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Abstract: We propose to use artificial neural networks (ANNs) for raw measurement data 
interpolation and signal shift computation and to demonstrate advantages for wavelength-
scanning coherent optical time domain reflectometry (WS-COTDR) and dynamic strain 
distribution measurement along optical fibers. The ANNs are trained with synthetic data to 
predict signal shifts from wavelength scans. Domain adaptation to measurement data is 
achieved, and standard correlation algorithms are outperformed. First and foremost, the ANN 
reduces the data analysis time by more than two orders of magnitude, making it possible for 
the first time to predict strain in real-time applications using the WS-COTDR approach. 
Further, strain noise and linearity of the sensor response are improved, resulting in more 
accurate measurements. ANNs also perform better for low signal-to-noise measurement data, 
for a reduced length of correlation input (i.e., extended distance range), and for coarser 
sampling settings (i.e., extended strain scanning range). The general applicability is 
demonstrated for distributed measurement of ground movement along a dark fiber in a 
telecom cable. The presented ANN-based techniques can be employed to improve the 
performance of a wide range of correlation or interpolation problems in fiber sensing data 
analysis and beyond. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Distributed acoustic sensing (DAS), or distributed vibration sensing (DVS), along optical 
fibers is being used for a wide range of applications, such as oil and gas pipeline monitoring, 
perimeter monitoring, rail track monitoring, structural health monitoring and seismic 
applications [1]. Most DAS principles involve either direct detection or coherent detection of 
Rayleigh backscattering from coherent optical pulses that are sent into standard 
telecommunication optical fibers. More recently, optical frequency domain reflectometry has 
also been enhanced for dynamic strain sensing [2–4]. COTDR-based DAS techniques allow 
for dynamic high-resolution strain measurement in the nε (nm/m) range over tens of 
kilometers with a spatial resolution in the meter-range. The technological advancement has 
been very dynamic, and the scope of DAS applications has widened significantly in recent 
years. A variety of detection principles have been proposed [5,6]. The simplest approach is 
based on backscattering intensity change evaluation, does not allow to accurately measure 
strain changes, and is subjected to signal fading [7–10]. The most common DAS 
implementations, however, rely on phase demodulation or phase change tracking, which 
allows for quantitative strain change measurement. A wide range of different phase 
demodulation principles has been proposed [11–17]. 

Another group of evaluation techniques is based on correlation analysis to quantify strain 
changes from the shift of backscattered power signatures. These power signature shift-based 
approaches have been demonstrated for correlations along three dimensions, or sampling 
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parameters: (i) along the fiber distance axis using chirped optical pulses [18], (ii) along the 
measurement time axis using alternating pulses of different wavelengths [19], and (iii) along 
the pulse wavelength axis by periodically scanning the fiber with pulses within a range of 
wavelengths [20–22]. 

The research presented in this paper is based on the latter, the wavelength-scanning 
approach. The wavelength-dependent backscatter signature is thereby shifted by strain or 
temperature impact. Each new wavelength scan can therefore be compared to an unaltered 
reference scan and relative strain changes can be calculated from signal shifts for each 
position along the fiber. The main advantage of this reference measurement-based approach is 
that interrupted measurements can be resumed without loss of reference, whereas the phase 
information is generally lost for conventional phase-tracking DAS principles once they are 
interrupted. Quasi-static strain changes occurring over extended time periods can therefore be 
measured with high accuracy. 

This wavelength-scanning approach has, until recently, only been demonstrated for static 
measurement [21,22]. To overcome this limitation, we proposed a simple and robust WS-
COTDR technique, which conducts fast pulse-to-pulse wavelength scans of the fiber’s 
Rayleigh backscatter signature while directly modulating the laser current [20]. Dynamic 
measurement with nε strain resolution at kHz repetition rate over several kilometers is 
achieved for the first time [20]. However, due to computational limitations the correlation-
based raw data processing that is necessary to calculate the strain results so far cannot be 
conducted in real-time. This principle has therefore been restricted to a limited range of 
applications and later strain calculation from recorded raw measurement data. In this work, 
we demonstrate that artificial neural networks (ANNs) can substantially decrease the strain 
computation time by more than two orders of magnitude. We show that using ANNs for strain 
prediction not only enables the wavelength-scanning principle to be used for real-time 
applications, but also considerably improves the sensor performance and extends the 
measurement range. 

The applications of ANNs in science and technology are too numerous to list and we refer 
to review papers and references therein [23,24]. In optical fiber sensing, ANNs have mostly 
been used for high-level analyses of measurement data, for example for pattern recognition 
and event categorization in DAS applications [25–27]. A review including other machine 
learning methods is presented in [28]. Raw data processing with ANNs has so far been 
demonstrated to improve the prediction of Brillouin frequency spectra shifts [29], 
discriminate between strain and temperature effects [30], and for classification of principle 
component analysis results of Brillouin measurements [31]. ANNs have also been used for 
noise reduction of 2D measurement data for Brillouin [32]. Quantitative predictions by ANNs 
from arbitrary and more complex patterns have so far not been demonstrated for fiber optic 
sensing. We demonstrate that Rayleigh signature shifts can be efficiently predicted by ANNs 
that were trained with synthetic training data. 

This paper is structured as follows: The Rayleigh backscatter interference model that is 
used for synthesized ANN training data generation (Section 2.1) is introduced in Section 2.2. 
The previously used reference approach, a least mean square (LMS) correlation technique 
[20], is presented in Section 2.3 and the experimental setup is described in Section 3. An 
additional ANN subnet that conducts a necessary laser sweep linearization is introduced in 
Section 4.1. General sensor performance parameters are defined in Section 4.2.1 and the 
ANN training and hyperparameter selection are summarized in Section 4.2.2. Performance 
improvement is demonstrated and summarized for: low signal-to-noise relation measurement 
data (Section 4.3.1), coarser frequency steps (Section 4.3.2), increased distance range 
(Section 4.3.3), and in terms of reduced computation time (Section 4.3.4). An application 
example of ground movement along in a telecommunication cable in an urban environment is 
demonstrated in Section 4.4. 
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2. Theory 

2.1. Rayleigh backscatter modelling and wavelength-scanning approach 

Figure 1 shows a simplified schematic of the method. The WS-COTDR principle is based on 
Rayleigh scattering from inhomogeneities in the optical fiber which act as a distributed 
interferometer (see Fig. 1(a)), leading to partially constructive or destructive interference of 
the backscattered light. Strain effects can, for example, increase the path length between 
scatterers at a specific position of the pulse in the fiber, so that the backscattered power for a 
given pulse wavelength is altered due to the changed interference condition. However, when 
compensating the larger distance between scatterers by also increasing the wavelength 
(decreasing the laser frequency ν), the original interference condition and backscatter power 
is restored to a good approximation. Hence, by comparing a wavelength scan of the 
backscattered power I in the unstrained state and a wavelength shifted backscatter signature 
of a second scan in the strained state, one can quantitatively determine the local strain 
magnitude. 

 

Fig. 1. (a) Schematic of strain change (Δε) measurement along the fiber using Rayleigh 
backscatter interference from coherent pulses propagating along the fiber. (b) Schematic: 
sequential generation of pulses of different optical frequencies ν0 to νP during periodic laser 
frequency sweep for wavelength-scanning of backscatter traces (pulse duration τd, pulse period 
τp, sweep period τs, pulse peak power I0). (c) Schematic of backscatter trace evaluation at a 
given position z: relative frequency shift of the Inew(νp) vs Iref(νp) backscatter power signature 
corresponds to the local strain change Δε. 

