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The inspection of complex-shaped components, such
as those enabled by additive manufacturing, is a major
challenge in industrial quality assurance. A frequently
adopted approach to volumetric non-destructive
evaluation is X-ray computed tomography, but this
has major drawbacks. Two-dimensional radiography
can overcome some of these problems, but does not
generally provide an inspection that is as capable.
Moreover, designing a detailed inspection for a
complex-shaped component is a labour-intensive
task, requiring significant expert input. In response,
a computational framework for optimizing the data
acquisition for an image-based inspection modality
has been devised. The initial objective is to advance
the capabilities of radiography, but the algorithm
is, in principle, also applicable to alternative types
of imaging. The algorithm exploits available prior
information about the inspection and simulations of
the inspection modality to allow the determination
of the optimal inspection configuration, including
specifically component poses with respect to the
imaging system. As an intermediate output, spatial
maps of inspection performance are computed,
for understanding spatially varying limits of
detection. Key areas of innovation concern the
defect detectability evaluation for arbitrarily complex
indications and the creation of an application-specific
optimization algorithm. Initial trials of the algorithm
are presented, with good results.
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1. Introduction
Non-destructive evaluation (NDE) to confirm the absence of significant structural defects is a
crucial element of quality control for safety-critical components, for example, in the aerospace
and power generation sectors. A significant current industrial challenge is caused by the need
to inspect components of highly complex geometries, driven to a large extent by the design
freedom offered by additive manufacturing techniques. Concerns about quality assurance have
the potential to impede the uptake of these novel manufacturing approaches as they transition
from rapid prototyping applications to serial production of safety-critical components [1]. At
the same time, it should be acknowledged that a high level of geometric complexity and the
lack of an intermediate manufacturing stage during which inspection could be performed more
easily (as would be the case for a subtractive manufacturing route [2]) also applies to some more
conventional production processes such as casting [3].

At present, X-ray computed tomography (CT) is frequently relied on for volumetric inspection
of complex-shaped additively manufactured components, because it not only provides the high
level of performance independence from sample geometry and surface finish of a radiographic
technique, but also gives detailed three-dimensional positional and sizing information [4].
Moreover, CT can be used to obtain dimensional measurements [5]. However, there are multiple
limitations associated with CT, including the typically high per-part cost (primarily due to high
equipment costs and extended cycle times) and the geometric limitations associated with the need
to acquire projections from many positions along a circular arc. CT is also not fully established
as an industrial inspection technique, for example, there is no personnel certification scheme as
for other NDE methods. Additionally, there is an interest in having a more targeted inspection
capability, which is able to incorporate prior knowledge about the component, for example, to
exploit data acquired by monitoring systems on the build machine [6].

An alternative technique that, in principle, is similarly applicable to the volumetric inspection
of complex-shaped parts is two-dimensional (2D) radiography. Moreover, it is a less expensive,
more flexible and better established alternative to CT. However, 2D radiography does not
generally provide an inspection that is as comprehensive or capable [7], most obviously
given the lack of depth information in the direction of the X-rays. Additionally, designing
a detailed inspection for a complex-shaped component is currently a labour-intensive task,
requiring significant input from a technique expert (with American Society for Nondestructive
Testing/British Institute of Non-Destructive Testing Level 3 certification [8–10]). While there are
simulation tools available to assist in this task [11–13], the level of effort required is incompatible
with short production runs and part customization of the sort made increasingly cost-effective
by additive manufacturing [14]. Moreover, even an experienced inspector is unlikely to be able to
incorporate all available information into the inspection design, given in particular the complexity
of spatially varying inspection capabilities and requirements.

The overarching aim of this work then is to improve the capabilities of multi-shot 2D
radiographic imaging by computationally incorporating prior knowledge about the inspection
into the inspection design, to maximize the likelihood of delivering the required level of quality
assurance. The framework developed is applicable to all image-based inspection modalities
(subject to the provision of a modality-specific inspection simulation capability), but exemplified
using 2D radiography—the extension to surface inspection at optical wavelengths is also likely to
be of interest for the inspection of samples of high geometric complexity. As an intermediate
output, the algorithm computes spatial maps of inspection performance, an output that is
itself of great potential value for understanding the limitations of an inspection, for example
by facilitating the extrapolation of limited experimental data. Central to the algorithm is the
capability to quantify the value of an inspection configuration with respect to the quality
assurance requirements, and a numerical optimization algorithm with features designed for the
application described.

The work is complementary to that described in [15], which relates to the optimal selection
of radiographic projections for subsequent tomographic reconstruction, rather than 2D imaging.
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Key differences between that work and the present study, other than the application, relate to
the choice of the means of quantifying the value of a projection and the nature of the applied
numerical optimization: the greedy sequential scheme, based on exhaustive enumeration, that
Fischer et al. use would incur an overwhelming computational cost in higher dimensional
decision variable spaces (as examined here), and has a low likelihood of converging to the overall
global optimum.

The paper proceeds by setting out some of the theory underlying the framework developed.
Section 3 then provides an overview of the different components of the framework, while §§4 and
5 focus on the two primary areas of innovation, the detectability evaluation and the optimization,
respectively. Section 6 provides details of initial computational and experimental trials conducted,
and discussion. The conclusion section rounds off the paper.

2. Theoretical background

(a) Operating principles
The algorithm developed seeks to incorporate all prior knowledge available about the specimen
and equipment into the inspection design. This most importantly includes knowledge about
the component geometry and material, but can also extend to details about expected defect
types and critical regions, as provided by stress calculations. The ultimate objective is to be
able to compute the set of radiographic projections that in total provides the optimal inspection
performance within operational constraints (such as hardware limitations and permissible
inspection time). While skilled human inspectors can design inspections trying to incorporate
such prior knowledge into the inspection procedure, it is expected that for highly complex
components and detailed a priori information, such planning is unlikely to yield even near-
optimal performance, and the limitations of the design chosen are unlikely to be well understood
without the use of computational aids.

At the heart of the algorithm is a computer simulation of the inspection. This provides
the forward model: for a given inspection configuration an expected output can be calculated.
Importantly, for a given hypothetical defect, the indication that will be present in the inspection
data can be predicted. This indication can then be evaluated to assess the ability of that inspection
configuration to provide useful information about that hypothetical defect. Then by sampling
many hypothetical defects, informed by available prior knowledge, a broader understanding of
that inspection configuration’s capabilities can be obtained. This can then be optimized within
the constraints provided by e.g. the available hardware, to find the inspection configuration that
provides the maximal inspection performance. This process, illustrated in figure 1, is an example
of inversion: finding the input required for a given desired output.

(b) Key assumptions
As with every model, there are some key assumptions that underlie the approach taken in the
algorithm developed, and it is important to understand these so as to be aware of the model
limitations. The most important assumptions identified are discussed below.

