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The High-Fidelity Generalized Method of Cells (HFGMC) is one technique, distinct from traditional finite-element approaches,
for accurately simulating nonlinear composite material behavior. In this work, the HFGMC global system of equations for doubly
periodic repeating unit cells with nonlinear constituents has been reduced in size through the novel application of a Petrov-Galerkin
Proper Orthogonal Decomposition order-reduction scheme in order to improve its computational efficiency. Order-reduced
models of an E-glass/Nylon 12 composite led to a 4.8–6.3x speedup in the equation assembly/solution runtime while maintaining
model accuracy.This corresponded to a 21–38% reduction in total runtime.The significant difference in assembly/solution and total
runtimeswas attributed to the evaluation of integration point inelastic field quantities; this stepwas identical between the unreduced
and order-reduced models. Nonetheless, order-reduced techniques offer the potential to significantly improve the computational
efficiency of multiscale calculations.

1. Introduction

The High-Fidelity Generalized Method of Cells (HFGMC)
is a micromechanics technique that can be used to simulate
nonlinear composite materials [1]. The core computational
effort of this method involves repeatedly finding the solution
to sets of simultaneous linear algebraic equations in order to
determine local/global field quantities and effective proper-
ties for heterogeneous materials with a periodic microstruc-
ture. However, when material nonlinearity is admitted, the
computational runtimes can become excessive, particularly
as the problem size is increased due to a more detailed
microstructural representation. Nonlinear analyses of such
detailed, high-fidelity repeating unit cells (RUCs) are needed
to accurately simulate realistic composite microstructures
necessary for process modeling, prediction of residual stress

states, progressive failure analysis, and other computational
predictions that depend heavily on subscale features. The use
of order-reduction techniques is one possibility of improv-
ing the computational efficiency of high-fidelity analyses.
Furthermore, although HFGMC is fundamentally distinct
and more computationally efficient than traditional finite-
element (FE) approaches [1], both methods are relatively
inefficient for multiscale simulations of realistic composite
microstructures.

Proper Orthogonal Decomposition (POD) [2, 3] and
Proper Generalized Decomposition (PGD) [4, 5] are two
commonly used order-reduction approaches. In order to
generate an order-reducedmodel usingPOD, the full solution
to a particular problem (often found by solving a set of
simultaneous equations) must be known a priori. If this
solution cannot be practically obtained due to model size or
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computational limits, PGD can be used to generate an order-
reducedmodel. However, for most solid mechanics problems
of interest, a priori solutions can be easily obtained. More
detailed information on PGD can be found in the review
article by Chinesta et al. [4]. In this study, a POD approach
was used due to its wide use in the literature and ease of
implementation.

A significant number of FE studies have employed POD
to generate order-reduced models that reduce the dimen-
sionality of the ensuing large set of simultaneous equations.
The goal of POD is to generate a set of basis vectors
capable of capturing the dominant components of a system,
optimally represent a full set of equations, and provide a
mapping relationship between the unreduced and order-
reduced domains. In this context, an order-reduced POD
approach has two main components: (i) approximation of
the solution to a set of equations and (ii) projection to the
order-reduced domain. In general, FE-based POD techniques
employ Galerkin projection (i.e., the projection is performed
with the same set of basis vectors used for approximation).
Carlberg et al. [6] noted that Galerkin projection may not
be optimal in the presence of nonlinearity and can lead to
computational instabilities. Amore complex Petrov-Galerkin
POD method was developed to overcome these limitations
by modifying the form of the projection at the cost of some
added calculations [6].