The backscatter signature shift along the frequency axis has previously been calculated by 
a least mean square (LMS) correlation approach [20]. In previous work, we derived a general 
expression for the distance-resolved and time-resolved coherent Rayleigh reflectometry for an 
optical pulse propagating along the fiber in [20]. For the generation of simulated ANN 
training data, a simplified model without the spatial and temporal dependencies is sufficient. 
The synthesis of ANN training data for the correlation task is presented in Section 2.2. The 
underlying physical model is described by the following parameters and assumptions: 
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The backscattered power from a single-mode fiber (SMF) can be modeled by a set of N 
discrete scatterers with a uniform statistical positional (distance z) distribution along the fiber 
and an independent uniform distribution of their reflectivities r. The detected Rayleigh 
backscattering power I from a monochromatic rectangular pulse of the peak power I0 and the 
duration τd can be described as 

 ( )
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2 cos 2 exp
N N i

d coh i i j ij ij c
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where τij = τi - τj = 2ngzij /c0 are the scatterers’ relative delays (τij < τd), zij = zi - zj are the 
physical separations between the individual scatterers, and ν0 is the pulse optical frequency. 
The limited coherence of the light source is described by the degree of coherence function 
with τc as the coherence time. The detected power I consists of the direct summation power 
component Id of the individual scatterer reflectivities r, and an interference component Icoh 
originating from coherent double summation of the scatterers’ temporal phase differences. 
The spatial resolution of the sensor is defined by half the pulse width w in the fiber w/2 = c0 τd 
/(2ng) where c0 is the velocity of light and ng is the fiber group refractive index. Polarization 
preservation within w/2 is assumed. 

The direct summation component Id is independent of relative scatterer displacements. 
However, the phase term of the interference component Icoh is a function of the temporal 
delay changes between the scatterers Δτij, as well as changes of the optical frequency ν0 of the 
pulse. The delay change relation Δτij /τij is proportional to the pulse optical frequency change 
relation -Δνp/ν0 and related to strain changes Δε and temperature changes ΔT by the fiber’s 
strain coefficient Kε ≈- 0.78 and temperature coefficient KT ≈- 6.92 × 10−6 [21] as 
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where pe ≈0.22 is the effective strain-optic coefficient of silica, ξ is the thermo-optic 
coefficient of silica, α is the fiber thermal expansion coefficient, and the strain change is 
defined as Δε = Δzij / zij. The equivalent impact of both, strain changes Δε and laser frequency 
changes Δνp, on the detected power can thus be described as 
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This means that the impact of strain changes on I can be compensated by equivalent 
optical frequency changes Δνp under the assumption that Δε is uniform within w/2. 

The measurement task is to determine strain changes from the corresponding optical 
frequency changes. The fiber under test (FUT) is therefore periodically probed with a pulse 
repetition frequency fp = 1/τp and pulse peak power I0 while periodically tuning the laser 
frequency with a sweep rate fs = 1/τs, as indicated in Fig. 1(b). The backscatter traces from the 
individual pulses and pulse optical frequencies for each wavelength sweep are recorded and 
analyzed as depicted in Fig. 1(c). The pulse optical frequencies are indexed as νp = ν0 + Δνp 
with discrete frequency steps of Δν as Δνp = pΔν, with p = 0,1,2,…,P. P + 1 backscatter traces 
are measured during each laser sweep period τs. As indicated in Fig. 1(c), frequency shift-
equivalent strain changes Δε are obtained for each sampling position z in the fiber by 
computing the shift of new sweep results Inew(Δνp) relative to a reference sweep result 
Iref(Δνp). The effective strain measurement repetition rate is fs = 1/τs. 
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2.2. Synthetic training data generation using Rayleigh backscatter model 

The parameters and assumptions defined in Section 2.1 are used to simulate real measurement 
results of frequency sweeps at a given position z. K independent sets of N scatterers are 
synthesized with uniformly distributed reflectivities r ~unif(0,1), and uniformly distributed 
temporal delays τ within the pulse duration τ ~unif(0,τd). Each of the K simulated training 
sequences consists of a pair of simulated sweep results: one simulated sweep Iref(Δνp) as 
reference with zero strain change (Δε = 0) and one sweep result Iε(Δνp,Δεtrain) with a random 
training strain change Δεtrain: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

1

0
2 1

1

0
2 1

cos 2 exp    for 0,...,

, cos 2 1 exp .

N i

ref p i j p ij ij c
i j

N i

p train i j p ij train ij c
i j

I r r p P

I r r Kε ε

ν π ν ν τ τ τ

ν ε π ν ν τ ε τ τ

−

= =

−

= =

 Δ = + Δ − ∈ 

 Δ Δ = + Δ + Δ − 



 (4) 

Linear factors and offset components from Eq. (3) are redundant and are omitted since z-
score (standard score) normalization of each sequence is conducted before the training. A 
training data set C of K sweep pairs, as defined in Eq. (4), is generated for a defined strain 
training range of ± Δεmax, with Δεtrain from a uniform distribution Δεtrain ~unif(-Δεmax,Δεmax). A 
single output ANN is trained to predict the label Δεtrain from the simulated sweep pairs. The 
synthesized sweep results are combined in a matrix Q with dimension K × 2(P + 1), where 
the kth row contains the kth simulated pair of reference sweep and strain sweep (i.e., a 
concatenation of Eq. (4)) as 

 ( ) ( ) ( ) ( )( )T T T T

0 0,..., , , ,..., , .ref ref P train P trainQ I I I Iε εν ν ν ε ν ε= Δ Δ Δ Δ Δ Δ  (5) 

A noise matrix Noiseε of the same dimension as Q with elements sampled from a normal 
distribution with mean zero and standard deviation σε is added to the ideal training matrix Q. 
The noise matrix is normalized by scalar multiplication with the approximate mean 
backscatter power N/2, which corresponds to the direct-summation power term Id in Eq. (1) 
with r ≈0.5. Thus, the synthesized noisy training data matrix C is defined as 

 .
2

N
C Q Noiseε= +  (6) 

Adding noise to the idealized synthetic training data is crucial to avoid overfitting to the 
training data and make the trained network able to generalize for strain prediction from noisy 
measurement data. Z-score normalization of C is conducted for each sweep pair. K = 4000000 
sweep pairs are used for the training in Section 4. The parameter σε, which defines how much 
noise is added to the training data, is treated as a hyperparameter of the model (see Section 4). 