(i) Uncalibrated model

The simulation model used in this project is uncalibrated. This means that there are multiple
parameter values that are expected to deviate both from those nominally set on the inspection
hardware, and from those that would give the model output closest to the experimental
output. An immediate consequence of this is that the program developed is unable to provide
any information on absolute performance (defect detectable versus not detectable in this
configuration), only relative performance (defect more detectable in this configuration than the
last). Additionally, it is assumed that the parameters that are mismatched between simulation and
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Figure 1. Schematic of the process underlying the algorithm. In the implementation developed, the element that is most
specific to the inspection modality studied, the simulation, is delegated to a discrete software package controlled externally.

physical experiment have negligible impact on the detectability associated with the parameters
that are being optimized over—the two sets of parameters must not exhibit any correlation
in detectability. This is a reasonable assumption for the case of the radiographic inspection
studied, as for example, the exact X-ray source spectrum (described by uncalibrated parameters)
is unlikely to affect the choice of sample positioning (described by parameters optimized over)
for optimal detectability. However, model calibration, for example building on [16], is an obvious
example of suggested further work.

(ii) Definition of objective function

Every mathematical optimization is only as useful as the objective function it is seeking to
maximize/minimize is meaningful in practice. A great deal of thought has gone into the definition
of the objective function used in this algorithm, as will be described further in §3f. It does
however also incorporate a measure of user choice, so there is no guarantee that this will be
appropriate under all circumstances and for all users, and should be modified to suit different
user requirements where necessary.

(iii) Sampling

The objective function in this algorithm is evaluated by the sampling of hypothetical defects.
Inevitably, the more defects that are sampled, the more accurate the computations, but the longer
these will take. This is in effect a Monte Carlo integration approach, so in line with general
theory a 1/

√
N improvement in the model accuracy with N, the number of samples taken,

may be expected [17]. However, in addition to this mathematical effect, one must be aware
that the choices/assumptions underlying the sampling must be appropriate to give a useful
output. This, for example, relates to the possible choice to bias the spatial sampling of defects
to a particular region of the component volume, in an effort to compute a targeted inspection
design, which may be appropriate if that region is considered likely to contain defects (e.g. based
on historic data), but may be inappropriate if that same region is also least critical (from lifing
calculations).

(iv) Local optimum

The complexity of the optimization in this work is especially dependent on the geometric
complexity of the sample studied but, in general, can be expected to be high. In most applications,
the objective function space that the optimization explores can be expected to be characterized by
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a high dimensionality and many local optima. This means an appropriate global optimization
algorithm must be applied, but even with such a tool, there is no guarantee that the algorithm
will converge to the true global optimum in any reasonable computation time. Moreover, as
exhaustive enumeration of the objective function space is out of the question, the true global
optimum may never be known, and the best option for obtaining a degree of confidence in the
point reached by the optimization is likely to be based on re-running the optimization many
times from different starting positions and/or with different random seeds (given the stochastic
nature of most global optimization algorithms). In short, without excessive computational effort
it is impossible to be sure that the point converged to represents the very best configuration
conceivably possible, but the point should at least represent a reasonable choice of configuration.
This does in practice also mean that if a ‘reasonable guess’ of a good inspection configuration
is available, it is likely to be worthwhile to initiate the optimization from this. Details of the
optimization are described in §5.

(v) Computational limitations

The work makes some assumptions about computational constraints. Specifically, it is assumed
that for the algorithm to be useful industrially, reasonable results must be obtainable within a
week of running on a high-performance, but stand-alone, computer. However, evaluation speed
is not a direct concern at present as in practice any algorithm prototype can be accelerated using
(continually improving) more advanced hardware and re-writing the code for speed specifically.
Nonetheless, for development purposes it is ultimately necessary for the algorithm to be capable
of returning useful results in a time-frame measured in minutes and hours rather than days. Thus,
the likelihood of converging to a local optimum is further heightened.

3. Method overview
This section seeks to provide an overview of the framework developed, but the two elements
that this paper focuses on, the detectability evaluation and the optimization, are described in the
dedicated §§4 and 5, respectively.

(a) Algorithm architecture
The framework architecture is based on that developed in [18]. This lends itself well to the
development of an optimization framework thanks to the inherently flexible and extensible
design, as well as the incorporation of tools for efficient computation. The linear sequence of
modules that makes up the framework are described (in order) in the sections that follow: the
inputs available to a given module are specified by the outputs of the preceding modules.

(b) Simulation
The forward model is provided by the aRTist radiographic simulator software package [11,19]. This
software tool is able to predict the indication to be expected from a given hypothetical defect in a
specific sample geometry obtainable in a specific inspection configuration. The following features
were provided or enabled specifically for this work:

— Remote control: allowing the simulation to be controlled from an external script;
— CAD voxelization: enabling a CAD-model to be converted into a voxel dataset of a user-

defined coarseness; and
— ROI evaluation: allowing the image evaluation to be restricted to a region of interest (ROI)

subset automatically determined from the inspection scene configuration.

Note that the alternative simulation packages CIVA RT [12] and XRSIM [13,20] were considered,
but these were determined to be unsuitable as they have no interface to enable external
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(b)(a)

Figure 2. Renderings of two possible permissible regions for defect sampling calculated from the voxelization of a component’s
CAD-model (see §6b). (a) The region appropriate for sampling near-surface defects, while (b), a region appropriate for sampling
trapped-powder-type defects. The voxels here are cubes of 0.5 mm edge length. (Online version in colour.)

control. The latter in fact already offers a built-in capability for mapping X-ray inspection
coverage, however no details on the workings of the software are published, so robust
comparisons are impossible. Nonetheless, it is clear that XRSIM for instance does not provide
any capability for numerical optimization of the inspection design of the sort presented here. For
the application of the optimization framework to an alternative (non-radiographic) inspection
modality, the simulation module would need to be exchanged for an appropriate modelling
capability.

(c) Detectability evaluation
This module computes one or more metrics describing numerically the detectability of a defect
indication seen in radiographic images—in practice an area–contrast to noise ratio (CNR)
relationship for each indication. This is described in detail in §4.

(d) Defect sampling
Morphological operations (erode and dilate) on the binary array that is the voxelized
representation of the sample geometry allow the calculation of the permissible region for
different defect types as specified by the user: surface defects, internal defects and traces of the
manufacturing process, such as trapped powder in the case of additive layer manufacturing.
Illustrations of such permissible regions are provided in figure 2.

The user can provide prior knowledge about the spatial distribution of the defects the
inspection is to be steered towards. This allows the incorporation of zoning conventionally applied
to complex components. In addition to the defect locations, multiple other defect properties can
be sampled over, if there is prior knowledge to justify this. Therefore, defect aspect ratios and
orientations, for example, can be specified in terms of statistical distributions to be sampled,
to describe the approximate morphologies and expected alignments of defects, respectively.
Moreover, it is possible to specify different defect types independently, including their relative
significance. All quantities to be sampled over are then sampled using a Sobol sequence, an
example of a low discrepancy sequence, for optimal space-filling properties and hence consistent
Monte Carlo performance [17]. Such pseudo-random sequences have the further advantage over
alternative approaches that they allow for the sample set to be extended after creation, so
potentially the algorithm could iteratively refine the sampling performance. An illustration of
the spatial sampling is provided in figure 3.
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Figure 3. A rendering of the permissible region computed for a component’s CAD-model (see §6b) appropriate for sub-surface
defects, with the chosen defect sampling locations superimposed for the case of 200 defect samples. The arrow relates to §6c.
(Online version in colour.)

