
Journal of Civil Engineering and Architecture 11 (2017) 853-861 
doi: 10.17265/1934-7359/2017.09.004 

 

Application of a Modified Arrhenius Equation to 

Describe the Time-Temperature Equivalence in 

Relaxation Analysis of Metal Seals 

Linan Qiao, Sven Nagelschmidt and Uwe Herbrich 

Bundesanstalt für Materialforschung und -prüfung (BAM), 12200 Berlin, Germany  

 

Abstract: For the application of the time-temperature superposition principle a suitable relation is needed to describe the 

time-temperature shift factor α. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable 

results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) 
with the absolute inverse temperature (1/ϑ). However, in cases with a large temperature range which eventually include more 

complex reaction processes, the functional relation between ln(α) and (1/ϑ) is nonlinear in the ‘Arrhenius plot’. In those cases, the 

monotone change of the nonlinear range in the ‘Arrhenius plot’ can be interpreted as a transient range between two approximately 
linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this 
study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation 
analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive 
materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically 
simple behavior with nonlinear sensitivity to inverse temperature. 
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1. Introduction  

Metal seals are widely used in bolted lid-systems to 

ensure appropriate leak-tightness for several decades, 

e.g., for the confinement of casks for transport and 

interim storage of radioactive materials. Mechanical 

properties of metal seals change with time and those 

changes are depending on temperature during the 

long-term service, especially due to the 

thermo-viscoplastic deformation of the outer jacket 

made of aluminum or silver. Hence, the restoring seal 

force decreases with time and its rate is very sensitive 

to temperature. 

A phenomenological-analytical model for metal 

seals of type HELICOFLEX® HN200, see Fig. 1, has 

been developed recently [1], to describe the time and 
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temperature dependent decrease of the seal force. This 

model focuses on the global mechanical behavior of 

metal seals and considers all seal components together 

as a ‘homogeneous material block’ in contrast to a 

detailed two- or three-dimensional finite element 

model of metal seals considering each seal component 

[2]. The development of the model is based on 

experimental results derived from investigations 

which have been carried out at the Bundesanstalt für 

Materialforschung und –prüfung (BAM), a federal 

institute for materials research and testing in Germany, 

since 2009, see past works in Refs. [3-5].  

Experimental findings are shown in Fig. 2 with 

different point styles for seals with aluminum outer 

jacket (Al-seals) and seals with silver outer jacket 

(Ag-seals). The seals are tested in the absolute 

temperature range between 293 K and 423 K. 

The restoring seal force Y2R is specified as the 

remaining  length-related  force  Y = F/(πD),  with seal 
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(a) (b) 
Fig. 1  Investigated metal seal: (a) test specimen; and (b) labelled cross section view.  
 

 
(a) 

 
(b) 

Fig. 2  Restoring seal forces of investigated metal seals with: (a) Al-seals; and (b) Ag-seals for five different constant test 
temperatures. 
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force Y in N/mm, overall force F in N and seal 

diameter D in mm. 

The restoring seal force Y2R decreases with time and 

the decrease is accelerated with increasing 

temperature, especially in the first year of tests. 

In Fig. 2, the continuous lines present the 

calculation results of a prior developed ‘enhanced 

power-law model’ with different test temperatures, see 

Ref. [1]. Focus of this study is to develop an analytic 

function which can be used to calculate the restoring 

seal force with time under arbitrary constant 

temperatures in the studied temperature range between 

293 K and 423 K. For this purpose, a modified 

Arrhenius equation from Nakamura et al. [6] will be 

extended and applied for studied metal seals under 

consideration of the time-temperature superposition 

principle (TTS) . 

2. Describing Seal Relaxation Behavior with 
TTS Principle 

With the assumption that the rate of force relaxation 

of metal seals is proportional to seal force itself and 

inverse in time with a constant temperature-dependent 

exponent as m
ERER tYcY −⋅⋅= ,2,2

 , the relaxation 

behavior of metal seals can be suitably described by 

using an ‘enhanced power-law model’ for each test 

temperature in the form: 
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as introduced in the previous work [1]. In Eq. (1), 

τ = t/tref  is the normalized relaxation time with 

tref = 1 year, τinit = tinit/tref  is the normalized start time 

of the relaxation calculation. Eq. (1) satisfies the 

conditions initR YY
init

==ττ2 , ErefR YY ,12 ==τ  and 

02 =∞→τRY  as a convergent function. The authors 

use 0=initτ  with Alinit YY ,2=  for Al-seals and 

Aginit YY ,2=  for Ag-seals by the fact that all seals were 

compressed initially at room temperature and the 

decreasing of the seal force starts just after the initial 

compression. Parameters Yref,E and m are tempe-

rature-dependent. If τinit is zero, Eq. (1) has a similar 

form of a stretched exponential function. Models with 

those ‘enhanced power-law relations’ are often used 

for a phenomenological description of relaxation 

behavior, which was introduced by Kohlrausch [7] 

and Williams and Watts [8] and is applied for metal 

seals, see Ref. [1]. 

