
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Corrosion protection mechanisms of TiMgN hard
coatings on steel
To cite this article: A Heyn et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 373 012009

 

View the article online for updates and enhancements.

Related content
Wear and Corrosion properties of CrSiCN
coatings deposited by cathodic arc
deposition process
C H Yang, C Y Chen and W Y Ho

-

Influence of the -Mg17Al12 Phase
Morphology on the Corrosion Properties
Of Az91hp Magnesium Alloy
Lingling Guo and Jumei Zhang

-

Characterisation of microstructure,
mechanical and corrosion properties of
pulsed MIG welded modified P91 steel
weld metal
P. Sundararaj and M. Muthukumar

-

This content was downloaded from IP address 141.63.154.229 on 14/08/2018 at 15:58

https://doi.org/10.1088/1757-899X/373/1/012009
http://iopscience.iop.org/article/10.1088/1757-899X/378/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/378/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/378/1/012012
http://iopscience.iop.org/article/10.1088/1757-899X/230/1/012009
http://iopscience.iop.org/article/10.1088/1757-899X/230/1/012009
http://iopscience.iop.org/article/10.1088/1757-899X/230/1/012009
http://iopscience.iop.org/article/10.1088/1757-899X/314/1/012015
http://iopscience.iop.org/article/10.1088/1757-899X/314/1/012015
http://iopscience.iop.org/article/10.1088/1757-899X/314/1/012015
http://iopscience.iop.org/article/10.1088/1757-899X/314/1/012015
http://oas.iop.org/5c/iopscience.iop.org/701740888/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

WTK2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 373 (2018) 012009 doi:10.1088/1757-899X/373/1/012009

 
 
 
 
 
 

Corrosion protection mechanisms of TiMgN hard coatings  

on steel  

A Heyn1, T Mueller2, M Balzer3, H Kappl3 and M Fenker3 

1 Otto-von-Guericke-University Magdeburg, Institute of Materials and Joining Technology, 

Magdeburg, Germany 
2 Bundesanstalt für Materialforschung und –prüfung, Division 7.6 Corrosion and Corrosion 

Protection, Berlin, Germany 
3 fem, Forschungsinstitut Edelmetalle + Metallchemie, Schwäbisch Gmünd, Germany 

Abstract. Hard coated steel components are used in a wide application range, mostly for 

protective, wear resistant and decorative purposes. Despite of these coatings being regarded as 

relatively dense, there is always a high risk of localized corrosion when a coated low alloyed 

steel component encounters a surrounding high humidity atmosphere or even an aqueous 

medium. An approach to enhance the corrosion properties is the addition of magnesium to 

physical vapor deposited hard coatings, like TiN. It has been found that there is a remarkable 

increase in corrosion resistance in dependence of magnesium content of the TiMgN coating 

and its surface properties. In this work the authors will explain the underlying corrosion 

protection mechanisms by means of electrochemical and analytical studies. The positive 

impact of magnesium in the coating relates on its preferred dissolution vs. steel. This causes 

the potential to shift to more negative direction with respect to the steel substrate and 

additionally leads to a temporarily passivation of the steel due to alkalization of the 

surrounding electrolyte by formation of magnesium hydroxide.  

1. Introduction 

 

By using hard coatings on steel wear resistant and protective functional surfaces can be created. The 

most popular hard coating type “TiN” is almost anodically inert and usually gets deposited with only a 

few micrometers of thickness. These coatings are only corrosion protective versus the underlying steel 

due to their barrier functionality. Unavoidable defects in the coating, often originated during their 

production or in operation, can lead to localized corrosion phenomena if aqueous electrolyte (water / 

water vapor) reaches the unprotected steel. 