Table 1. Table illustrating the 14 decision variables for an example set of three projectionswith two linked rotational parameters
(as considered in 6f). The two shared rotational parameters,ρ andφ, rotations about x- and z-axes, respectively, canbe thought
of as specifying the fixture to be used in an X-ray system with a single rotational degree of freedom (about y-axis).

projection 1 projection 2 projection 3

translational x1 x2 x3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1 y2 y3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z1 z2 z3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotational ←−−−−−−−−−−−−−−−−−−−−−− ρ −−−−−−−−−−−−−−−−→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ1 θ2 θ3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

←−−−−−−−−−−−−−−−−−−−−−− φ −−−−−−−−−−−−−−−−→
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Projection sampling (decision variable specification)
The sampling of (radiographic) projections that make up a projection set and describe an
inspection configuration is controlled by the optimization algorithm (see §5), as it is this set of
parameters that the algorithm seeks to compute—the decision variables/optimization parameter
space. However, the user must provide the guidelines within which this optimization is to take
place. This includes the number of projections in the set, which associated parameters should be
varied and within what ranges (optimization constraints), as well as links between parameters of
projections in the set.

The last point relates to the fact that it is possible to link parameters across the projections of
a set. For example, this means that while all three Euler angles describing the sample orientation
may be optimized over for all projections in the set, the values of two of these for all projections
in the set must be the same—as exemplified in table 1. This is attractive not only as it reduces the
dimensionality of the parameter space being explored by the optimization (and thus potentially
the computation time, for a given coarseness of space exploration), but also means the same static
fixture can be used for all projections when acquiring the data using an X-ray system with a single
rotational degree of freedom—as in most industrial CT machines.
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(f) Objective function
In the current implementation of the algorithm, the objective function that the optimization seeks
to maximize is computed for a given inspection configuration and defect sample set by the steps
outlined below. As emphasized in §2b, there are multiple valid alternatives.

(i) The area–CNR relationship determined for each defect indication is turned into a single
metric of detectability using the functional form described in §4.

(ii) Across projections within the projection set describing the inspection configuration, the
maximum detectability metric is computed for all defects sampled.

(iii) Among the maximum detectabilities, the 20th percentile is determined, interpolating as
required. The mean of that value and all detectability values falling below it is then
evaluated.

Thus the optimization will maximize the lowest fifth of the maximum detectabilities across the
projections. The particular implementation of the objective function evaluation is designed to both
be robust to outliers and avoid unnecessary discontinuities that would only add to the complexity
of the optimization task.

(g) Optimization initialization
Latin hypercube sampling is used to provide the initial population of the evolutionary algorithm
described in §5. This sampling strategy is preferred here over generic random sampling for
reliable space-filling properties and chosen over the use of a low discrepancy sequence (see §3d)
as here the number of samples required is fixed, without the possibility of needing to extend the
set of samples [21].

(h) Optimization
This module completes the search for the parameter combination describing a projection set that
offers ‘the best’ objective function value—see §5.

4. Detectability evaluation
For each defect sampled the simulation provides an image of the simulated indication, as well as
an image of the same region in the radiograph if there is no defect present—the baseline image.
Examples are provided in figure 4.

These two images must then be processed to obtain (one or more) numerical values that
represent the detectability of the defect in question. The detectability computation should
be broadly consistent with human visual inspection, even if the evaluation is, in practice,
automated [22]. The approach taken acknowledges that the ability to distinguish a patch of a
different greyscale (indication) from the noisy background is dependent both on contrast to the
background noise level (CNR) as well as the area of the patch [23].

However, in practice, indications of complex defects and/or in complex component geometries
are unlikely to be characterized by a single contrast level or equivalently area. Moreover, the use
of a ‘form factor’ to handle non-circular indications [24] is not general or computationally robust
enough for present purposes. Therefore, here we extend the description of detectability in terms
of CNR and area to a distribution. An example of this is shown in figure 5. The points on this
cumulative, survival function, presentation give the image area that is characterized by a CNR at
least as high as the value plotted. Detectability increases along both orthogonal axes so this space
is similar to the objective function space of a 2D multi-objective optimization. For example note
that in figure 5, the line for the first indication is consistently above and to the right of the line
for the second, reflecting the overall higher contrast and larger size of the first indication versus
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Figure 4. Artificial example baseline and indication images, that the detectability evaluation must be able to process. (a) The
case of a hard edge, (b) the corresponding example indication, while (c) the case of a background with a gradient and (d) a
corresponding example indication image.

the second, and hence indisputably higher detectability of the first indication compared with the
second. In the terminology of multi-objective optimization, the points of first line dominate those
of the second [25].

Such a distribution can meaningfully be computed for any indication, no matter how complex
the defect morphology, the sample or the noise behaviour. An outline of the processing steps is
provided below. The initial steps are similar to those applied in [26].

(i) Subtraction of baseline image from indication image to obtain a contrast map.
(ii) Segmentation of contrast map into indication and background pixels. Given that the

inputs are from simulation, the background will in most cases be zero after subtraction,
simplifying the segmentation.

(iii) Local evaluation (using a small kernel) of the noise level as the standard deviation for the
indication region found by the segmentation.

(iv) Computation of the contrast to noise ratio, enforcing a maximum value to handle low
noise inputs.

(v) Evaluation of pixel cumulative statistics from map of CNR, to obtain cumulative area–
CNR plot.
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Figure 5. Cumulative area–CNR plots computed for the two baseline—indication images presented in figure 4. The images
from figure 4a,b have been plotted as the line labelled indication 1, while the indication 2 label relates to figure 4c,d. Fitted
tangential isolines of constant detectability of the functional form suggested in equation (4.1) are also shown. The values of k
used were 20.2 and 10.3, for indications 1 and 2, respectively. (Online version in colour.)

This calculation then allows every defect evaluated in the simulation to be converted into an
area–CNR table representing detectability. Ultimately, for many objective function definitions
(see §3f), it is in practice desirable to condense this to a single value that can be directly
compared between defects/configurations. This necessarily involves specifying a relationship
between indication area and CNR that describes the trade-off between these two quantities. Here,
a functional form has been chosen to describe constant isolines of detectability in the area–CNR
plane. This functional form must, given the application, satisfy several key conditions: it must
be monotonically decreasing in area with CNR, it must increase monotonically in area and CNR
with the detectability parameter k and have asymptotes in both area and CNR. The general form
adopted here is given in equation (4.1),

A= k2

Cb
, (4.1)

where A is the area, C the CNR, b a positive implementation-dependent parameter to be
determined by fitting to example data (b= 1.6 used here) and k is squared such that k is
proportional to the equivalent radius of the indication area. This functional form can then be used
to determine the k value of the isoline that is tangential to the survival function plot, and hence the
maximum detectability associated with that representation of the indication. This is illustrated in
figure 5. This approach is believed to be novel.

