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Abstract: We present, to our knowledge for the first time, a 100-km Brillouin Optical Frequency-Domain
Analysis (BOFDA) employing a 200-km fiber loop. Compared to our previous publication,
enhanced sensor length, sensor accuracy and spatial resolution are presented. The performance
improvements are achieved by applying distributed Raman amplification (DRA) and a digital
high-pass filter. We report on temperature measurements over sensing distances of 75 km and 100 km
both with a 12.5-m spatial resolution. Temperature changes of 5 ◦C have been measured along 75 km
sensing fiber. A temperature change of 30 ◦C has been detected at 99.5 km.

Keywords: distributed Brillouin sensing; distributed temperature and strain sensing; BOFDA;
stimulated Brillouin scattering; fiber optics sensors

1. Introduction

Distributed Brillouin fiber optical sensing is used to measure strain and temperature, because of
its linear relation to the Brillouin frequency shift (BFS). Distributed Brillouin sensing has been
studied for several decades [1,2] in a wide range of applications. A common purpose is condition
monitoring for large-scale infrastructures like dikes [3], pipelines [4], river embankments [5] and
high voltage cables [6]. All long-range fiber sensors based on stimulated Brillouin scattering face
similar challenges: (i) pump depletion, (ii) self-phase modulation and (iii) trade-off between spatial
resolution, measurement uncertainty and sensor length. Brillouin Optical Time-Domain Analysis
(BOTDA) has been considerably approved for decades [1,2] and provides sensing ranges about 100 km
with a spatial resolution in a few meter-range [7,8]. State of the art BOTDA setups use techniques as
1st and 2nd order distributed Raman amplification [7,9,10], pulse codes [11], differential pulses [12],
pre-pumped pulses [13], advanced image processing [14] and neuronal networks [15–17]. Recently,
we reported on the first long-range BOFDA [18]. Compared to BOTDA, less investigations on BOFDA
have been published [3,19–24]. However, BOFDA is a promising candidate to monitor lengths of
several tens of kilometers with high spatial resolution.

In this paper, we report, to our knowledge for the first time, on a 100-km BOFDA for temperature
monitoring with increased sensor length and improved spatial resolution and accuracy by using
a 200 km fiber loop. The sensing fiber has a length of 100 km. To achieve this sensing fiber length,
we used a digital high-pass filter [25] and distributed Raman amplification (DRA). It was shown that
significant sensing range enlargements could be achieved by using DRA in BOTDA setups [7,8,26].

2. Experimental Setup

The measurement setup is shown in Figure 1. Compared to our previous setup [18], DRA at
both ends of the fiber haul was implemented by 250 mW laser diodes at 1455 nm, respectively.
Moreover, a polarization scrambler (PS) was implemented into the pump branch. Using DRA and
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due to the Raman-effect the wavelength of the light of the 1455 nm lasers was shifted to 1550 nm.
The Raman-scattered light from the pump end amplifies the Brillouin scattering and the probe light,
while the Raman-scattered light from the probe end amplifies the pump light. To minimize the
dependency of different polarization of the Raman scattering light, pump and probe light, a second
PS in one 1455 nm laser branch was used to guarantee a constructive interference of scattered light of
1455 nm with Brillouin scattering and probe light [7].
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Figure 1. BOFDA sensor setup, LD: laser diode; MZM: Mach-Zehnder modulator; EDFA:
Erbium-doped fiber amplifier; VOA: variable optical attenuator; PS: polarization scrambler; SMF:
single mode fiber (for detailed configuration see Figure 2) ; BPF FBG: bandpass filter based
on fiber Bragg grating; PD: photo diode; VNA: vector network analyzer, WDM: wavelength
division multiplexer.

Figure 2 shows the configuration of the 200-km fiber loop. The sensing fiber of 100 km are Large
Effective Area Fibers (LEAF) with a BFS of 10.678 GHz, the transmission fiber are Ultra Low Loss
(ULL) fibers with a BFS of around 11.030 GHz. The second half of the fiber was used as transmission
fiber. To avoid the Brillouin interaction in the transmission fiber (Brillouin frequency 11.030 GHz),
the Brillouin gain spectrum (BGS) was measured around the Brillouin frequency of the sensing fiber
(10.678 GHz). This measurement range ensured a stimulated Brillouin scattering (SBS) interaction only
in the first half of the fiber haul and a higher pump power could be used [27].