2.3 Reference approach: Least mean square (LMS) correlation analysis 

We previously proposed to use a least mean square (LMS) correlation approach to calculate 
the frequency shift [20]. This method already outperforms standard cross-correlation and is 
used as a reference to evaluate the ANN prediction performance throughout this paper. The 
measured strain change-equivalent frequency shift Δνm of a new sweep measurement Inew(Δνp) 
relative to a reference sweep Iref(Δνp) corresponds to q* that minimizes the LMS correlation 
result Rref,new(q) as 

 ( )*
,arg minm ref new

q

q R qν ν ν Δ = Δ = Δ   (7) 

where 
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Δνm is quantized by the frequency step size Δν. The frequency shift resolution can, 
however, be improved by a cubic polynomial interpolation of Rref,new(q) (also compare Fig. 
6(a)). Using Eq. (2), the high-resolution strain results Δε are calculated from Δνm’ of the 
interpolated results R’ref,new(q’) as 
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This method already proved more stable and less error-prone than a standard cross 
correlation analysis. This performance improvement in comparison to a cross-correlation, 
especially for a reduced number of input samples, has also been confirmed for a similar LMS 
analysis [33]. Although the LMS implementation is considerably faster than Pearson’s 
correlation coefficient analysis used for similar applications [21,22], the computation time is 
still too high for real-time data processing. A major aim of using ANNs for strain prediction 
is to reduce the computation time for real-time applications. 

3. Experimental setup 

The robust and low-component cost experimental setup has been described in detail [19,20]. 
The direct-detection architecture is depicted in Fig. 2(a). 

 

Fig. 2. (a) Schematic of the WS-COTDR implementation. (b) Example of ANN strain results 
along the fiber section wound around the piezo tube (from z ≈936.5 m to z ≈950.5 m). (c) FFT 
result of the same measurement (fs = 1 kHz, 28 Hz signal, strain amplitude 100 nε, from 2 s 
measurement time) with indication of fiber section used for strain evaluation in Section 4. 

A distributed feedback (DFB) laser diode (center wavelength of 1549.89 nm, ν0 ≈193.36 
THz) is used as an optical source in continuous wave (CW) mode. The laser linewidth of 1.3 
MHz ensures adequate coherence within the pulse duration, which is typically 10 ns to 20 ns. 
A 120 MHz bandwidth signal generator supplies the rectangular signal for optical pulse 
shaping (with the pulse repetition frequency fp and pulse duration τd). The pulse signal is fed 
via a seed driver to a semiconductor optical amplifier (SOA) with high extinction ratio (70 
dB) and fast switching speed (1 ns). The signal generator also supplies the synchronized saw-
tooth signal with the frequency fs for direct current modulation of the laser. The resulting laser 
wavelength sweep due to the laser current modulation is, however, not ideally linear. The 
backscatter results of the non-linear sweeps must, therefore, be numerically corrected. This is 
achieved by an ANN subnet prior to the strain prediction and is described in Section 4.1. The 
optical power variation during the sweep is negligible [20]. The power level of the CW signal 
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into the SOA is adjusted by a polarization maintaining variable optical attenuator (PM-VOA). 
After the SOA, the optical pulses are amplified by an erbium-doped fiber amplifier (EDFA) 
and the amplified signal is filtered by a dense wavelength division multiplexing (DWDM) 
filter (0.2 nm bandwidth, flat-top) to remove amplified spontaneous emission (ASE) noise. 
The pulse sequences with pulse peak powers I0 of a few hundred mW enter the fiber under 
test (FUT) via a polarization insensitive optical circulator. All backscattered light from the 
FUT is amplified by a preamplifier EDFA and is subsequently ASE-filtered before detection 
by a 125 MHz PIN photodetector (PD) with integrated transimpedance gain. Triggered by the 
signal generator, the backscatter signal is sampled at 500 MS/s and 14 bit resolution by an 
analog-to-digital converter (ADC) for further processing by a personal computer. The ADC 
sampling rate translates to a spatial sampling resolution of 20.4 cm. The maximum distance 
range zmax is limited by the round-trip time of the pulse as zmax = c0/(2ngfp). All measurements, 
except for the telecommunication cable in Section 4.4, have been conducted on a 970 m long 
FUT (Corning SMF-28e). A 14 m long section from z = 936.5 m to z = 950.5 m is wound 
around a piezo tube. An almost uniform strain distribution can be imposed onto this fiber 
section with a highly linear strain response as a function of the piezo’s supply voltage. Figure 
2(b) shows a strain measurement of the fiber section with the indication of the fiber section 
from z = 938.02 m to z = 948.24 m that is used to quantify all strain and performance 
parameters in Section 4. 

4. ANN architecture, training and results 

This section describes the ANN architecture, training, hyperparameter optimization and 
evaluates the ANN’s performance against the LMS correlation approach. As mentioned in 
Section 3, the accurate strain prediction is achieved by a two-step process using a stacked 
ANN architecture that consists of two separately trained subnets with fully connected layers. 
The first ANN subnet corrects the not ideally linear laser frequency sweep. This linearization 
ANN step is crucial for a linear strain response of the sensor and is introduced in Section 4.1. 
The second subnet is the strain ANN which receives the output of the linearization ANN as 
input and predicts the strain for each frequency sweep. The sweep linearization and the strain 
prediction could be trained in a single integrated ANN. However, the model would have to 
generalize for a considerably more complex task. The complexity is reduced by training the 
two ANNs independently; this is possible since the labels for the linearization can also be 
synthesized. We therefore used a stacked architecture of the two ANNs trained individually 
for linearization and strain prediction. It is important to note that a single trained ANN can be 
used to compute strain changes for any fiber position and for any Iref - Inew pair within ± Δεmax. 

This section is structured as follows: After describing the linearization ANN in 4.1, the 
strain prediction ANN is covered in Section 4.2: Sensor-specific performance parameters that 
quantify the performance of a dynamic strain sensor are defined in Section 4.2.1, and the 
evaluation of the ANN (training, hyperparameter selection, and testing on real measurement 
data) is summarized in Section 4.2.2. In the following sub-sections, the ANN performance is 
compared to the previously used LMS correlation approach for the extremes of the sensor 
parameter range: Reduced signal-to-noise ratio (SNR) in Section 4.3.1, increased frequency 
step size Δν in Section 4.3.2, and reduced length of correlation input (longer distance range) 
in Section 4.3.3. The most important improvement, namely the reduction of computation 
time, is summarized in Section 4.3.4. The real-time capability for arbitrary strain signals is 
demonstrated in Section 4.4 for the example of ground movement along a “dark fiber” in an 
urban environment. 

4.1 Sweep linearization ANN 

The actual laser frequency sweep is not ideally linear as it is defined in Eq. (3). The saw-tooth 
laser current modulation results in a swift frequency decrease followed by a monotonous but 
not constant increase in frequency. The few backscatter traces during decreasing frequency at 

                                                                Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7411 



the beginning of each sweep period are discarded. The necessary correction (or: 
“linearization”) of the measured Imeas(Δν(p)) prior to the application of the correlation 
algorithm has previously been computed by numerical interpolation [20]. For this calibration 
method, the actual frequency change Δν(p) for each pulse during the sweep is experimentally 
obtained by phase unwrapping using a Mach-Zehnder interferometer. This is done once for 
each combination of laser sweep amplitude and sweep frequency. The computational sweep 
linearization step based on the calibration must then be conducted for each new sweep result 
and, so far, contributed significantly to the overall computation time 

The computation time for the sweep linearization task is significantly reduced by using an 
ANN. This linearization ANN subnet is directly integrated with the strain ANN subnet, 
yielding a stacked model that conducts the linearization in a first step, and the strain 
prediction in subsequent layers (see model architecture in Fig. 3(a)). The training and 
hyperparameter optimization of the linearization ANN and the strain ANN are conducted 
independently. 