5. Optimization
The optimization of the projection set for an arbitrary component geometry faces many
challenges. For example, as stated in §2b, the objective function space that the optimization
explores will, in general, be characterized by many local optima. This is a consequence of the
fact that, for all but the simplest sample geometries, detectability of a defect collection is likely to
vary in a complex manner with any one of the key parameters (e.g. sample angle about a vertical
axis in one projection). Additionally, the objective function space may contain discontinuities and
hence not be differentiable everywhere. This is caused by the discontinuous variation in material
path with orientation associated with some possible sample geometries, for example. There are
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many global optimization algorithms that may reasonably be applied to such problems, but in
general the choice of algorithm and its control parameters will need to be tuned to the specific
problem for consistently good performance [27].

The algorithm adopted is a version of the genetic algorithm (specifically the (μ+ λ) form)
[28,29]. As the name implies, this mimics Darwinian evolution, seeking to find the optimal
solution by evolving a population of candidate solutions through a sequence of cross-over,
mutation and selection operations. The chromosomes manipulated encode the decision variables
describing the varied parameters of the projection set via value encoding, but with the
variables normalized to [0, 1]. The cross-over operator selected is the two-point operator [30], the
mutation operator is of the Gaussian perturbation form and the selection operator a tournament
selection [31].

Given the desire to converge to at least a local optimum in a reasonable space of time, the
algorithm is in fact structured to be used in two stages—first an exploratory phase, featuring
large mutations, for example, followed by a refinement phase, characterized by smaller scale
mutations only.

Further properties of the specific optimization challenge and associated features of the novel
algorithm implemented are detailed in the subsections that follow.

(a) High-dimensional—and constrained
The parameter space to be explored is likely to be high-dimensional, as a consequence of having
many parameters that describe an individual projection, and even more that describe a projection
set, many of which a user is likely to want to try to solve for. This property does not, in principle,
make the objective function evaluations more complex, but does mean a greater number of
samples is required to explore the search space to an appropriate extent—thereby incurring a
computational penalty. Additionally, all the parameters optimized over are constrained to user-
defined intervals (derived e.g. from hardware manipulator ranges). The constraint enforcement
approach adopted in the algorithm implementation involves the use of reflective, symmetric
boundaries, so points picked outside the feasible region are mapped back into it.

(b) Expensive—but deterministic
Each projection set evaluation is relatively expensive, typically taking multiple minutes to
compute. This means that it is desirable for the algorithm to select its evaluation sites with
particular care to maximize the information obtainable from each one. On the other hand,
the objective function evaluation is entirely deterministic (given that the same samples of
hypothetical defects are used for each evaluation, assuming that all ‘random noise’ in the
simulation is seeded consistently). This means that it is permissible and helpful to incorporate
historic information about the progress of the optimization into the evolutionary process,
not just information from the last generation evaluated. This is achieved by establishing an
approximation to the underlying objective function space from the evaluations to date and
feeding insights gained from this into the evolutionary process (surrogate-based optimization)
via newly generated offspring. This can be thought of a supplementary mutation operation.
Different surrogate surface generation approaches can be called upon in the implementation
developed, including Kriging and radial-basis-function interpolation [32,33]. Additionally, a
minimum distance in parameter space is enforced between evaluated locations to avoid duplicate
evaluations.

(c) Symmetric
The physics of the problem being investigated mean that for many applications, the objective
function space will be characterized by symmetries. To avoid unnecessary computational waste,
it is desirable to restrict the evaluation of the objective function space to a section that is unique.
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The problem of symmetries in objective function spaces is well known [34,35]. The problem is
addressed by introducing one or more symmetry-breaking constraints, for instance reducing the
range of a parameter with respect to which the objective function is symmetric.

The most important source of these symmetries is the physical irrelevance of the order in
which projections within a set are labelled or acquired—or equivalently, the commutativity of the
objective function calculation (see §3f) with respect to the projections in the set being evaluated.
Note that the benefit of symmetry-breaking for the case of r interchangeable projections in the
set being optimized over scales with r! (the number of equivalent permutations), so rapidly
grows for large projection sets. Such symmetries from interchangeable parameters are typically
broken via a lexicographic sort of the parameter values, such that only monotonically increasing
parameter combinations are ever evaluated [36]. However, in the case of the optimization of
projection sets, the symmetry is not between individual parameters, but between the sets of
the parameters associated with different projections. There is the further complication, due
to the potential linking of parameters (see §3e), that some parameters optimized over in fact
relate to all projections in the set. Therefore, some development is required to implement a
symmetry-breaking constraint.

The solution developed and adopted hinges on grouping the parameters optimized over by the
projection they relate to, grouping separately the parameters that are shared between projections,
and then ordering the parameters of each group (excluding the group of shared parameters)
according to group order. This requires each group to be reduced to a single numerical value
that can be used for the purpose of the lexicographic sort of groups. There are numerous
viable options for the choice of (hashing) function for this dimensionality reduction—the only
absolute requirement is that this allows a unique order of groups to be defined. However, it is
desirable from the point of understanding and enabling efficient surrogate surface calculation
(see previous section) for the function to behave monotonically for all possible inputs, and
hence the explored region of the parameter space to be contiguous. The function chosen for the
present algorithm implementation is a simple sum of the inputs. This may be supported by a
lexicographic sort based on the parameters of the groups to overcome the potential problem
of different inputs giving the same output (a ‘hash clash’). Note that the parameters shared
between projections play no part in the symmetry being addressed, so they can simply be prefixed
(or appended).

This sorting then means that the projection-order symmetry is broken and only a unique
section of the objective function space is explored. This is illustrated later in figure 7a. An example
sort is provided here, for the case of a projection set of three projections, each specified by three
parameters and two parameters shared across the set:

0.9, 0.8,
︸ ︷︷ ︸

shared

0.8, 0.3, 0.5,
︸ ︷︷ ︸

projection 1

0.3, 0.5, 0.8,
︸ ︷︷ ︸

projection 2

0.4, 0.2, 0.3
︸ ︷︷ ︸

projection 3

⇒ 0.9, 0.8,
︸ ︷︷ ︸

shared

0.4, 0.2, 0.3,
︸ ︷︷ ︸

projection 3

0.3, 0.5, 0.8,
︸ ︷︷ ︸

projection 2

0.8, 0.3, 0.5
︸ ︷︷ ︸

projection 1

(d) Combinatorial
A further noteworthy feature of the optimization is that the optimization seeks to find a
combination of projections that gives optimal performance, and the evaluations of the individual
projections are essentially independent of each other. Efficient caching of intermediate results
for the constituent projections of the evaluated projection sets then enables the reuse of these
results to potentially generate a great number of additional projection sets, distinct from
those originally sampled. This process is attractive computationally as the projection-specific
calculations (featuring many indication evaluations) are the computational bottleneck, rather
than the subsequent evaluation of the projection set to form the objective function (see §3f), the
computational effort of which is negligible. In principle, this gives n·rCr − n additional projection
sets, where n is the number of projection sets evaluated to date, each containing r projections
(assuming uniqueness of projections), a very large scaling factor for many practical scenarios (e.g.
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Figure 6. Plot of the scaling factor achieved (the total number of projection sets evaluated, including by re-combination,
dividedby thenumberdirectly evaluated) for different sharedparameter variation suppressionprobabilities, for the caseof a test
problemwith a four-dimensional parameter space consisting of two shared parameters and twoprojection-specific parameters,
after 16 generations of 24 samples (plus 16 initial samples, so n= 400 and r= 2). At each value of the suppression probability
trialled, the calculations were repeated with different seeds for the random number generator. There is a clear increasing trend
in the scaling factor with suppression probability. Note the scaling factor theoretically achievable here in the absence of shared
parameters would be 799. (Online version in colour.)