 

An alternative approach to change the electrochemical, mechanical and visual properties of the coating 

is the incorporation of magnesium into a PVD hard coating such as TiN via a magnetron sputtering 

process. For example, hardness or oxidation resistance at higher temperatures can be changed as well 

as color from gold-yellowish to blue-greyish [1]. A first indication of a change of their corrosion 

protection properties were revealed by potential measurements in 0.8 M NaCl solution. They showed 

that the open circuit potentials (OCP) of TiMgN coatings deposited on glass are temporarily lower 

than those of steel and that the steel can be temporarily protected cathodically. The more Mg is 

deposited, the lower the potentials and the longer this effect will last. In [2], Fenker et al. found an 

improvement in the corrosion behavior of TiMgN hard coatings on high-speed steel (HSS) from about 

17 at-% Mg content based on results in the salt spray test. 

http://creativecommons.org/licenses/by/3.0
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Based on the observations that co-deposited magnesium has a positive effect on corrosion protection 

properties of the TiMgN hard coatings (see Fig. 1), further research was carried out starting in 2012. 

The work was financially supported by the German Research Foundation (DFG) and aimed to 

elucidate the underlying mechanisms and further improve the layer properties [3]. In this project, 

TiMgN coatings with 0, 10, 20 and 35 at% Mg, respectively on polished and blasted substrates made 

of glass and HSS substrates, were considered. 

 

 
Fig. 1. Appearance of TiN and TiMgN hard coatings on HSS-substrates after 24 h NSS test 

 

Based on OCP measurements with subsequent Mg content measurements of the NaCl-solutions, 

galvanic current measurements between TiMgN and steel, polarization measurements and camera-

based experiments with gel pads, several underlying hypotheses for the improved corrosion protection 

have been established [4], e.g. the effect of the cathodic protection of the steel by preferably dissolving 

magnesium. However, since the TiMgN coating’s OCP was found to be only temporarily more 

negative than steel, at least one additional mechanism had to be effective, to which the improved 

protection against local corrosion of the steel substrates could be attributed. A further focus was on the 

released Mg ions, which alkalinize the electrolyte at the interface to the exposed steel (Fe) by 

formation of hydroxides (Mg(OH)2 and/or FeOOH), whereby the steel gets in a passive state. To 

demonstrate this effect, the release rates of Mg from the TiMgN hard coatings and the protection of 

steel in different Mg(OH)2 solutions with different NaCl contents were investigated. 

2. Specimen properties and experimental procedures 

2.1. TiMgN fabrication and properties 

 

Semi-circular samples of hardened low alloyed steel 100Cr6 with a diameter of 30 mm were used as 

substrate material for the various coatings. For corrosion tests the substrate materials were used in two 

surface states: corundum-blasted and polished for triggering very high and very low growth defect 

concentrations, respectively. These extremely opposite types of surfaces should help to understand the 

influence of growth defects on the corrosion behavior of the coating-substrate systems. Studies on 

TixMgyN systems [2] have shown that there were specific ranges of Mg content resulting in different 

corrosion behavior of the coatings. In scope of this work two different Mg contents (20 and 35 at-% 

Mg) were chosen to characterize the electrochemical behavior of TiMgN coating systems. The true 

Mg-concentration, measured by energy dispersive X-ray spectroscopy (EDX), was 19.9 at-% and 

33.8 at-% respectively. 

 

All coatings were deposited by reactive DC magnetron sputtering with a thickness between 2.5 and 

3.0 µm in a vacuum plant Leybold L560 UV using a special magnetron arrangement.  It consists of 

three circular 2” magnetrons (US Inc.) arranged in a triangle all facing a one-fold rotating flat 

substrate holder at 4.5 cm distance. Two cathodes were used for each deposition, one equipped with a 

Ti- (99.9 at-% purity) and one with a Mg-target (99.95 at-% purity). The desired Mg-contents of the 

TiMgN films were realized by adjusting the power fed to the Mg-target while keeping a constant 

target power for Ti. All coatings were deposited at a bias voltage UBias = -50 V and a total pressure of 
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p = 0.4 Pa. The basic N2 partial pressure was pN2 = 0.05 Pa and the substrate temperature was 200 °C. 

Prior to the depositions the substrates were plasma etched at UBias = -1000 V at pAr = 2.6 Pa with 

additional cathode support. 

 

The surface of the hard coatings on polished substrate showed a columnar structure, but also common 

growth defects, which were characterized using “large area high resolution” (LAHR) mapping, as 

described by Balzer in [5]. Typical coating defects are so called hillocks of different sizes, which may 

have pores or crevices down to steel substrate, or be broken out, exposing the substrate to the 

environment at open holes of different size. On the other hand, hard coatings on blasted substrate 

showed a very high amount of disorder, a porous structure and a much rougher surface. 