While POD-based order-reduction techniques have been
commonly used to solve problems in computational fluid
dynamics [7–9], these techniques have also been extended to
include nonlinear solid mechanics problems [6, 10–14]. For
instance, Radermacher et al. [10] were able to demonstrate
improvements of the computational speed by a factor of
60–260 by employing a POD-based order-reduction tech-
nique in the analysis of an inelastic metal matrix compos-
ite. POD techniques have also been implemented within a
multiscale framework. Multiscale methods are often based
on an FE2 [15, 16] modeling approach, wherein a microscale
FE model is called at each integration point within a
macroscale FE model. Yvonnet and He [13] were able to
achieve significant computational and memory savings for
multiscale simulations of hyperelastic media. Radermacher
et al. [10] demonstrated two orders of magnitude speedup in
the computational time of nonlinear multiscale simulations
by implementing PODat themicroscale. Similarly, Ricks et al.
[17] obtained significant computational savings by imbedding
HFGMC within a macroscale linearly elastic FE model.

Several authors have also proposed methods to mod-
ify/update the original set of basis vectors in order to achieve
better computational performance. Hernández et al. [12]
formed a set of basis vectors by accounting for all elastic
modes and only the essential inelastic modes. Ryckelynck
[18] developed a procedure to adaptively update the subspace
spanned by the original set of basis vectors during an analysis.
Additional computational savings were achieved by using
only a subset of the FEs to control the adaptive process [18].
This “hyperreduction” approach is similar in concept to the
discrete empirical interpolation method [19] and gappy POD
technique [20, 21]. Kerfriden et al. [14] proposed updating the

original set of basis vectors using appropriately normalized
unconverged/converged iterative solutions.

In the present work, the HFGMC global system of equa-
tions for doubly periodic RUCs with nonlinear constituents
is reduced in size through the use of POD.This approach was
previously shown to yield significant computational savings
when applied to the HFGMC equations for linearly elastic
materials only [17]. The order-reduced HFGMC models are
then compared to the traditional HFGMC approach for
multiple RUC discretizations in order to assess their accuracy
and computational efficiency.

2. High-Fidelity Generalized
Method of Cells (HFGMC)

The HFGMC is a micromechanics technique used for mod-
eling heterogeneous materials [1] and is an adaptation of
classical homogenization theory [22–24]. The HFGMC has
been extensively validated and shown to accurately calcu-
late both effective properties and thermoinelastic material
behavior for a wide range of composite material systems (see
[1] for a partial summary). In contrast to the generalized
method of cells [1], the HFGMC gives a higher accuracy in
the subcell stress/strain fields, at an increased computational
cost, by employing a higher-order subcell displacement field.
Using the HFGMC, a doubly periodic RUC is discretized
into an arbitrary number of subcells (see Figure 1). A doubly
periodic RUC may be defined in the 𝑦2-𝑦3 plane and is
discretized into 𝑁𝛽 and 𝑁𝛾 subcells along the 𝑦2-direction
(height) and the 𝑦3-direction (width), respectively, while
any inhomogeneities/inclusions (e.g., fibers) extend infinitely
in the 𝑦1-direction (length). A local 𝑦2(𝛽)-𝑦3(𝛾) coordinate
system may be defined relatively to the centroid of each
subcell. The height and length of each subcell are given by ℎ𝛽
and 𝑙𝛾, respectively. The discussion that follows presents key
aspects of the HFGMC formulation that are relevant to this
study. An exhaustive derivation of the HFGMC can be found
in [1].

2.1. HFGMC Subcell Equations. Each subcell in an RUC
is assigned material properties and a constitutive law to
describe the local material behavior. The constitutive law for
thermoinelastic materials is given by

𝜎
(𝛽𝛾) = C(𝛽𝛾) (𝜀(𝛽𝛾) − 𝜀𝑇(𝛽𝛾) − 𝜀𝐼(𝛽𝛾)) , (1)

where 𝜎(𝛽𝛾),C(𝛽𝛾), 𝜀(𝛽𝛾), 𝜀𝑇(𝛽𝛾), and 𝜀𝐼(𝛽𝛾) are the stress, elastic
stiffness, total strain, thermal strain, and inelastic strain
tensors, respectively. The stress tensor is used to calculate
surface-averaged tractions, t(𝛽𝛾), along the edges of a subcell
as a function of the unknown fluctuating displacements. The
computational efficiency of the HFGMC can be significantly
improved by reformulating t(𝛽𝛾) to be a function of surface-
averaged fluctuating displacements (unknowns) [25, 26]. A
linear system of 12 equations can be derived and expressed as