17 280 additional projections for n= 16, r= 3). These points will almost certainly greatly improve
the ability of the optimization to efficiently converge to a solution at essentially no cost, and
can readily be incorporated into the genetic algorithm as additional offspring, alongside those
evaluated directly.

However, there is a practical complication and reason why this performance improvement will
not be realized in practice: parameters shared between projections in the set. Such parameters
limit the extent to which projections can be re-combined with each other to create additional
projection sets at minimal cost, as they introduce a dependence of the projections in a set on
each other. Re-combinations are then only permissible between projection sets which maintain
the same values for the shared parameters. Given that all parameters will be varied as the genetic
algorithm evolves its population of candidate solutions, one can envisage a situation where
essentially each projection set evaluated features a unique set of shared parameters, completely
nullifying scope for the combinatorial scaling.

The solution devised hinges on the stochastic suppression of variations in the shared
parameters via the introduction of a further algorithm control parameter that expresses the
probability of such suppression occurring. Then, when suppression is invoked (for example,
after a random mutation of the parameter values), the shared parameters are mapped to a set
of values previously used in evaluations. As illustrated in figure 6, a non-zero control parameter
value has the potential to greatly enhance the scope for additional projection sets to be evaluated,
but does so at the expense of a more comprehensive exploration of the subset of the parameter
space that is shared between projections. This behaviour is exemplified in figure 7a,b. The choice
of the suppression probability should therefore take into account the relative dimensionality
and expected importance of the shared versus projection-specific parameter sub-spaces. Initial
tests suggest that enabling the evaluation of projection sets via re-combination brings substantial
performance improvements over not using this option, but larger shared parameter variation
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Figure 7. An illustration of the generation of additional projection sets for a test problem with a four-dimensional parameter
space consisting of two shared parameters and two projection-specific parameters. (a) Relates to the two shared parameters,
(b) to the two independent parameters. The locations evaluated over eight generations of 24 samples (plus 16 initial samples,
so n= 208), with the shared parameter variation suppression probability set to 0.2, are plotted, distinguishing between the
direct evaluations and those indirectly evaluated by re-combination of previously evaluated projections (a total of 247 points).
In (a), the coincidence between direct and indirect evaluations is evident, in (b), the pattern of the indirect evaluations is
revealed: these are arranged in vertical and horizontal lines with respect to the direct evaluations. Additionally, the latter plot
illustrates the action of the symmetry-breaking described in §5c, as all the points lie one side of the leading diagonal through
this projection of the parameter space. (Online version in colour.)

suppression probabilities can readily impede the correct convergence of the global optimization
algorithm.

6. Demonstration: results and discussion
In this section, we build up to a complex optimization trial (§6f), including a demonstration of the
experimental application of the optimization outputs, based on the inputs described in the initial
subsections, by first assessing individual defects (§6c), then assessing a population of defects
(as expressed by the objective function) over a range of inspection configurations for a simple
sample geometry (§6d), then carrying out an initial optimization on that simplified scenario (§6e).
This hierarchical approach is designed to provide confidence in the operation in each level of the
algorithm, and provide some context to the later subsections, given the constraints on quantitative
validation imposed by the assumptions of the work (§2b).

(a) Inputs
Given that the high level purpose of the algorithm is to incorporate prior knowledge into the
inspection design to improve the performance of the inspection, the algorithm necessarily takes
multiple inputs. Some of these are optional, and default values can reasonably be assumed, others
mandatory. The main inputs are detailed below, grouped by type.

(i) Inspection description

Parameters in this class specify the inspection as far as possible. They include:

— Sample geometry—to be provided as a CAD-model
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— Sample material—specifically elemental composition and density
— Specification of defects to be considered, potentially including the specification of

properties such as orientation and spatial distribution.
— Specification of the projection set. This includes any parameter links across projections,

the specification of which parameters to vary in the optimization and ranges for all these
parameters.

— Specification of the inspection hardware available—including operating ranges for
manipulators and the X-ray source

(ii) Computation parameters

These parameters specify the nature of the computation to be completed, specifically the user’s
choice on the accuracy–computing time trade-off and the computing resources to use. Key
examples of this type of parameter include the number of defect samples to process per projection
evaluated and the number of generations to evolve in the optimization algorithm. Note that
in all computations to date the very computationally demanding scattering computation in
the simulation has been omitted—so all results presented are derived from direct radiation
calculations only.

(iii) Control parameters

These low-level parameters defining the details of the calculation all have default values.
Parameters that fall into this class include the pixel margin to be maintained around the indication
by the ROI evaluation and the probability of a cross-over occurring during the execution of the
genetic algorithm.

(b) Test case description
The sample selected for the experimental demonstration is a half-scale version of an additively
manufactured motorcycle front fork end. The component design has been subject to light-
weighting by topological optimization, providing a component with significant geometric
complexity, as seen in figures 2 and 3, ideal for this project’s purposes. The component considered
here was made by laser powder bed fusion in 316L Stainless Steel. The component’s bounding box
measures 7.9× 6.9× 2.9 cm. The sample is courtesy of GRM Consulting Ltd, K-Tech & MTC.

(c) Example detectability computations
In this section, we consider a single defect and examine its computed variation in detectability in
different projection configurations. The defect considered is 0.7 mm spherical void inserted in the
geometry in the location indicated by the arrow in figure 3.

The simulated radiographs for the defect in different sample arrangements are shown in
figure 8. There is an initial image, that the others are to be compared against, while the other
images consider the effect of a higher magnification, longer material path, and larger defect size,
respectively. The detectability metric values computed were 8.7, 20.4, 4.9 and 53.2, respectively.
The computed detectability metric values are qualitatively consistent with what would be
expected from radiographic experience.