Pump

Probe

sensing fiber, LEAF fibers

transmission fiber, ULL fibers

SMF8
25 km

11.030 GHz

SMF7
25 km

11.030 GHz

SMF6
25 km

11.030 GHz

SMF5
25 km

11.030 GHz

SMF1
25 km

10.678 GHz

SMF2
25 km

10.678 GHz

SMF3
25 km

10.678 GHz

SMF4
25 km

10.678 GHz

z=
0 km

z=
100 km

z=
200 km

Figure 2. Configuration of the fiber loop (sensing and transmission fiber).
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For the 200-km fiber loop a minimum frequency of the VNA measurement was set to 500 Hz.
The maximum freqency of the VNA measurement was set to 8.192 MHz for a spatial resolution of
12.5 m. The average count of the VNA measurement was set to 140. All transfer functions measured
by the VNA were digital high pass filtered. Subsequently, the filtered transfer functions were inverse
Fourier transformed to obtain spatially resolved backscatter traces. Together with additional time for
data transfer and data processing, the measurement time was 18 h, caused mainly by narrow-band
detection of the VNA. Due to long measurement time of BOFDA, the setup discussed in this paper can
only be used for static measurements, where the measurement time is not relevant (e.g., long term
geological changes, long term stability of structures, long term movements or hotspots of subsea
power cables).

We carried out investigations over 75 km (in this case we removed SMF 4 and SMF 5 in Figure 2
from the fiber loop) as well as a 100-km sensing fiber. The power levels of all used laser sources for
both sensing ranges are listed in Table 1, respectively. Pump and probe power are optimized to avoid
pump depletion and to compensate loss of the additional fibers for 200 km fiber loop.

Table 1. Pump, probe power and power of DRA lasers for 75 and 100 km sensing range.

Sensing Fiber Length (km) Pump Power (µW) Probe Power (µW) Power of DRA (mW)

75 430 10 250
100 315 50 250

3. Experimental Results and Discussion

Figure 3 shows the BFS ∆ fB along the 100-km sensing part of the fiber. The four 25 km LEAF
fibers can be well distinguished by the frequency dips of the connectors in between. At 99.5 km, 40 m
were heated in a temperature chamber at 52 ◦C. The inset of Figure 3 provides a detailed view on the
two BFS-measurements with (blue) and without (green) the local 30 ◦C-hotspot, respectively.

Figure 3. BFS over distance of 100-km sensing fiber, with 30 ◦C hotspot (blue), reference (green).

Room temperature was 22 ◦C, the spatial resolution was set to 12.5 m, fB was sweeped from
10.652 GHz to 10.724 GHz in steps of 6 MHz. The resolution bandwith of the VNA was set to 500 Hz.
The 30 ◦C hotspot at 99.478 km was clearly detected.
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Figure 4a,b show the BGS at room temperature at 99.521 km and at heated section at 99.478 km
(30 ◦C). Figure 4a shows that at 10.678 GHz a “ghost” peak occurs. The “ghost” peak effect in BOFDA
was discussed and explained in detail in [28]. Without “ghost” peak effect we should observe a shift of
the Brillouin spectrum that should correspond to the 30 ◦C hotspot (30 MHz). As discussed in [28],
the reason for the “ghost” peak effect is the interaction of the stationary component of the pump signal
and the modulated acoustic wave. To remove this “ghost” peak a digital high-pass filter was used as
presented in [25]. Nevertheless, in case of the 100-km sensing fiber this digital high-pass filter further
decreases the already low SNR. This is why the value of the temperature at the location of the hotspot
could not be exactly measured. However, it is possible to detect the hotspot at the corresponding
location by using a Lorentzian fit of the Brillouin spectrum. In case of the 75 km fiber loop with higher
SNR the temperature value can be measured, in comparison to the 100-km sensing fiber, where only
a temperature change could be detected. In Figure 5b the Brillouin spectrum is shown after using the
digital high-pass filter at the position of the hotspot. A distinction of the double peak is possible and
the temperature value can be estimated. Even without a double peak fitting, the Lorentzian-fitted
curve shifts in comparison with Figure 5a outside the heated section.

(a) (b)
Figure 4. reflected power of the 200-km fiber loop by using a digital high-pass filter (a) BGS at 99.478 km
within the heated section (b) BGS at 99.521 km at room temperature.

(a) (b)
Figure 5. Reflected power of the 150-km fiber loop by using a digital high-pass filter (a) BGS at
74.200 km at room temperature (b) BGS at 74.156 km within the heated section.