Analogously to the training data generation of the strain ANN in Eqs. (4)-(5), the 
linearization ANN training data is simulated based on the Rayleigh backscatter interference 
model in Eq. (3). Pairs of M sweep result input vectors Imeas_train and M output vectors (labels) 
Ilinear_train are simulated for the measured frequency change Δν(p) as 
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The ANN is trained using the simulated (as measured) power results for each true 
frequency shift Imeas_train(Δν(p)) as input vectors and the ideal (linearized) frequency sweep 
Ilinear_train(Δνp) with equal frequency steps Δν as label vectors. Analogously to the generation 
of the training data for the strain ANN (see Eq. (4) and Eq. (6)), the linearization training data 
matrix is a superposition of ideal training data and a noise matrix Noiselin with elements 
generated from a Gaussian distribution N(0,σlin). Equivalent to Eq. (6), the linearization noise 
matrix is normalized by the mean backscattering power N/2. The model is trained using a 
variant of stochastic gradient descent with mean squared error (MSE) as loss function [34,35] 
and M = 500000 simulated sweep vectors. 

A single hidden dense layer is sufficient to effectively conduct the sweep linearization. 
We found that adding Noiselin with σlin = 0.1 ensures robust prediction performance of the 
strain ANN for all considered measurement parameter values. Rectified linear units (ReLU) 
are used as nonlinear activation functions of the hidden layer. The specific number of nodes 
of the hidden layer nodeslin had only minor influence on the model’s performance. We chose 
to set the number of nodes to nodeslin = 200 for all measurement parameters in this paper. 

Figure 3(b) shows the laser frequency shift Δν(p) that has been obtained from the Mach-
Zehnder calibration measurement as well as the ideal linear frequency change. An example of 
a single sweep measurement Imeas(Δν(p),z) at the fiber section of the piezo is shown in Fig. 
3(c). The linearized results Ilinear(Δνp,z) predicted by the ANN are displayed in Fig. 3(d). 
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Fig. 3. (a) ANN architecture used for prediction from the raw measurement data stream: 
Stacked architecture of the linearization ANN and strain ANN. The arrows resemble the data 
flow during forward pass; data dimensions are added as dim. (b), (c), and (d) with common x-
axis and indication of feature shift: (b) Calibration measurement of frequency change during 
the laser current modulation as a function of pulse sample number / frequency index p (fs = 1 
kHz, fp = 100 kHz, τd = 20 ns, Δν ≈23.8 MHz), and ideal (linear) frequency change with equal 
frequency steps Δν. (c) Measured Imeas(Δν(p),z) for a single sweep around the piezo fiber 
section. (d) Linearized result Ilinear(Δνp,z) obtained from the linearization ANN of the same 
measurement. 

In comparison to the linearization interpolation, the linearization ANN speeds up the 
computation considerably by a factor of 272 for the specific conditions mentioned in Section 
4.3.4. A computation time comparison for all subtasks is provided in Table 4. For real-time 
prediction, the pre-trained ANN weights (including the biases) are loaded into the integrated 
ANN for joint linearization and strain prediction, see Section 4.3.4. The schematic of the 
stacked architecture that is used for real-time strain prediction from not linearized frequency 
sweep inputs is shown in Fig. 3(a). 

4.2 Strain prediction ANN 

4.2.1 Performance parameters 

The correlation ANN is trained on synthetic training data using MSE as loss function. 
However, to assess the model’s performance on measurement data, other sensor performance 
parameters are more relevant: Namely the strain amplitude spectral density (ASD) noise and 
the total harmonic distortion (THD). The strain ASD noise characterizes the noise of a 
dynamic sensor system, and the THD is a measure for the linearity of the sensor response. 

Both parameters are analyzed in the Fourier domain as indicated in Fig. 4(a). For our 
purposes we define the strain ASD noise as the mean strain amplitude of the strain spectral 
amplitude response over the frequency range from 300 Hz to 500 Hz (all measurements have 
been conducted with a sweep rate of 1 kHz). The THD is defined as the response to a 
sinusoidal strain excitation as strain amplitude relation of higher harmonic amplitudes up to 
the 10th harmonic 2,...,10ε̂Δ  in comparison to the amplitude of the fundamental frequency 1̂εΔ : 
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ASD noise and THD are calculated both from ANN strain predictions (ASDANN and 
THDANN) as well as from the LMS correlation results (ASDLMS and THDLMS). They are 
calculated as mean over 50 distance samples from z = 938.02 m to z = 948.24 m during a 
sinusoidal strain excitation of the piezo (see Fig. 2(b)). 

4.2.2 ANN training and hyperparameter selection 

After each training epoch (i.e., iteration over the training data), the ASD noise and THD are 
computed on measurement data to monitor the model’s training progress. In addition, the 
mean squared loss on simulated data (loss computed on training data and validation loss 
computed on simulated data not used for training) is computed here to demonstrate the 
model’s performance deviation on synthesized data (see Fig. 4(b)). The progression of ASD 
noise and THD on measurement data in comparison to training loss and validation loss on 
synthesized data during training is visible in Figs. 4(c) and 4(b), respectively. While 
validation loss on synthesized data is still improving, ASD noise and THD show signs of 
overfitting to the synthetic data. The performance relation of the ANN results compared to the 
reference approach (interpolation linearization + LMS correlation) is shown as THDrel = 
THDANN/THDLMS as well as ASDrel = ASDANN/ASDLMS after each training epoch. 

 

Fig. 4. (a) Strain ASD of a 28 Hz and 98.8 nε amplitude signal from ANN predictions at 
positions with strain modulation. The second harmonic suppression is 26.1 dB, or 52.2 dB in 
the more common power spectral density analysis in this field (mean of z = 938.02 m to z = 
948.24 m, fs = 1 kHz, fp = 100 kHz, τd = 20 ns, measurement time = 20 s). Training progress of 
an exemplary ANN: (b) Loss and validation loss from synthesized training data, and (c) THDrel 
and ASDrel from measurement data (nodesL1 = 600, nodesL2 = 40, learning rate = 0.0001, Δεmax 
= ± 200 nε, ASDrel and THDrel filtered by 30 sample moving average). 

The fact that the validation loss computed on synthesized data decreases monotonously 
whereas the ASD and THD parameters decrease after around 500 training epochs 
demonstrates the usefulness of using ASD noise and THD on measurement data as validation 
criteria: After a certain training time, the model overfits to the specific properties of the 
synthetic data. The reason for this discrepancy is mainly due to the difference of synthesized 
training data and real measurement data: We defined a specific optimization task based on a 
physical model of coherent Rayleigh scattering. However, an entirely correct representation 
of the real measurement data is not possible. Among other reasons, the discrepancies between 
measurement data and simulated data are due to several idealizations and assumptions that 
have been made when describing the physical principles and interactions in Eq. (4), e.g., 
rectangular pulse shape, polarization preservation within w/2. Other factors degrading the 
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correct emulation of measurement data are related to the actual signal generation and data 
acquisition: Sources of error are, for example, the limited photodetector and amplifier 
bandwidth, non-Gaussian noise components and pulse-to-pulse distortion due to pulse signal 
jitter, sampling jitter, and laser phase noise. This means that while the ANN is being trained 
on idealized synthetic data, the optimal sensor performance on actual measurement data is 
generally surpassed while the model's performance on the synthetic training data as well as on 
(also synthetically generated) validation data is still improving. This is clearly visible when 
comparing Figs. 4(c) and 4(b): While the MSE loss on synthetic validation data is still 
declining, the ASD noise and THD of predictions on measurement data is already degrading. 
Early stopping based on ASD noise and THD analysis is therefore applied. By monitoring the 
ASD and THD parameters on real measurement data during training and using these 
parameters for early stopping and hyperparameter selection, we address the domain 
adaptation problem from the synthetic training data (i.e., the source domain) to the real 
measurement data (the target domain) [36]. 