2.2. Electrochemical and analytical investigations 

 

Samples of TiMgN with 20 and 35 at-% Mg deposited on polished and blasted 1.3505 steel were 

exposed to aqueous solutions with different levels of NaCl for up to 180 min and the OCP and 

dissolution kinetics were recorded. For this purpose, small areas of the sample surface were prepared 

by means of a perforated adhesive film. Then, a 3 mm in diameter measuring cell was attached thereto. 

The OCP was measured versus a saturated Ag/AgCl reference electrode, with a reference potential of 

199 mVNHE. In order to continuously determine the kinetic characteristic of the currently occurring 

corrosion reactions without significantly influencing the sample surface, the method of 

electrochemical frequency modulation (EFM) was used. In this case, a sinusoidal polarization (0.1 Hz 

base frequency, 0.2 and 0.5 Hz secondary frequencies) with an amplitude of 5 mV was impressed on 

the OCP at time-defined intervals (here every 5 min). As a result, the current polarization resistance 

(RP) and the simultaneously determined a/b factors (anodic and cathodic slopes) are used to obtain the 

instantaneous corrosion current. Details of this electrochemical methodology are described by Bosch 

et al. [6, 7]. The investigations were carried out with the measuring system Interface 1000 and the 

associated software Framework Data Acquisition from Gamry Instruments. 

 

To investigate the release rate of magnesium, support from Max-Planck-Institute for Iron Research 

GmbH Düsseldorf (working group of M. Rohwerder) was accepted thankfully. There is an analytical 

method available, which uses a miniaturized scanning flow cell (SFC, cell diameter approx. 200 µm), 

that transfers the measuring electrolyte from the sample surface continuously for analysis by in-

ductively coupled plasma mass spectrometry (ICP-MS). Thus, metal ions currently in solution (here 

Mg, Fe, Ti) can be analyzed with a short time shift (about 30 s). TiMgN samples with 20 and 35 at-% 

Mg were investigated, respectively on polished and blasted steel substrates and on glass. A 0.05 M 

NaCl solution was used as test electrolyte. Details of this methodology can be found in [8]. 

 

Furthermore, investigations on steel samples of 1.0535 carbon steel (C55, wet ground with P320 

sandpaper) were carried out in differently concentrated Mg(OH)2 solutions with different contents of 

NaCl. The aim was to determine the mode of action and the interaction of these electrolyte 

constituents on the passivity and corrosion of unalloyed steel. From literature [9] it is known, that the 

saturation concentration of Mg(OH)2 is about 8.9 mg/L (at 18 °C) and that can set a maximum pH of 

10.2. From about pH 9, iron can be present in the passive state, resulting in a narrow examination 

range of pH 9 to about pH 10. This was accomplished by dissolving quantities of 1, 3, 5 and 8 mg/L of 

solid Mg(OH)2 in distilled water. Due to the electrolyte's susceptibility to lose alkalinity by reacting 

with CO2 from ambient air to form MgCO3, the electrolytes were kept under exclusion of air until the 

measurement was started and the current pH was determined directly before each measurement. 

Furthermore, defined amounts of NaCl were added to the electrolyte, initially 150, 367 and 584 mg/L. 

The background for the interaction of chlorides and pH values is a relationship that is well known in 

the field of corrosion protection of steel in concrete. Here, a [Cl- to OH-]-ratio is often used, up to a 

level where the steel is still expected to be passive. There is a review article from Angst et al. [10] on 

this subject, in which the authors have found limiting values from 0.09 to 45. Since in the present case 
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the pH is limited at about 10, additionally even lower NaCl contents of 75, 50 and 25 mg/L were used. 

Fig. 2 shows the resulting experimental design. 

 
 

To demonstrate the influence of pH (or Mg(OH)2 concentration) in combination with NaCl on the 

passivity and corrosion of steel in the context of the problem of TiMgN coatings, a special 

experimental procedure was devised, which takes account to the ongoing mechanisms on this system. 