For the application of TTS, Eq. (1) must be 

modified to safe the necessary condition of this 

principle. For this purpose, a ‘mean enhanced 

power-law model’ was developed for the 

determination of a master function under 

consideration of TTS, where a temperature-

independent constant m  as a mean value of the 

temperature dependent parameters of )( im ϑ  for each 

test temperature in the form  

=
=

5
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was used for the mean enhanced power-law model: 
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In Eq. (2), ERY ,2  is the restoring seal force calculated 

from the ‘mean enhanced power-law model’, 2Y  is 

the initial seal force at 0=τ  and )(, refErefY ϑ  is the 

corresponding temperature dependent parameter at 

1=τ  with constant m  for the reference temperature 

2931 == ϑϑref  K. Thus, Eq. (2) has only one 

temperature-dependent multiplication factor )( iE ϑα  

with time, which satisfies the implicit premise of TTS 

principle. The time-temperature shift factors )( iE ϑα  

were calculated from 
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Eq. (3) satisfies the condition of 

1)()( 1 == ϑαϑα ErefE  because the minimal 
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temperature of the test range with 1ϑϑ =ref  is chosen 

in this work. All parameters used for the studied metal 

seals are given in Table 1.  

Eq. (2) with refi ϑϑ =  in logarithmic time scale for 

both seal types is shown in Fig. 3 with continuous 

lines as a master curve for the relaxation behavior. 

Measured values from constant temperature test 

conditions above 293 K were shifted using Eq. (3). 
 

Table 1  Determined parameters of the mean enhanced power-law model. 

Seal type Al-seals Ag-seals 

m  0.826 0.846 

2Y  in N/mm 386.0 494.0 

)( 1, ϑErefY  in N/mm 308.2 424.1 

)( 2, ϑErefY  in N/mm 300.7 399.1 

)( 3, ϑErefY  in N/mm 262.2 356.8 

)( 4, ϑErefY  in N/mm 197.5 292.9 

)( 5, ϑErefY  in N/mm 152.6 249.4 
 

 
    (a) 

 
(b) 

Fig. 3  Master curve of Eq. (2) and shifted experimental findings with )( iE ϑα  from Eq. (3) for different test temperatures 
for: (a) Al-seals; and (b) Ag-seals, where τϑατ )(ˆ iE=  is the master time. 
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3. Application of a Modified Arrhenius 
Equation for the Time-Temperature Shift 
Factor 

The Arrhenius equation [9] is widely used and often 

leads to suitable results for the continuous description 

of time-temperature shift factors. But, as shown in 

Fig. 4, there is no linear relation of Eq. (3) in the plot 

ln(α) over normalized inverse temperature ζ for    

the entire  test temperature  range between  293 K and 

423 K in case of the ‘mean enhanced power-law 

model’ from Eq. (2) is used as a master function. 

However, two different ranges can be clearly 

identified: from 293 K to 348 K and from 348 K to 

423 K. A linear relation can be approximated for the 

higher temperature range from 348 K to 423 K. 

Furthermore, the non-linear relation of studied metal 

seals in the ‘Arrhenius plot’ can be defined as a 

transient range between two linear or constant ranges. 
 

 
(a) 

 
(b) 

Fig. 4  Representation of )( iE ϑα  from Eq. (3) with dots, )(ζα A  from Eq. (6) with dashed lines and )(ζαN  from   

Eq. (7) with continuous lines for: (a) Al-seals; and (b) Ag-seals. 
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Nakamura et al. [6] proposed a modified Arrhenius 

equation for this transient range. This approach was 

extended and applied for metal seals in this work At 

first, the Arrhenius equation was considered, whereat 

the Arrhenius equation is a simple but general 

accepted empirical formulation for the description of 

temperature dependence of reaction rates in the form:  


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with κ  considered here as the rate of seal force 

relaxation of metal seals. Additionally, A is the 

temperature-independent pre-exponential factor and 

ϑ  is the absolute temperature, Ea is the activation 

energy for the process and was assumed as the 

equivalent activation energy for the relaxation process 

of compressed metal seals and kB is the Boltzmann 

constant. Any temperature rising will result in an 

increasing reaction rate.  

For a temperature cϑ , as introduced later, the 

corresponding reaction rate from Eq. (4) is:  
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Combining Eqs. (4) and (5), the time-temperature 

shift factor with the application of the Arrhenius 

equation is obtained in the form: 

)](exp[/)( ζζκκζα −== ccA b    (6) 

with refBa kEb ϑ/)/(= . 

The quotient ϑϑζ /ref=  is the absolute inverse 

temperature normalized with refϑ . The normalized 

inverse temperature crefc ϑϑζ /=  is a parameter and 

cζζ =  corresponds to αA = 1. The meaning of cζ  

will be given later. In Figs. 4a and 4b, ‘Arrhenius 

plots’ of ln(α) over normalized inverse temperature ζ 
are presented, whereat the dots represent the five 

different logarithmic shift factors ln(αE) from Eq. (3). 