The reason for conducting ASD and THD analyses is that the measurement data is not 
labeled. The only reference would be the LMS correlation results which suffer from noise and 
may additionally comprise systematic errors and a nonlinear response. By validating ASD 
noise and THD, the learning progress can be monitored with more conclusive validation 
parameters with respect to real measurement data. Even though ASD noise and THD are good 
performance criteria, they are not suitable for directly defining a loss function to be used for 
training since the ANN has to generalize equally over the entire strain training range Δεtrain. 
Each training batch should ideally comprise a uniform label distribution within Δεtrain. This is, 
however, not ensured by a sinusoidal strain signal that is required for correct THD analysis. 

Figures 4(b) and 4(c) clearly show that monitoring the strain noise and harmonic 
distortion during training on real measurement data is a better way to prevent overfitting than 
solely interpreting validation loss on synthetic data. The flow-chart in Fig. 5(a) depicts this 
training and evaluation approach which is used throughout this paper: All synthetic training 
data (i.e., each of the K = 4000000 input vectors of C) was normalized using z-scores. The 
label of the single-output ANN is the training strain Δεtrain. 

 

Fig. 5. (a) Schematic of strain ANN training, validation and test procedure. (b) ANN 
performance Pmin for node combinations of layer 1 and layer 2 of a fully connected ANN, and 
indication of prediction time tp per one million predictions (mean of Pmin from six training 
sessions with randomly (Glorot uniform) initialized weights for each node combination; τd = 
20 ns, lr = 0.0001, P = 85, Δεmax = ± 200 nε, N = 100, K = 4000000, batch size = 1024). 
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Two independent sets of measurement data are used: A validation measurement data set 
Imeas_val is used for hyperparameter optimization and to apply early stopping to avoid 
overfitting to the synthetic data. To this end, the training progress is monitored by computing 
THDrel and ASDrel after each training epoch, see Fig. 4(c). A test measurement data set Imeas_test 
is used to analyze the performance of the final model with optimized hyperparameters. The 
ANN’s performance, defined as the product of THDrel and ASDrel predicted from Imeas_val, is 
calculated after each training epoch. For each training session, early stopping is applied to 
select the model with the best performance defined as Pmin which is calculated as: 

 ( )min min .rel relepoch
P THD ASD=  (12) 

Note that this is equivalent to simply minimizing the product of THDANN and ASDANN. 
THDrel and ASDrel are computed to visualize the ANN performance compared to the LMS 
correlation approach. The hyperparameter configuration of the Pmin model is used to train the 
final model whose performance is analyzed on the test measurement data set Imeas_test. For 
testing, ASD noise and THD were calculated for 50 sensor positions as well as for a range of 
10 different reference sweeps. Averaging the predictions for different sampling positions and 
for a range of reference sweeps yields a more conclusive comparison and performance result. 
These results are reported in Tables 1-3 for both: ANN predictions and LMS results. The ASD 
noise and THD analyses were conducted on the test measurement data set Imeas_test during a 
100 nε sinusoidal excitation of the fiber by the piezo at the end of a 970 m long standard SMF 
(see Fig. 2). The modulation frequency was set to 20 Hz for Imeas_val and 28 Hz for Imeas_test. 
The size of the training data set C was K = 4000000 vectors, the size of the validation data set 
Imeas_val was 250000 vectors (5 s measurement), and the size of the test data set Imeas_test was 
1000000 vectors (20 s measurement). 

Various hyperparameters have been independently evaluated with this approach: the layer 
type (fully connected versus convolutional), the activation function of the hidden layers, 
number of hidden layers, number of nodes per layer, learning rate, and the training noise 
factor σε. The Adam optimizer (β1 = 0.9, β2 = 0.999) [34,35] was used for all training sessions. 
The ANNs were implemented in Tensorflow (v. 1.8.0) [37] using the Keras library (v. 2.2.0) 
[38]. A NVIDIA Quadro P4000 8GB RAM GPU was used for training and prediction in 
combination with a 16x Intel Xeon E5-1660 v3 3 GHz CPU running on Linux Open SuSe 
15.0 64 Bit. The hyperparameter optimization was initially conducted for the same 
measurement settings as in [20]: τd = 20 ns, fs = 1 kHz, fp = 100 kHz, Δν = 11.94 MHz. The 
selected hyperparameter configurations were then used as starting parameters to further 
optimize the hyperparameters for more extreme measurement settings (lower SNR, larger 
frequency step size Δν, and reduced number of sweep samples). 

ANNs with fully connected hidden layers yielded a considerably better performance than 
convolutional ANNs. An added noise distribution with a standard deviation σε = 0.02 (Eq. (6)) 
yielded optimal results for most parameter settings. In comparison to ReLU or sigmoid 
activation, using tanh as activation function yields both, a better performance of the trained 
model as well as shorter training time. A learning rate of lr = 0.00003 was suitable for all 
settings. Evaluating a range of combinations of the number of hidden layers and nodes per 
layer showed that two hidden layers are generally sufficient. Adding a third hidden layer did 
not improve the model’s performance for the chosen measurement settings. The models’ 
performances in terms of Pmin are shown for a range of combinations of the number of nodes 
in the first hidden layer (nodesL1) and the second hidden layer (nodesL2) in Fig. 5(b). The 
output of the trained linearization ANN was used as input for the strain ANN training. In 
addition to Pmin, the relevant prediction time per one million input sweep results tp is given for 
each of the models. This analysis of node number combinations shows that model 
architectures with at least nodesL1 = 1000 nodes in the first hidden layer and nodesL2 = 20 in 
the second hidden layer yielded the best results. Further increasing the number of nodes did 
not significantly improve the performance but only increased the prediction time. 
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Further hyperparameter testing for the more extreme WS-COTDR measurement settings 
in Section 4.3.1 to Section 4.3.3 was therefore conducted with nodesL1 = 1400 nodes in the 
first and nodesL2 = 40 in the second hidden layer, tanh activation, and σε = 0.02 training noise 
as starting values. It turned out that this initial hyperparameter configuration yielded the best 
results. Only the training data noise factor σε had to be adapted for low-SNR measurement 
data in Section 4.3.1 and a coarser frequency step size in Section 4.3.2. 

The ANN approach generally outperforms the LMS correlation approach in terms of ASD 
noise and THD. Moreover, the stacked ANN speeds up the linearization and strain 
computation considerably: compared to the LMS correlation approach, the computation time 
is decreased by a factor of 306, see Section 4.3.4 for details. 

The strain of the raw measurement data stream was predicted by the stacked ANN 
architecture shown in Fig. 3(a) with the weights and biases of the independently trained 
linearization ANN and strain ANN. The linearized reference Iref(Δνp,z) input sequence 
remained unchanged for each distance sample whereas the measurement data stream 
Imeas(Δν(p),t,z) was normalized using z-scores before the concatenated arrays were passed on 
to Tensorflow. 