For a certain time after contact with the electrolyte, the steel is known to be cathodically protected by 

the preferred Mg dissolution. To verify this, a pre-polarization of -500 mVNHE of the steel for 10 min 

was realized immediately after immersing the samples in the test electrolyte. This was followed by 

another 10-minute period during which the OCP (without external polarization) of the sample was 

measured. This was followed by an electrochemical impedance spectroscopy measurement (EIS) in 

the range of 50 kHz to 0.05 Hz, with an amplitude of 10 mVRMS at the last measured OCP. From the 

EIS measurement, the RP and the electrolyte resistance can be determined (and separated from each 

other) and thus the corrosion current can be calculated. Further results can be determined from the 

OCP measurement, e.g. a critical pitting potential (Ecrit) and the time until it is reached (time to Ecrit) if 

localized corrosion or activation has already been initiated within the 10-minute OCP measurement. 

3. Results  

3.1. OCP´s and corrosion kinetic of TiMgN20 and TiMgN35 on polished and blasted HSS substrates 

 

Fig. 3 shows the curves of measurements on TiMgN with 20 and 35 at-% Mg, respectively on polished 

and blasted steel. The OCP's mostly start quite negative, but with a tendency to more positive values. 

The differences between 20 and 35 at% Mg and between polished and corundum blasted substrate are 

very clear. The same applies to the RP curves, whereby it should be noted here that falling RPs at 

20 at-% Mg are due to localized corrosion after about 15 min. For low RPs of <1,000 Ωcm², e.g. at 

35 at-% Mg, an enhanced active dissolution of Mg from the TiMgN hard coatings is probably 

responsible. Higher RPs in the range of 10,000 to > 50,000 Ωcm² indicate almost anodically inert 

surfaces, from which no or only relatively small amounts of Mg dissolve. For a better summary, the 

values at 10 minutes (boxed area in Fig. 3) from each of three repeated measurements were used for 

further statistical evaluation by analysis of variance (ANOVA). 

Fig. 2. Experimental design for 

the determination of the in-

fluence of Mg(OH)2 concen-

tration (pH-value) and NaCl 

concentration on the corrosion 

behavior of unalloyed steel 
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Fig. 3. Example of OCP´s and RP´s over 180 min in 0,8 M NaCl solution, TiMgN with 20 and 35 at-% 

Mg on corundum blasted (b) and polished (p) HSS, boxed area with values for statistical evaluation 

 

The statistical evaluation (ANOVA) of the values after 10 min indicates a significant influence of the 

OCP (r² = 0,95) on the Mg content and surface state and the RP (r² = 0,94) on the Mg content, surface 

state and an interaction effect between them. The relationships of the factors are summarized in Fig. 4. 

For a better assessment of the OCP's, the potential range for actively corroding steel 

(approx. -350 mVNHE) is shown. After 10 minutes, only samples with 35 at-% Mg on blasted substrate 

are still well below the potential of active steel. However, since improvements in the corrosion 

behavior were also observed in other states, it can already be assumed here, that the potential shift 

cannot be solely responsible for the corrosion protection. In addition, the leaching of magnesium from 

the TiMgN lattice and the associated changes in the electrolyte at the phase boundary appear to be 

significant. The strong dependency of the RP's on the Mg content and surface condition already gives 

an important hint here. 

 

 

Fig. 4. Factor effects of Mg-content 

and surface conditions on OCP and 

RP after 10 min of immersion of 

TiMgN hard coatings in neutral 

solutions with different chloride 

contents, evaluated electrochemical 

data from Fig. 3 (boxed area) 
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3.2. Mg dissolution kinetic of TiMgN20 and TiMgN35 on polished and blasted HSS substrates 

 

TiMgN samples with Mg contents of 20 and 35 at-% Mg, both on polished and blasted substrates, 

were investigated for the released amount of Mg ions by means of a flow cell and ion analysis. Fig. 5 

shows the trend of the Mg-ion concentration over an investigation period of 6000 s in a 0.05 M NaCl 

solution. 

