

Essentielle Parameter zur numerischen Abschätzung der Sichtbarkeit von Bildgüteprüfkörpern in der digitalen Radiographie

Uwe EWERT¹, Uwe ZSCHERPEL¹, Fangzhou ZHANG², Nghiem Xuan LONG³, Nguyen PHONG³

¹ BAM Bundesanstalt für Materialforschung und -prüfung, Berlin
 ² Dresden International University (DIU), Dresden
 ³ Center for Non-Destructive Evaluation, (NDE); Vietnam Atomic Energy Institute (VINATOM); Ministry of Science and Technology (MOST), Hanoi, Vietnam

Kontakt E-Mail: uwe@ewert-net.de

Kurzfassung

Die Voraussetzungen für die Vorhersage der Sichtbarkeit von Bildgüteprüfkörpern (BPK) wurden seit Beginn der kommerziellen Anwendung der technischen Radiographie diskutiert und in diversen nationalen und internationalen Standards festgeschrieben. Diese Fragen werden nach Einführung der digitalen Radiographie und der CT wieder neu diskutiert. Draht BPKs wurden in Deutschland seit 1935 (DIN 1915: 1935) und später in den meisten europäischen Ländern benutzt. In den USA und Frankreich wurden vorzugsweise BPKs mit Löchern verwendet (ASTM E 1025 seit 1984 oder E 1742 seit 1992 bzw. die Vorgängernorm MIL STD-543 seit 1962). Jetzt werden auch die Umrechnungsnormen zur Erkennbarkeit von Draht zu Loch-BPKs in Frage gestellt. ISO 19232-3, der französische RCCM-Kode einerseits und ASTM E 747 und ASME BPVC Section V Tab. T-276 andererseits unterscheiden sich erheblich bei den Anforderungen im Bereich hoher Wandstärken (Hochenergieradiographie). Untersuchungen dazu werden vorgestellt. Mit Einführung der digitalen Detektoren ändern sich auch die Rauschspektren. Durch die Herstellung werden insbesondere bei Speicherfolien "Rauschmuster" eingeprägt, die bei hohen Belichtungsdosen sichtbar werden. Diese veränderten Rauschspektren ergeben auch veränderte Erkennungsparameter für menschliche Bildauswerter. Hierzu wurden an ausgewählten Detektoren MTFs (presampled) und normierte Rauschspektren gemessen. Erweiterte Erkennbarkeits-Formeln zur Vorhersage der Sichtbarkeit von BPKs für Bildauswerter und erste Ergebnisse werden vorgestellt.

Neues CR-Charakterisieungsschema 🗦 BAM									
Neue Charakterisierung durch Performance-Levels									
III AOTM E 2440-13									
CR System Performance Levels	Required Minimum SNR _N (Normalized to SR _b =88.6 μm)	Permitted Maximum iSR _b ^{detector} Value [µm]	Permitted Maximum EPS by E746 [%] ^A						
CR Special	200	50	1.00						
CR Level I	100	100	1.41						
CR Level II	70	160	1.66						
CR Level III	50	200	1.92						
CR level II example:EPS = 1.4 %with $\mu_{eff} = 0.05 \text{ mm}^{-1}, \text{SNR}_N = 100,$ $\text{PT} = 200, t_{testplate} = 19 \text{ mm}$ $EPS = \frac{200\%}{19mm} \sqrt{\frac{0.0886}{0.05 \cdot 100}}$ $EPS = \frac{PT'}{t_{testplate}} \sqrt{\frac{SR_b^{image}}{\mu_{eff}} \cdot SNR}}$ 09.05.2018Bildqualität in der Radiographie									

Ergebnisse für verschiedene digitale Systeme: 1x DDA, 2x CR					🔰 ВАМ	
	e 200 betra	gen!	Streustrah	lung, we	nn µ _{eff} < 0).05 mm ⁻¹
System	SR _b ^{detector} average mm	PT'	Contrast µ _{eff} mm ⁻¹	aSNR	aSNR _N	aEPS %
DDA Dexela CsI	0.081	230	0.05	650	720	¹ 0.59
IP standard	0.098	280	0.038	270	265	1.41
IP high resolution	0.077	280	0.036	130	145	1.85
					¹ calcu	lated
 Kann nicht mit Rose-Konzept erklärt werden. Rauschspektren sind erforderlich Die Bildqualität von Speicherfolien ist begrenzt durch das Strukturrauschen bei Belichtung mit höheren Dosiswerten. 						

8