(d) Mapping example objective function space
Having in the preceding section examined the detectability metric assigned by the algorithm to
a single defect, here we define a simple objective function space and plot this to further build
confidence in the behaviour of the algorithm. For computational and illustration purposes, the
objective function is a function of only two parameters. The test scenario consists of a rectangular
cuboid of iron, to be inspected in a single projection, where most settings (e.g. those relating to
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(a) (b)

(c) (d)

Figure8. Simulated radiograph sections for themodelledpore in different configurations: (a) the output of initial configuration
to be treated as the baseline for comparison purpose, (b) the effect of a higher magnification, (c) the effect of a configuration
of longer material path compared with the initial configuration (sample rotated about the defect) and (d) the output when the
defect size has doubled. Note that by adjusting the grey scale mapping it is readily possible to reveal indications in all these
images except (c) in the locations of the superimposed arrows.

the source and detector) are pre-determined, and in fact the only parameters to be varied are
the orientation of the cuboid about the vertical axis (parallel to the median edge length) and
the position of the sample along the source–detector axis (and hence magnification). The defects
considered are 1 mm diameter spherical voids, and 200 such defects are uniformly sampled per
projection evaluated.

Figure 9 illustrates the extremes of the parameter ranges, in angle and magnification axis
position, considered. The corresponding map of the objective function space is plotted in figure 10.
This plot has several interesting features. Consistent with practical radiographic experience, the
objective function increases with increasing magnification, but decreases with higher sample
orientation angles (due to the longer material path associated with many potential defect
positions). The trends observed are reasonably smooth, giving confidence in the numerical
stability of the algorithm, for example. However, the plot does reveal a large level region of zero
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Figure 9. Scene views in aRTist illustrating the extremes of the 2D parameter space explored. In (a), the magnification and
orientation angle are both at the minimum permissible value, while in (b), both variables are at their maximum permissible
values. (Online version in colour.)
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Figure 10. Map of the 2D objective function space associated with varying the orientation angle θ and the distance to the
detector z (specifying the magnification) while holding all other variables constant. The variable axes are normalized to [0, 1],
spanning the value ranges illustrated in figure 9, such that (a) represents point (0, 0) and (b) (1, 1).

value: both at very high magnification and at higher orientation angles the detectability metric
falls to 0, as parts of the sample move out of the field of view or become occluded, respectively,
such that the defects sampled in those sections of the specimen are entirely undetectable.
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Figure 11. The pre-optimization state: (a) the configuration in aRTist is presented, (b) a slice through the associated
detectability map is shown for the mid-plane of the block. The colour scale for the latter was set to match figure 12b.
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Figure 12. The post-optimization state: (a) the configuration in aRTist is presented, (b) a slice through the associated
detectability map is shown for the mid-plane of the block. The colour scale for the latter was set to match figure 11b.

(e) Initial optimization test
Here we re-use the scenario presented in the preceding §6d, but allow all translational and
rotational degrees of freedom of the sample to be optimized over (ignoring the symmetry of the
sample), as a means of confirming the overall performance of the optimization for a scenario
which is simple enough for a human inspector to provide a reference inspection configuration
recommendation. The initial configuration is illustrated in figure 11a, with the corresponding
detectability map shown in figure 11b. The map appears somewhat blotchy, as a consequence
of nearest-neighbour interpolation between the 200 defect samples applied, however, the metric
value is, as might be expected, quite uniform across the component volume. The overall metric
value at this stage was 14.3.

After 32 exploratory evolutions with a population of 24 samples, followed by eight refining
evolutions with a population of 15 samples, the best solution found is illustrated in figure 12a.
The computation time was 8.5 h on a custom workstation (AMD 1950x Threadripper CPU with
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Figure 13. Orthographic projection aRTist scene viewsalong the y-axis (corresponding to the axis of the turntable in theX-ray CT
hardware) illustrating the pre- and post-optimization states of the inspection configuration. The configuration consists of three
projections as shown (a–c), and each image shows both the initial state, greyed out and towards the bottom, and the final state
at the top. Note that in both states the projections differ in orientation only by rotation about that axis, even after optimization,
as a consequence of the linking of parameters across the projections of the projection set. (Online version in colour.)
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Figure 14. Slices through the 3Ddetectabilitymaps for the component computed for the pre-optimization projections shown in
figure 13. (a–c) Relate to the three projections in order, respectively,while (d) is themap for the overall inspection configuration,
composedof the three component projections. All slices relate to the same location through the component and the colour scales
were set to match.
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Figure 15. Slices through the 3D detectability maps for the component computed for the post-optimization projections
shown in figure 13. (a–c) Relate to the three projections in order, respectively, while (d) is the map for the overall inspection
configuration, composed of the three component projections. All slices relate to the same location through the component and
the colour scales were set to match, but differ from figure 14 as the values here are higher throughout.

(b)(a) (c)

Figure 16. The simulated radiographs obtained for the inspection configuration suggested by the optimization.

16 cores at 4 GHz, NVIDIA Titan XP GPU, 64 GB RAM), during which time 904 configurations and
180 800 defects were evaluated. The overall metric value after optimization was 26.2, indicating a
notable improvement over the starting point. The detectability map in figure 12b further illustrates
this improvement compared with figure 11b, and indicates the high level of uniformity retained.

The result is very reasonable by virtue of being notably similar to what a human inspector
would probably suggest for this inspection scenario, maximizing the magnification as far as
possible given the sample size and minimizing the in-material X-ray path length. The only
apparent shortcoming of the computed configuration is that small regions at the edge of the
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Figure 17. Photograph of the sample ready for practical inspection in the Nikon XTH 225 ST CT machine, with the X-ray source
shown on the left. Note the angled fixturing was assembled to reflect the optimization output for the two sample orientation
angles fixed across the projection set. Note also the substantial offset between the centre/origin of the sample and the origin of
the turntable—an offset that must be accounted for in the hardware set-up to reproduce the configuration suggested by the
simulations. (Online version in colour.)

sample are out of view. This can occur either due to an inadequate sampling of potential defects
in these regions or as a consequence of the form of the objective function, where the use of the
mean (across the lowest detectabilities) provides some scope for the overall metric to be increased
when some defects go out of view if the remaining defects become substantially more detectable.

(f) Full optimization trial
(i) Computation

In this test, we consider the test case sample geometry, and attempt to compute the optimal set
of three projections. The defects selected as the targets of the inspection were 0.5 mm spherical
pores, sampled uniformly across the component. 200 such defects were sampled per projection
evaluated. Inspection parameters such as source voltage, current and exposure time were fixed
at the same values (180 kV, 0.2 mA, 2 s, respectively) for all projections but all translational and
rotational degrees of freedom were optimized over. However, only the rotation about the vertical
(compatible with manipulator of a CT machine) was allowed to vary independently, and the other
angles were linked across the projection set. Therefore, the dimensionality of the parameter space
optimized over was 14 (table 1).

Figure 13 illustrates the configuration the optimization was initialized with, while figure 14
provides the corresponding detectability maps, for the individual projections and the set overall.
The overall metric for the configuration was determined to be 6.8.