4.3 Results 

4.3.1 Performance at low-SNR measurement data 

The hyperparameter selection was conducted for optimal measurement settings with the 
preamplifier EDFA current fully adjusted to the ADC input range without clipping. In real 
applications, however, optical loss along the fiber, for example due to connector degradation 
or mechanically induced macro-bend loss, may occur along the fiber and cannot be equally 
compensated by adapting pulse peak power or adjusting pre-amplification. SNR degradation 
due to fiber attenuation over long distances equally limits the maximum sensor length. A 
performance comparison for a range of signal-to-noise (SNR) levels has therefore been 
conducted. The SNR reduction is realized by decreasing the optical pulse peak power I0 into 
the fiber without adjusting the preamplifier EDFA amplification. Table 1 summarizes the 
performance parameters for the LMS correlation approach and the ANN prediction, and 
compares the ANN performance with the LMS performance for a range of SNR-reduced 
measurement results. 

Table 1. Performance of the ANN approach compared to the interpolation + LMS 
approach. 

Performance 
parameter 

I0 reduction / SNR 
reduction 

Interpolation / LMS 
result 

ANN prediction ANN performance 
improvement 

THD [%] 
ASD [nε/√Hz] 

0 dB 
0.452 
0.273 

0.337 
0.230 

25.4% 
15.8% 

THD [%] 
ASD [nε/√Hz] 

3 dB 
0.556 
0.318 

0.421 
0.265 

24.3% 
16.7% 

THD [%] 
ASD [nε/√Hz] 

6 dB 
0.604 
0.446 

0.512 
0.351 

15.2% 
21.3% 

THD [%] 
ASD [nε/√Hz] 

10 dB 
* 
* 

1.457 
0.721 

* 
* 

THD [%] 
ASD [nε/√Hz] 

13 dB 
* 
* 

3.455 
1.443 

* 
* 

*The LMS algorithm generally fails for ≥ 10 dB SNR reduction and is therefore not shown for comparison. (τd = 20 
ns, fs = 1 kHz, fp = 100 kHz, P = 85, g = 0.24, Δεmax = ± 200 nε, lr = 0.00003, σε = 0.02 for SNR reduction of 0 dB 
and 3 dB, σε = 0.06 for SNR reduction of 6 dB, σε = 0.4 for SNR reduction = 10 dB, and σε = 0.8 for SNR reduction 
= 13 dB) 

The same ANN was used for the performance analysis of optimal settings (0 dB loss) and 
the measurement SNR-reduced by 3 dB. However, ANNs that have been trained for high-
SNR input predict a slightly reduced strain amplitude response when used on low-SNR 
measurement data (≥ 6 dB SNR reduction). This is due to a slight distortion of the prediction 
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accuracy toward the limits of the strain range of the training data Δεtrain when the training 
noise (σε) and the noise of the measurement data differ significantly from each other. This 
issue was addressed by training with an adapted noise factor σε. Correct strain amplitudes are 
predicted for increased training noise of σε = 0.06 for 6 dB, σε = 0.4 for 10 dB, and σε = 0.8 for 
13 dB SNR reduction of measurement data. If considerable variations of the SNR along the 
sensor fiber are present, different SNR-specific ANNs would have to be used for accurate 
strain predictions. 

Using ANNs, a significant performance improvement can be seen for the entire SNR 
range, especially for very low-SNR measurement data. It must be noted that the low-SNR test 
data from ≥ 10 dB SNR reduction could not be reliably processed using the LMS approach, 
whereas the ANN consistently predicts meaningful strain values even for 13 dB SNR 
reduction. 

The optical loss budget of a DAS sensor system is a crucial performance parameter for a 
range of applications and also determines the maximum distance range of the sensor. The 
significant performance improvement using the ANN-based strain prediction approach for 
low backscatter signals will therefore extend the distance range compared to standard 
correlation-based methods. 

4.3.2 Coarser frequency step size 

It is a common problem that peak interpolation of severely under-sampled peaks, only a few 
samples wide, suffers from limited accuracy when determining peak positions or peak 
position shifts. Polynomial interpolation approaches of effectively under-sampled peaks, 
spectra, or, in this case, a (negative) LMS correlation peak (see Fig. 6(a)), lead to somewhat 
quantized peak position results, i.e., a nonlinear peak shift response. 

This effect is evident in Fig. 6(b) for interpolated LMS correlation shift results from a 
measurement of an ideal triangular strain excitation that has been sampled with a coarser 
frequency step size of Δν = 35.6 MHz. We previously defined a conservative maximum limit 
for the frequency step size Δν that still ensures correct interpolation results, i.e., a linear strain 
response [20]. This limit is a function of the pulse duration and is characterized for the LMS 
correlation approach by the factor g = Δντd with g < 0.25. For small g ≤ 0.25, high sensor 
linearity has been demonstrated over four orders of magnitude and down to peak amplitudes 
of 47.5 pε [20]. 

Increasing Δν, the number of sampling points that are available for correct minimum 
interpolation is effectively decreased, see Fig. 6(a). Therefore, the LMS correlation result 
after cubic polynomial interpolation exhibits a severely nonlinear strain response, as shown 
for g = 0.71 in Fig. 6(b). The “strain quantization effect” of the interpolated LMS results 
corresponds to the frequency step size Δν and manifests itself in significant THD degradation. 
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Fig. 6. (a) LMS correlation result Rref,new(q) from Eq. (8) for one distance sample, and cubic 
interpolation for: g = 0.24, g = 0.48 and g = 0.71 indicating reduced data quality for accurate 
minimum interpolation results. (b) Strain results during a 300 nε triangular modulation using 
the LMS approach and ANN predictions for coarser frequency step size of Δν = 35.6 MHz (g = 
0.71, fs = 1 kHz, τd = 20 ns, Δεmax = ± 500 nε, mean of Δε from z = 938.02 m to z = 948.24 m). 

Individual ANNs have been optimized, trained and tested for strain prediction on 
measurement data for a range of values of g: g = 0.24, g = 0.48, and g = 0.71. As mentioned 
above, the same ANN architecture and hyperparameters as in Section 4.2.2 yielded the best 
performance. Only the training noise σε had to be increased for correct strain amplitude 
predictions for g > 0.25. The ANNs’ performance was compared to the LMS correlation 
approach in Table 2 for ANNs trained for strain ranges of Δεmax = ± 200 nε and Δεmax = ± 500 
nε, respectively. 

Table 2. Performance of the interpolation + LMS results in comparison to the ANN 
predictions for g = 0.24 and coarser frequency step sampling with g = 0.48 and g = 0.71. 

Parameter Frequency 
step size Δν 

Factor g 
= Δντd 

Interpolation / 
LMS corr. 

