be taken to choose simulation cell
size and simulational time steps to achieve convergence of the results.
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