After 24 exploratory evolutions with a population of 24 samples, followed by eight refining
evolutions with a population of 15 samples, the best solution found is again illustrated in
figure 13, with the corresponding detectability maps shown in figures 15. The computation time
was about 39 h on the workstation described previously. A total of 3 228 555 projection sets (of
three projections each) were evaluated (712 directly, 3 227 843 indirectly) in this time. The overall
metric value after optimization was 24.8, indicating a substantial improvement. Note that the
whole sample is not imaged in any single one of the projections, but coverage is built up over
the set of projections. The simulated radiographs for the suggested projection set are illustrated
in figure 16. As witnessed previously in §6e, some small elements of the geometry are not imaged
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(a)

(c)

(b)

(d )

(e) ( f )

Figure 18. Comparison of simulated (a,c,e) and experimental (b,d,f ) radiographs for the three projections in the projection
set suggested by an optimization output. The experimental images were mirrored to compensate for the discrepancy in the
directionality of the output of simulated and physical detectors, but no other post-processing was applied.

in the suggested inspection configuration. It might be desirable, in practice, to adjust the form of
the objective function (see §6f), and/or increase the number of defects considered, to reduce the
likelihood of such behaviour.

(ii) Experimental demonstration

An attempt was made to reproduce computed optimal projections experimentally on the physical
component sample as a means of demonstrating the relevance of the computations and workflow
needed to convert optimization outputs into practical data collection. To do this a fixture had to

 on August 29, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


23

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170319

...................................................

be fabricated reflecting the computed sample orientations. The physical set-up used is shown in
figure 17. Experimental images were acquired using a Nikon XTH 225 ST system, based on the
settings proposed by an earlier run of the algorithm for the scenario described in the preceding
subsection. The coordinate systems of the CT scanner and the aRTist simulation had to be related
by coordinate transforms, incorporating, for example, the origin offset associated with the fixture
used. A comparison of the expected simulated and practically obtained experimental images is
shown in figure 18 for all three projections in the computed projection set.

There is a good qualitative correspondence of the simulated and experimental radiographs.
This clearly demonstrates the possibility of transferring insights gained from simulation to
practical data acquisition. The experimental images are consistently more highly exposed than
the simulated images—a consequence of the simulation model not being calibrated, and an issue
to be addressed in future work.

7. Conclusion
This paper has presented a general framework for the formal optimization of a multi-shot
imaging inspection of a complex-shaped component. The framework allows prior knowledge
to be incorporated into the inspection configuration, and while it is, in principle, applicable to
all image-based inspection modalities (with a suitable simulation capability), its operation has
been exemplified using 2D radiography. The critical enabling innovations relate to the defect
detectability evaluation for arbitrarily complex indications and the creation of an optimization
algorithm with specific features for this application. Good results have been obtained for the
test cases considered, and the translation of optimization outputs to experimental data collection
has been demonstrated. The work therefore presents a route to achieving optimally efficient
inspection and specifically reducing the reliance on X-ray CT for the inspection of complex
geometries. As a useful by-product, the algorithm is able to compute the spatial distribution of
a given inspection configuration’s performance. Planned future work includes the refinement
of the optimization, calibration of the model and the extension of the framework to alternative
inspection modalities. A further potential future direction is given by neural networks: an
architecture could for example be trained on experimental outputs acquired according to the
optimization, to tune the inspection configuration based on defects actually found in a set of
parts of the same design.

Data accessibility. The experimental radiographs featured in the publication are available as electronic
supplementary material.
Authors’ contributions. N.B. did the majority the work for the project, and wrote the paper. C.B. created the
enabling functionality and documentation for aRTist. B.L.T. implemented the initial detectability evaluation.
All the authors gave their final approval for publication.
Competing interests. We declare we have no competing interests.
Funding. This work was completed as part of a Core Research Programme project at the MTC, and funded by
industrial membership fees and the UK High Value Manufacturing Catapult.
Acknowledgements. The authors are grateful to Imperial College London and Trevor Tippetts, formerly of
Imperial College London (now Los Alamos National Laboratory), for permitting the complete code base
developed during Brierley’s doctorate in collaboration with Tippetts to be reused and built on for the purposes
of this project. The authors thank Peter Huthwaite of Imperial College London and Peter Kinnell of the
University of Loughborough for their feedback on a draft of this paper. Finally, the project is indebted to
the open source community and all the contributors to the open source code libraries that the algorithm
implementation has been built on.

References
1. Thomas-Seale L, Kirkman-Brown J, Attallah M, Espino D, Shepherd D. 2018 The barriers to

the progression of additive manufacture: perspectives from UK industry. Int. J. Prod. Econ.
198, 104–118. (doi:10.1016/j.ijpe.2018.02.003)

 on August 29, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1016/j.ijpe.2018.02.003
http://rspa.royalsocietypublishing.org/


24

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170319

...................................................

2. Brierley N, Tippetts T, Cawley P. 2014 Data fusion for automated non-destructive inspection.
Proc. R. Soc. A 470, 20140167. (doi:10.1098/rspa.2014.0167)

3. Bordas SPA, Conley JG, Moran B, Gray J, Nichols E. 2007 A simulation-based design paradigm
for complex cast components. Eng. Comput. 23, 25–37. (doi:10.1007/s00366-006-0030-1)

4. Chiffre LD, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A. 2014 Industrial
applications of computed tomography. CIRP Ann. Manuf. Technol. 63, 655–677. (doi:10.1016/
j.cirp.2014.05.011)

5. Shah P, Racasan R, Bills P. 2016 Comparison of different additive manufacturing methods
using computed tomography. Case Stud. Nondestr. Test. Eval. 6, part B, 69–78. Special Issue:
Industrial computed tomography. (doi:10.1016/j.csndt.2016.05.008)

6. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. 2016 Review of in-situ process
monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445.
(doi:10.1016/j.matdes.2016.01.099)

7. Hayden GE, Wrenn KW. 2009 Chest radiograph versus computed tomography scan in the
evaluation for pneumonia. J. Emerg. Med. 36, 266–270. (doi:10.1016/j.jemermed.2007.11.042)

8. ASNT NDT Level III Radiographic Testing Examinations. See https://asnt.org/
MajorSiteSections/Certification/ASNT_NDT_Level_III/Examinations/RT.aspx/ (accessed
17 February 18).

9. BINDT Certification. See http://www.bindt.org/Certification/ (accessed 17 February 2018).
10. Lavender International Radiography Testing Level 3. See https://www.lavender-ndt.com/

courses-services/courses/radiography-level-3-3/ (accessed 17 February 2018).
11. aRTist - Analytical RT Inspection Simulation Tool. See http://artist.bam.de, 2016 (accessed 18

February 2018).
12. CIVA, Radiographic testing with CIVA. See http://www.extende.com/radiographic-testing-

with-civa/ (accessed 18 February 2018).
13. XRSIM. See https://www.cnde.iastate.edu/research/x-ray/xrsim/ (accessed 18 February

2018).
14. Takayoshi N, Takuya I. 2015 Powder-based additive manufacturing for development

of tailor-made implants for orthopedic applications. KONA Powder Part. J. 32, 75–84.
(doi:10.14356/kona.2015015)

15. Fischer A, Lasser T, Schrapp M, Stephan J, Nöel PB. 2016 Object specific trajectory
optimization for industrial X-ray computed tomography. Sci. Rep. 6, 19135. (doi:10.1038/
srep19135)

16. Haith MI, Ewert U, Hohendorf S, Bellon C, Deresch A, Huthwaite P, Lowe MJ, Zscherpel
U. 2017 Radiographic modelling for NDE of subsea pipelines. NDT E Int. 86, 113–122.
(doi:10.1016/j.ndteint.2016.11.006)

17. Jäckel P. 2002 Monte Carlo methods in finance. New York, NY: Wiley.
18. Brierley N. 2014 The computational enhancement of automated non-destructive inspection.