The doted lines describe the application of Eq. (6) in 

the range of 348 K to 423 K.  

The results confirm that the Arrhenius equation in 

its original form can only be used in a limited 

temperature range, due to the nonlinear relation 
between )ln(α  and ζ  for the investigated metal 

seals, for example, for both seal types from 

approximately 348 K to 423 K, but not for the 

complete temperature range of interest from 293 K to 

423 K. Generally, metal seals used in casks are 

thermally stressed at circa 348 K. Hence, on the one 

hand, a suitable description of the transient range is 

necessary and on the other hand the intention of tests 

at higher temperatures is to accelerate the aging 

process. 

Different modifications of the Arrhenius equation 

are suggested in the literature, see the work of Laidler 

[10]. For the description of a nonlinear relation 

between )ln(α  and ζ , the adjusted modification of 

the Arrhenius equation proposed by Nakamura et al. 

[6] in the form:  
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was examined as the most suitable form for studied 

metal seals if ‘mean enhanced power-law model’ is 

used as master function. Analog to Eq. (6), the 

non-linear relation between )ln(α  and ζ  can be get 

from Eq. (7) in the form 

}])()1[({exp)( /1/1 nn
c

nnn
cN b −−−−− +−+⋅= ζζζζα  (8) 

with three parameters b , cζ  and n  that can be 

easily determined from experimental results. 

In Eq. (8), cζ  is a parameter corresponding to the 

normalized inverse of an absolute temperature of cϑ . 

The parameter b corresponds with the linear gradient 

of the Arrhenius plot between ln(α) and ζ  with 

higher temperatures ϑ( > 348 K in this work). 

Nakamura suggested for the parameter n  an amount 

of 2, but we expanded n  to be an arbitrary positive 

integer.  

Eq. (8) describes all test results of metal seals very 

suitable with relatively large values of n , without a 
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detailed explanation of its physical meaning so far. 

But, from a mathematical point of view, the 

interaction of cζ  and the exponent n  in Eq. (8) can 

be explained as follows: cζ  defines the position of 

the transient range and n  defines the quantity of this 

range, whereat, the transient range is narrower for a 

larger n . One can obtain exactly two linear ranges 

for ∞→n : 1=Nα  if cζζ >  and AN αα =  if 

cζζ ≤ , see doted lines in Fig. 4.  

Eq. (8) is shown in Fig. 4 with continuous lines and 

the three determined parameters b , cζ  and n  for 

the studied metal seals are given in Table 2. 
 

Table 2  Used parameters for the calculation of )(ζα N with refϑ  = 293 K. 

Seal type Al-seal Ag-seal 

b  54 52 

cζ  0.848 0.885 
n  70 57 

 

 
     (a) 

 
(b) 

Fig. 5  Time-temperature equivalent surface for: (a) Al-seals; and (b) Ag-seals, where Y2,Al = 386 N/mm, Y2,Ag = 494 N/mm, 

tref = 1 year and ϑref = 293 K.  
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Substituting )( iE θα  in Eq. (2) with )(ζαN  from 

Eq. (8), Eq. (2) can be rewritten as: 
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with 1=refζ . Comparing with Eq. (2), both time and 

temperature are continuous variables in Eq. (9). 

The corresponding seal force values in time for 

arbitrary constant temperature values in the test range 

can be estimated from Eq. (9). A three-dimensional 

plot of the normalized restoring seal force function 

(time-temperature equivalent surface of restoring seal 

force of investigated metal seals) with time and 

temperature from Eq. (9) and Eq. (8) is depicted in 

Fig. 5 for Al- and Ag-seals. Therein, the thick lines at 

the surface represent restoring seal force values as 

isolines determined from forecasts at the point in time 

of 40 years at different constant temperatures of 293 K, 

348 K, 373 K and 398 K. Furthermore, the same 

restoring seal force value can be derived for different 

temperatures based on the time-temperature 

equivalent principle. The presented application of 

Equations (8) and (9) is derived and valid for constant 

temperature conditions. Consequently, a change in 

temperature over time is not included in this  

approach.  

4. Conclusion 

In this work, a modified Arrhenius equation 

proposed by Nakamura et al. [6] was extended and 

applied for the calculation of time-temperature shift 

factors of arbitrary temperature values in a specific 

test range with suitable results considering the 

time-temperature superposition principle and based on 

an ‘enhanced power-law model’ developed as a 

master function for describing the relaxation behavior 

of metal seals. Thus, a non-linear interpolation of 

discrete points from experimental data was described 

by a continuous function in a temperature range which 

is representative for applied temperatures of metal 

seals in practice. Furthermore, a relaxation model was 

developed and applied with the time-temperature 

superposition principle for a specific metal seal type.  

Therewith, corresponding values of the restoring seal 

force under the influence of time and under arbitrary 

constant temperatures in the studied range were 

estimated with the developed analytical function. The 

introduced method is generally valid and widely 

applicable for issues which involve those time and 

temperature related effects. 
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