 

 

 
 

Already after a very short time of the electrolyte contact, the Mg release increases rapidly. The 

differences between the Mg contents in combination with the surface state are very clear. TiMgN on 

corundum blasted substrates and the resulting larger surface release significantly more Mg ions than 

the polished states. At 35 at-% Mg (polished), a rapid release can be seen at first, but it soon stops 

again. From the samples with 20 at-% Mg (polished), almost no release of Mg ions is detectable 

(background noise at 0.2 - 0.3 µg/L). In the corundum blasted state, on the other hand, there is a very 

long-lasting and strong release. Considering the results from 3.1, this results in a coherent relationship 

regarding the situation of the OCP's and the RP's. If the release rate of Mg ions is higher, the RP is 

lower (or the corrosion current is correspondingly higher) and the OCP's tend to be more negative. 

3.3. Corrosion behavior of steel in Mg(OH)2 solutions with different NaCl content 

 

The experimental design (Fig. 2) was carried out according to the procedure described in 2.2. After the 

fixed cathodic polarization at -500 mVNHE for 10 min, the polarization was ceased and the progress of 

the OCP was followed for another 10 min. As an example, Fig. 6 shows potential curves for three 

different chloride contents in the case of nearly saturated Mg(OH)2 solution (pH 9.9). In comparison, 

OCP curves are shown with the same chloride content, but in a pH 7 solution without Mg(OH)2. It can 

be clearly seen, that in neutral solution with pH 7, corrosion occurs very rapidly within 2-3 min, 

characterized by the reversal of the potential in the negative direction after an initial rise in the positive 

direction. The behavior in the Mg(OH)2 solution is different from that. Here, the OCPs increase longer 

in the positive direction and corrosion occurs only at more positive potentials, whereby the potential 

drops in the negative direction. The position of the critical potential (Ecrit) and the time until reaching 

the critical potential (time to Ecrit) are used for further evaluation. Following the OCP measurement, an 

EIS measurement is carried out to determine the RP. Fig. 7 shows the curves for the same three 

chloride contents in the case of nearly saturated Mg(OH)2 solution (pH 9.9) and in a solution without 

Mg(OH)2 at pH 7. 

Fig. 5. Instantaneous released 

Mg ions from TiMgN hard 

coatings with 20 and 35 at-% 

Mg content on polished and 

blasted HSS substrates in 

0.05 M NaCl solution using a 

flow cell with ICP-MS 



7

1234567890‘’“”

WTK2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 373 (2018) 012009 doi:10.1088/1757-899X/373/1/012009

 
 
 
 
 
 

 
 

Fig. 6. OCP vs. time plot of C55 unalloyed steel in solutions of Mg(OH)2 (pH 9.9)  

and neutral water (pH 7) with variation of the NaCl content, “*” indicates Ecrit 

 

 
Fig. 7. Impedance vs. frequency plot of C55 unalloyed steel in solutions of  

Mg(OH)2 (pH 9.9) and neutral water (pH 7) with variation of the NaCl content 

 

For a further statistical evaluation (ANOVA) of the conducted test plan, the corrosion current (icorr) 

was calculated from the RP. The required B value (icorr = B / RP) was determined by preliminary 

investigations in analogy to [11]. For steel it is between 0.06 and 0.025 V, depending on the RP. 

Furthermore, the critical potential and the time until its onset were used for further analysis. For the 

pH range of 9 to 10, the statistical evaluation showed that Ecrit primarily depends on the NaCl content 

(r² = 0,74), without significant influence of the pH-value. In contrast, the corrosion current depends on 
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both the pH and the NaCl content (r² = 0,82) and the time to Ecrit depend on pH, pH*pH and NaCl 

content (r² = 0,80). 

 

Furthermore, the OH--ion concentration was calculated from the measured pH value and, together with 

the given chloride ion concentration, the [Cl- to OH-] ratio was determined. The results of all 

investigated electrolyte variants are shown in Fig. 8 as a function of this value, as well as the results of 

the statistical evaluation of the effects of pH value and NaCl content on icorr and the time to Ecrit. One 

can clearly see the effect of alkalization on the relevant electrochemical characteristics. From a [Cl- to 

OH-] ratio of 100 a positive effect starts, below 30 it becomes significant. The corrosion current 

already decreases by more than a decade at less than a ratio of 30. 