PhD thesis, Imperial College London, Department of Mechanical Engineering.
19. Bellon C, Deresch A, Gollwitzer C, Jaenisch G-R. 2012 Radiographic simulator aRTist version

2. In 18th World Conference on Nondestructive Testing, Durban, South Africa, 16–20 April 2012.
Northampton, UK: British Institute of Non-Destructive Testing.

20. Optimization of X-ray inspections for parts with complex geometries—castings. See
http://ndetechnologies.com/downloads/XRSIM%20Overview.pdf (accessed 19 December
2016).

21. Leary S, Bhaskar A, Keane A. 2003 Optimal orthogonal-array-based latin hypercubes. J. Appl.
Stat. 30, 585–598. (doi:10.1080/0266476032000053691)

22. Grandin R, Gray J. 2014 Implementation of automated 3D defect detection for low signal-to
noise features in NDE data, vol. 1581, pp. 1840–1847.

23. Ewert U, Deresch A, Bellon C, Jaenisch G-R. 2014 A benchmark concept for simulation in
radiographic testing. AIP Conf. Proc. 1581, 1816–1823. (doi:10.1063/1.4865044)

24. Kanzler D, Ewert U, Müller C, Pitkänen J. 2015 Observer POD for radiographic testing. AIP
Conf. Proc. 1650, 562–570. (doi:10.1063/1.4914654)

25. Fieldsend JE, Everson RM. 2005 Multi-objective optimisation in the presence of uncertainty.
In The IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September, pp. 243–250.
Piscataway, NJ: IEEE.

26. Haith MI, Huthwaite P, Lowe MJ. 2017 Defect characterisation from limited view pipeline
radiography. NDT E Int. 86, 186–198. (doi:10.1016/j.ndteint.2016.12.007)

 on August 29, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1098/rspa.2014.0167
http://dx.doi.org/doi:10.1007/s00366-006-0030-1
http://dx.doi.org/doi:10.1016/j.cirp.2014.05.011
http://dx.doi.org/doi:10.1016/j.cirp.2014.05.011
http://dx.doi.org/doi:10.1016/j.csndt.2016.05.008
http://dx.doi.org/doi:10.1016/j.matdes.2016.01.099
http://dx.doi.org/doi:10.1016/j.jemermed.2007.11.042
https://asnt.org/MajorSiteSections/Certification/ASNT_NDT_Level_III/Examinations/RT.aspx/
https://asnt.org/MajorSiteSections/Certification/ASNT_NDT_Level_III/Examinations/RT.aspx/
http://www.bindt.org/Certification/
https://www.lavender-ndt.com/courses-services/courses/radiography-level-3-3/
https://www.lavender-ndt.com/courses-services/courses/radiography-level-3-3/
http://artist.bam.de
http://www.extende.com/radiographic-testing-with-civa/
http://www.extende.com/radiographic-testing-with-civa/
https://www.cnde.iastate.edu/research/x-ray/xrsim/
http://dx.doi.org/doi:10.14356/kona.2015015
http://dx.doi.org/doi:10.1038/srep19135
http://dx.doi.org/doi:10.1038/srep19135
http://dx.doi.org/doi:10.1016/j.ndteint.2016.11.006
http://ndetechnologies.com/downloads/XRSIM%20Overview.pdf
http://dx.doi.org/doi:10.1080/0266476032000053691
http://dx.doi.org/doi:10.1063/1.4865044
http://dx.doi.org/doi:10.1063/1.4914654
http://dx.doi.org/doi:10.1016/j.ndteint.2016.12.007
http://rspa.royalsocietypublishing.org/


25

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170319

...................................................

27. Vrugt JA, Robinson BA, Hyman JM. 2009 Self-adaptive multimethod search for global
optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13, 243–259. (doi:10.1109/
tevc.2008.924428)

28. Jones KO. 2005 Comparison of genetic algorithm and particle swarm optimisation. In
International Conference on Computer Systems and Technologies - CompSysTech, Varna, Bulgaria,
16–17 June, pp. IIIA.1.1–IIIA.1.6. ACM.

29. Ter-Sarkisov A, Marsland SR. 2011 Convergence properties of (μ+ λ) evolutionary algorithms.
In AAAI.

30. Lin G, Yao X. 1997 Analysing crossover operators by search step size, In IEEE Int. Conf. on
Evolutionary Computation, 1997, Indianapolis, IN, 13–16 April, pp. 107–110. Piscataway, NJ: IEEE.

31. Blickle T, Thiele L. 1995 A mathematical analysis of tournament selection. In ICGA, pp. 9–16.
32. Jones DR. 2001 A taxonomy of global optimization methods based on response surfaces.

J. Global Optim. 21, 345–383. (doi:10.1023/A:1012771025575)
33. Toal D. 2009 Proper orthogonal decomposition & Kriging strategies for design. PhD thesis,

University of Southampton.
34. Crawford JM, Ginsberg ML, Luks EM, Roy A. 1996 Symmetry-breaking predicates for search

problems. In KR, 5th Int. Conf. on Knowledge Representation and Reasoning, Cambridge MA: 4–8
November.

35. Hnich B, Kiziltan Z, Walsh T. 2004 Combining symmetry breaking with other constraints
lexicographic ordering with sums. In Proc. 8th Int. Symp. on the Artificial Intelligence and
Mathematics, Fort Lauderdale, FL, 4–6 January.

36. Walsh T. 2006 General Symmetry Breaking Constraints, pp. 650–664. Lecture Notes in Computer
Science, vol. 4204. Berlin/Heidelberg, Germany: Springer.

 on August 29, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1109/tevc.2008.924428
http://dx.doi.org/doi:10.1109/tevc.2008.924428
http://dx.doi.org/doi:10.1023/A:1012771025575
http://rspa.royalsocietypublishing.org/

	Introduction
	Theoretical background
	Operating principles
	Key assumptions

	Method overview
	Algorithm architecture
	Simulation
	Detectability evaluation
	Defect sampling
	Projection sampling (decision variable specification)
	Objective function
	Optimization initialization
	Optimization

	Detectability evaluation
	Optimization
	High-dimensional---and constrained
	Expensive---but deterministic
	Symmetric
	Combinatorial

	Demonstration: results and discussion
	Inputs
	Test case description
	Example detectability computations
	Mapping example objective function space
	Initial optimization test
	Full optimization trial

	Conclusion
	References