ANN prediction 
(Δεmax = ± 200 

nε) 

ANN prediction 
(Δεmax = ± 500 nε)

ANN improvement 
(Δεmax = ± 200 nε) 

THD [%] 
ASD [nε/√Hz] 

11.94 MHz 0.24 
0.452 
0.273 

0.337 
0.230 

0.550 
0.273 

25.4% 
15.8% 

THD [%] 
ASD [nε/√Hz] 

23.80 MHz 0.48 
5.748 

0.275* 
0.594 
0.233 

0.792 
0.271 

89.7% 
* 

THD [%] 
ASD [nε/√Hz] 

35.57 MHz 0.71 
21.189 
0.336* 

1.876 
0.314 

1.665 
0.349 

91.1% 
* 

* The value of ASDLMS noise for g > 0.25 is not meaningful due to the strongly nonlinear response and is, therefore, 
not shown for comparison. Parameters: sinusoidal signal, 100 nε amplitude, τd = 20 ns, fs = 1 kHz, fp = 100 kHz, lr = 
0.00003, σε = 0.02 for g = 0.24, σε = 0.04 for g = 0.48, σε = 0.1 for g = 0.71) 

The ANN predictions exhibit considerably improved linearity of the strain response, 
which is clearly visible in Fig. 6(b). Whereas the ANN predictions closely follow the strain 
excitation, LMS correlation results exhibit reduced sensitivity around multiples of Δν. This 
means that strain cannot be correctly quantified with the LMS correlation approach for factors 
exceeding g ≈0.25. Note, that this nonlinear sensor response is evident for even lower values 
of g when standard cross correlation analysis is used. It is also evident from Table 2 that 
ANNs trained for wider strain ranges (± 500 nε vs. ± 200 nε) exhibit a slightly reduced 
performance. This is expected since the ANN has to generalize for a wider shift range and, 
therefore, perform a more complex task. 

In summary, ANNs clearly prove advantageous for coarser frequency step sampling, and 
potentially for under-sampled signals in general. This means that a wider strain range can be 
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scanned for a given number of frequency steps which effectively extends the possible strain 
measurement range when directly comparing two sweep results. We already demonstrated 
that the strain measurement range can be infinitely extended during a measurement without 
strain limitation by incorporating new sweep results into a continuously expanding reference 
Iref,exp(Δνp,exp) [20]. This method also promises further performance improvement but has not 
yet been implemented into the ANN prediction routine. Other methods to circumvent the limit 
of the strain prediction range are addressed in more detail in Section 5. 

4.3.3 Reduced correlation input / extension of distance range 

This subsection summarizes the ANN’s performance for a reduced number of samples that 
are available as input for the LMS correlation analysis or the ANN, respectively. A reduced 
number of backscatter measurements per sweep may be necessary if a higher strain 
measurement repetition rate (sweep rate fs) is required, and/or the distance range zmax is to be 
extended. The number of correlation input samples is inversely proportional to the product of 
sweep rate and distance range: P~1/(fs zmax). Naturally, fewer input data samples deteriorate 
the quality of the correlation. 

To quantify this deteriorating effect, we compare the performance of the LMS and ANN 
approach for reduced correlation input size by means of reducing the pulse rate fp and, 
therefore, extending the maximum distance range zmax while maintaining the strain repetition 
rate at fs = 1 kHz. In addition to the zmax = 1020 m distance range (P = 85, results shown in 
Table 1), specific ANNs were trained, and their performance was analyzed for pulse 
repetition rate settings of: fp = 50 kHz corresponding to zmax ≈2040 m (P = 42), and fp = 20 
kHz corresponding to zmax ≈5100 m (P = 16). The same hyperparameters as for P = 85 in 
Section 4.2.2 are suitable for the reduced input lengths. The prediction performance of models 
for 43 input samples per sweep and 17 input samples per sweep are summarized in Table 3. 

Table 3. Performance comparison of the linearization interpolation + LMS correlation 
results and the ANN predictions for a reduced number of frequency samples per sweep 

for extended distance ranges zmax. 

Parameter Distance 
range zmax 

Input samples for 
correlation 

LMS correlation ANN 
prediction 

ANN performance 
improvement 

THD [%] 
ASD [nε/√Hz] 

2040 m 43 
5.827 
0.364 

0.663 
0.318 

88.6% 
12.6% 

THD [%] 
ASD [nε/√Hz] 

5100 m 17 
* 
* 

0.999 
0.501 

* 
* 

* The LMS algorithm generally fails when only 17 pulse frequency samples are available. Hence, results are not 
shown for comparison. Constant sweep rate of fs = 1 kHz for all measurements, nodeslin = 200, nodesL1 = 1400, 
nodesL2 = 40, σε = 0.02, lr = 0.00003, fs = 1 kHz, g = 0.48 for P = 42, g = 0.49 for P = 16, Δεmax = ± 200 nε, 100 nε 
strain amplitude. 

It must be noted that the LMS correlation approach generally fails when only 17 input 
samples are provided. The ANN predictions, however, can be trusted even for significantly 
reduced input data. Hence, the use of ANNs allows for a reduction of the number of pulse 
frequencies per sweep. This considerably relaxes the limitation of the product of distance 
range and repetition rate of the WS-COTDR. 

4.3.4 Computation time improvement for real-time measurement 

The most important improvement is achieved in terms of computation time. Efficient ANN 
forward propagation for strain prediction from raw sweep data is computed on a GPU. Table 
4 summarizes the computation times for the linearization task and the strain calculation tasks, 
as well as combined computation of both tasks using the reference approach (sweep 
interpolation / LMS correlation) and the ANNs. 
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Table 4. Computation time comparison of the reference approach (sweep linearization 
interpolation and LMS correlation) with the linearization ANN, the strain ANN, and the 

stacked ANN (see Fig. 3(a)). 

Computation task Computation time* 
(per one million input sweeps / input vectors) 

ANN improvement 
(factor) 

 Interpolation + 
LMS 

Separate ANN subnets Stacked ANN  

Linearization 33.21 s 0.122 s - 272.2 
Strain 

computation 
94.77 s 0.353 s - 268.5 

Linearization + 
strain calculation 

127.98 s - 0.418 s 306.2 

* GPU: NVIDIA Quadro P4000 8 GB RAM; Operating system: Linux, Open SuSe 15.0 64 bit; processor: 16 x 
Intel Xeon E5-1660 v3 3 GHz; backend: Tensorflow v. 1.8.0 implemented in Keras v. 2.2.0; ANN: nodeslin = 200, 
nodesL1 = 1400, nodesL2 = 40, P = 85. 

The computation of the linearization and the strain is 306 times faster when using a 
stacked ANN as compared to the LMS correlation approach with preceding interpolation. The 
stacked ANN architecture yields a speedup of more than 12% compared to calling the 
linearization ANN and the strain ANN separately. 

Dynamic strain measurement at 2392 sensor positions could be conducted in real-time at a 
measurement repetition rate of 1 kHz with the current implementation. This real-time strain 
measurement capability can be further expanded to more than 10000 spatial sample locations 
by reducing the number of nodes of the hidden layers (compare prediction times in Fig. 5(b)), 
reducing the input sample size, and/or using a high-end GPU or several GPUs in parallel. 
Note that all necessary data preprocessing steps (reshaping the raw data and computing z-
scores) can be conducted on CPU cores in parallel to the computation of the ANN forward 
pass on the GPU(s). 

The capability of real-time prediction also solves the issue of mass data storage. The raw 
sweep data do not need to be stored since only the strain results from each sweep are of 
interest. Hence, the raw sweep data can be instantly discarded during the real-time ANN 
computation routine. This reduces the data volume by two to three orders of magnitude, 
depending on the number of pulse samples per sweep. 