 

 

 
Fig. 8. Influences of pH (due to Mg(OH)2) and NaCl on the corrosion behavior of unalloyed C55 steel, 

left: electrochemical values vs. [Cl- to OH-]-ratio, right: factor effects from ANOVA model 

 

4. Discussion 
 

Electrochemical and analytical data can be used to give a more accurate picture of the corrosion 

protection mechanisms involved, leading to a significant improvement in the corrosion behavior of 

TiMgN coatings on steel substrates. The release rate of Mg ions proved to be crucial. With sufficiently 

high kinetics the potential can be lowered, so that the steel exposed by coating defects is protected 

cathodically for a short time. The more important and longer-lasting effect is the alkalization of the 

adjacent electrolyte due to the dissolved Mg ions, which form Mg(OH)2 and allow passivation of steel. 

 

If, for example, the theoretical release of Mg from the first atomic layer (about 0.3 nm) of a model 

defect of 1 µm diameter at 2.5 µm layer thickness of the TiMgN is calculated, the electrolyte volume 

of the model defect is enriched by 100-1,000 times that of the solubility for Mg(OH)2, depending on 

the Mg content of the coatings. As a result, Mg(OH)2 should precipitate out of the electrolyte and 

strongly buffer it, which in turn prevents the loss of alkalinity, e.g. by reactions of the electrolyte with 

CO2 from the ambient air or by formation of magnesium chlorides.  

 

In addition, Mg(OH)2 ensures that no significant hydrolysis reactions occur in conjunction with 

chlorides, which can also lower the pH, as reported by Lamaka et al. in [12]. Passive steel in alkaline 

electrolytes in the presence of chloride ions, however, is subject to the risk of localized corrosion, 

which occurs at a critical pitting potential. However, this potential is much more positive (around 

200 mV) than the OCP for general active corrosion, so that the temporary cathodic protection can 
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extend further in time. The studies on unalloyed steel in the pH range from 9 to 10 showed, that 

critical chloride contents are to be considered. Significant positive effects are already evident with a 

[Cl- to OH-]-ratio of less than 30. However, since the maximum achievable pH is limited to about 10, 

only relatively low levels of chloride can thus be effectively tolerated. At a ratio of 30 at pH10 it is 

3 mmol/L Cl-, respectively 289 mg/L NaCl. 

 

However, positive protection effects were also observed under the conditions of the neutral salt spray 

test (50 g/L NaCl, see Fig. 1). Therefore, another protective effect should be considered which reduces 

the access of chlorides to the steel via small defects. Since the migration of chlorides always takes 

place in the direction of the anodic areas, they are temporarily transported to the location of the anodic 

Mg dissolution and thus away from the steel, which is temporarily cathodically polarized. It can 

therefore also be assumed that the effective amount of chloride ions at small defects 

(diameter << coating thickness) is less than the nominal amount in the bulk solution. 

 

5. Conclusions 

 

From the investigations shown here, several responsible mechanisms of corrosion protection in 

TiMgN hard coatings on steel can be concluded. 

 

 

 The first mode of action can be explained as a temporary cathodic protection of the low-

alloyed steel by the preferred anodic Mg dissolution. 

 Related to this is the alkalization of the adjacent electrolyte by formation of Mg(OH)2, 

which causes the steel to passivate and achieve some tolerance to chloride ions. The 

relatively large amount of soluble magnesium is likely to cause a buffering effect, which 

extends the protective effect in time. 

 It is also plausible that chloride ions get attracted to the places of the anodic dissolution of 

Mg from the TiMgN, thus reducing their concentration on the steel substrate. 

 

 

For different defect types (aspect ratio of diameter to depth or coating thickness), however, a different 

effective protection can be expected. In large open hole defects, where steel is exposed over a wider 

area, both the polarization effect and the amount of available Mg(OH)2 are limited, which in addition 

can lose its alkalinity more quickly by reacting with ambient air (CO2). By contrast, smaller defects 

with a high aspect ratio can build up a stable buffered alkaline electrolyte and thus maintain the 

protection longer. 
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