The result of this single-peak fitting is shown in Figure 6a. The BFS at three different temperature
values of the hotspot (5 ◦C, 13 ◦C and 20 ◦C) at 72.4 km of the sensing fiber are shown. The results



Sensors 2019, 19, 1527 5 of 9

were achieved by using the digital high-pass filter with a cutoff frequency of 250 kHz. By using
linear regression, we have calculated a temperature coefficient of 0.34 MHz/◦C (shown in Figure 6b).
The measurement error compared to the linear regression is 0.4 MHz in maximum. There is
a discrepancy between the calculated temperature coefficient of 0.34 MHz/◦C and the standard
temperature coefficient of approx. 1.2 MHz/◦C of a LEAF fiber [29]. This is due to the “ghost” peak
effect. However, still 5 ◦C could be measured (shown in Figure 6a).

(a) (b)
Figure 6. (a) Frequency shift at 74.2 km of a 40-m hotspot of 5, 13 and 20 ◦C (b) ∆ fB vs. temperature,
0.34 MHz/◦C extracted by linear regression from Figure 6b.

Figure 7a,b show the logarithmized normalized maximum reflected power of the BGS in case
of a 75-km and 100-km sensing fiber scenario, respectively. Compared to reflected power profiles in
BOFDA without DRA [18] a non-linear slope in logarithmic scale was observed, which is consistent
to [7,9]. In Figure 7a,b there is a dip in the peak amplitude at 74.2 km and 99.478 km, caused by
the broader BGS (shown in Figure 5b) at the heated sections. This dip can be used to reduce the
measurement time by measuring only at one or some frequencies of the BGS [30,31]. At the end of the
sensing fiber the level of the signal drops to the noise level. As mentioned above, in case of the 100-km
sensing fiber there is a worse SNR compared to the 75-km measurement. However, the use of a digital
high-pass filter leads to a detection of the hotspot in case of the 100-km. The high SNR in case of the
75 km enables a measurement of the temperature of the hotspot.

(a) (b)
Figure 7. Logarithmized normalized maximum reflected power of the Brillouin gain spectrum (BGS)
over distance of (a) 75 km sensing fiber with 20 ◦C hotspot (b) 100-km sensing fiber with 30 ◦C hotspot.
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Figure 8a,b shows the coefficient of determination R2 of the Lorentzian fit in case of a 75 km and
100 km long sensing fiber. In case of a 75 km sensing fiber the R2-values keep above 0.98 up to fiber
end except for the heated section. In case of the 100-km a strong decrease of the R2-values after 90 km
is observed.

(a) (b)
Figure 8. Coefficient of determination R2, calculated by comparison of fitting with Lorentzian function
and measurement data over distance for (a) 75 km and (b) 100-km sensing fiber.

In Figure 9a,b a section of the Brillouin spectrum of the fiber loop is shown close to the position
of the hotspot in case of a 75-km and 100-km long sensing fiber. The normalized reflected power is
depicted in log-scale in order to improve the contrast of colors. At 74.2 km and 99.4 km the 40-m
heated section of 20 and 30 ◦C could be clearly detected, respectively.

(a) (b)
Figure 9. Color plot of logarithmized normalized reflected power of the Brillouin spectrum of a 40 m
fiber section at (a) 74.2 km at a hotspot of 20 ◦C and (b) 99.48 km at a hotspot of 30 ◦C.

4. Conclusions

We demonstrate, to our knowledge the first time, a 100-km BOFDA for temperature monitoring
by using 200 km fiber loop. A temperature change of 30 ◦C has been detected at 99.5 km with
a spatial resolution of 12.5 m. In case of a 75 km sensing fiber a temperature change of 5 ◦C could be
measured with a spatial resolution of 12.5 m. Compared to advanced time domain setups, potential
improvement of the BOFDA setup is seen in image processing. Furthermore, the use of higher order
Raman amplification and a laser with narrower linewidth could further reduce the noise, respectively.
To enhance accuracy and reduce measurement time, neuronal networks could be used in future.
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Abbreviations

The following abbreviations are used in this manuscript:

BOFDA Brillouin Optical Frequency-Domain Analysis
DRA distributed Raman amplification
BFS Brillouin frequency shifts
BOTDA Brillouin Optical Time-Domain Analysis
SNR signal-to-noise-ratio
WDM wavelength division multiplexing
LD laser diode
MZM Mach-Zehnder modulator
EDFA erbium-doped fiber amplifier
VOA variable optical attenuator
PS polarization scrambler
SMF standard single mode fiber
FBG fiber Bragg grating
BPF band pass filter
PD photo diode
VNA vector network analyzer
LEAF large effective area fiber
ULL ultra low loss
BGS Brillouin gain spectrum
SBS stimulated Brillouin scattering
FoM figure of merit
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