4.4 Demonstration of ground movement using a “dark fiber” 

The potential of unused telecom fibers, or dark fibers, has been recently demonstrated, for 
example for geophysical applications [39–41] and rail track monitoring [42,43]. To 
demonstrate the applicability of the WS-COTDR for arbitrary signals in general, and the 
ANN approach in particular, we measured the strain distribution along a 1.3 km long dark 
telecom fiber between two locations of our institution. The telecom cable is buried at 0.8 m 
depth under a sidewalk in a protective duct at about 5 m distance in parallel to a car lane. The 
measured strain is in the axial direction along the fiber. Figure 7 shows two examples of 
urban near-surface strain distribution measurement showing quasi-static soil deformation and 
dynamic seismic wave propagation along the cable: Fig. 7(a) shows a measurement of the 
temporal strain distribution in which a car is pulling out of a parking space at t ≈2 s, 
accelerates and drives in parallel to the fiber. The diagonal negative strain signature is caused 
by the deformation of the soil by the weight of the car accelerating to about 30 km/h 
(calculated from weight-induced strain signal along the fiber). The positive residual strain 
around z = 647 m is due to soil relaxation relative to the reference sweep at t = 20 ms after the 
car’s weight is removed. Figure 7(b) shows the strain signature of a pedestrian walking along 
the buried cable. Each step causes visible surface wave propagation along the cable and 
temporary deformation of the cable due to the pedestrian’s weight. 
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Fig. 7. Example for strain distribution measurement along a dark fiber in a telecom cable under 
a sidewalk in parallel to a road: (a) Car pulling out of a parking space and accelerating in 
parallel to the cable. (b) Pedestrian walking along the buried telecommunication cable. (a) and 
(b) with common strain scale; τd = 20 ns, fs = 1 kHz, fp = 100 kHz; ANN: Δεmax = ± 200 nε, 
nodeslin = 200, nodesL1 = 1400, nodesL2 = 40, σε = 0.02, strain averaging of 5 samples along 
distance and time. 

The subtle, almost vertical features are low-amplitude surface waves from vibration 
sources or physical impact sources at some distance from the fiber. They propagate over 
distances of several hundred meters and pass the fiber at various angles. This measurement on 
a dark fiber demonstrates that arbitrary strain signals and spatial strain distributions can be 
measured with real-time capability and nε-resolution from ANN predictions using the WS-
COTDR approach. 

5. Discussion 

We showed that ANNs outperform conventional correlation algorithms with respect to all 
performance parameters for our application. The generation of synthetic training data is very 
well suited in cases where insufficient training data are available, or labels are either non-
existing or error-prone. Artificial training data generation is particularly useful when the 
relation between ANN input and ANN output can be well-described by a physical or 
mathematical model. We used a physical model of the coherent interaction of the optical 
pulse with multiple discrete scatterers in the fiber for training data generation. However, an 
error-free representation of complex processes and their conversion to measurement data 
(ANN input data) is usually not possible. The associated issue of domain adaptation from the 
source domain (synthesized data) to the target domain (unlabeled measurement data) is 
addressed by applying early stopping during the training where the stopping criterion is 
defined in terms of the model’s performance on measurement data with respect to the relevant 
sensor parameters: noise spectral density and linearity of the strain response. Also, the 
hyperparameters are selected using this domain adaptation approach. This method of ANN 
training and evaluation with combined synthetic data and measurement data is advantageous 
for a wide range of applications in science and technology, especially if the overall 
performance can be better described by application-specific parameters other than just the 
training labels. 

Increasing the frequency shift range, and consequently the strain prediction range, is of 
interest for our application as well as for similar correlation tasks. The example of ANNs 
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trained for strain ranges of 400 nε and 1 µε shows that ANNs trained for wider strain ranges 
somewhat deteriorate the model’s performance. Improved performance for higher strain 
ranges can be achieved using various approaches: Several ANNs can be trained separately for 
smaller, but partly overlapping strain ranges. These strain range-specific sub-ANNs could 
then be integrated into a more complex ANN with an independently trained initial strain 
range classification subnet which selects the corresponding strain range sub-ANN for the final 
strain prediction. Another way to increase the accuracy of the strain prediction and extend the 
measurable strain range is to scan a much wider frequency range as a reference and 
adaptively select the matching reference sweep input range based on preceding predictions. 
This ensures a high strain measurement range while minimizing the number of sweep samples 
for a maximal product of sweep rate and distance range. A third option is to continuously 
update and extend the range of the reference scan with new sweep results, as demonstrated in 
[20]. We are confident that these more complex implementations will further improve the 
strain prediction accuracy. 

We have demonstrated the real-world performance of the sensor using an underground 
telecommunication cable. Important application prospects using existing telecommunication 
infrastructure are the monitoring of railways and roads, active and passive seismic 
applications or ambient noise tomography [39], for example, for geothermal explorations. 
Other fields of application for this highly linear true strain sensor can be found in the 
structural health monitoring sector for damage assessment and lifetime prediction of critical 
infrastructures, such as bridges [20] and buildings, as well as the monitoring of pipes, 
pipelines and power cables. 

With the results presented here, WS-COTDR can now compete in real-time measurements 
with phase resolved DAS, but at reduced maximal measurement repetition rates. A major 
advantage of the WS-COTDR approach is that the sweep results of several interrupted 
measurements can be compared to one another both on short and long-term timescales 
because each wavelength scan can be compared relative to a permanent and unambiguous 
reference scan. This contrasts with phase resolved DAS approaches, where the phase 
reference is usually lost after interruption of a measurement. Beyond the specific example 
presented here, ANN prediction-based signal shift analysis could also be used to improve the 
performance of various other correlation-based fiber optic sensor techniques in the time 
domain, frequency domain, and spatial domain [3,18,19,21,44–46]. The ANN interpolation 
and signal shift prediction approach can also be transferred to other fields in science such as 
spectroscopy, signal and time delay analysis, time-of-flight techniques, and pattern analysis in 
general. 

6. Conclusion 

Using ANNs for processing raw sensor data, we demonstrated substantial speed and accuracy 
improvements that enable real-time and high-resolution dynamic strain measurement along 
optical fibers using the WS-COTDR approach. Using fully connected ANNs, the performance 
of strain computation was considerably improved in comparison to correlation-based 
approaches. Two separate ANN subnets have been trained on synthesized training data for 
laser sweep linearization and strain prediction from relative signal shifts. The combined ANN 
not only performs the wavelength sweep correction and shift calculation task, but also 
provides high-accuracy interpolated results of the relative strain change. To moderate the 
issue of domain adaptation, the sensor-specific performance parameters noise spectral density 
and total harmonic distortion are used to evaluate the ANN’s performance on measurement 
data during the training phase: Early stopping is applied to prevent overfitting of the 
synthesized training data. The same approach is used for hyperparameter optimization. 

We showed that the ANNs outperform correlation approaches for low-SNR measurement 
data, for increased sampling step size, as well as for reduced number of correlation input 
samples. The greatest advantage, however, is the reduction of computation time by a factor of 
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306. This makes it for the first time possible to conduct real-time strain sensing using WS-
COTDR. The real-time ANN strain prediction capability also considerably reduces the data
storage requirements since raw data sweep measurements do not have to be saved for later
computation. The applicability of the method for arbitrary strain distribution signals is
demonstrated along a dark telecom fiber for dynamic and quasi-static ground movement in
urban environment.
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