t(𝛽𝛾) = K(𝛽𝛾)u(𝛽𝛾) + f(𝛽𝛾) + g(𝛽𝛾), (2)
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Figure 1: A heterogeneous composite with a doubly periodicmicrostructure comprised of (a)multiple RUCs. (b) A single RUCof dimensions
H × L comprised of a number of individual subcells. (c) An individual subcell of dimensions ℎ𝛽 × 𝑙𝛾. Here, 𝑥𝑖, 𝑦𝑖, and 𝑦𝑖 refer to global, RUC,
and subcell coordinates, respectively (𝑖 = 1, . . . , 3).

where u(𝛽𝛾) represents the unknown surface-averaged fluctu-
ating displacements, f(𝛽𝛾) is a vector containing subcell mate-
rial properties and macroscale strain components, and g(𝛽𝛾)
is a vector containing thermoinelastic traction components.
The 12 × 12 subcell stiffness matrix, K(𝛽𝛾), contains subcell
material properties and dimensions and does not depend on
any inelastic quantities.

2.2. HFGMC Global Equations. By imposing interfacial trac-
tion and displacement continuity conditions on the interior
subcell boundaries and periodic boundary conditions on the
RUC boundaries, an assembled, linear system of equations
can be derived [1]. For perfectly bonded constituents, the
reformulated HFGMC relationships for a given RUC can be
expressed as a square system of 𝑛 = 6𝑁𝛽𝑁𝛾 equations of the
form

KU = f + g, (3)

where K is a sparse, unsymmetrical matrix that is a function
of elastic properties and geometries of the subcells, the vec-
tor U represents the unknown surface-averaged fluctuating
displacements for each subcell, f is a vector containing the
material properties of the subcells and the applied RUC
average strains, and g is a vector containing material prop-
erties/dimensions and the thermoinelastic tractions that are
dependent onU. Unlike traditional nonlinear FE approaches
[27], K does not change iteratively (i.e., it does not depend
on U) in the presence of material nonlinearity. All non-
linear contributions to (3) are accounted for in g. In the
presence of inelasticity, these equations must be iteratively
solved at each loading increment, and the solution is used
to determine subcell stresses and strains. In the present
HFGMC formulation, each row of K effectively represents
a traction continuity equation between two subcells. The
terms containing the unknown surface-averaged fluctuating

displacements are collected on the left-hand side of (3),
and all other terms are collected on the right-hand side.
In general, K must be assembled each time the constituent
properties of a subcell change.

2.3. HFGMC Solution Procedure. In a typical HFGMC anal-
ysis, the assembled HFGMC system of 𝑛 equations for an
RUC is assembled multiple times in order to determine the
mechanical strain concentration tensor for a given periodic
microstructure and to solve for local and global (homoge-
nized) field quantities for a given loading. In general, the
equations are assembled and solved six times (independently
varying each strain component) to establish the mechanical
strain concentration tensor [1].This tensor is used to calculate
the effective elastic stiffness and thermal stress tensors of
the composite. The mechanical strain concentration tensor
does not depend on the inelastic material state [1]. If all
elastic material properties are temperature independent, this
step is only performed for the first loading increment (i.e.,
the effective properties are constant). When thermoelas-
tic/thermoinelastic materials are considered, this step must
be performed every loading increment where a temperature
change occurs.

Additionally, for each load increment, an iterative solu-
tion procedure is required to achieve converged inelastic
fields. The Mendelson method [28, 29] was used to integrate
the classical plasticity equations at user-specified integration
points within a subcell. In the HFGMC, the global RUC
system of equations is solved two times per iteration per
increment: once to solve the actual boundary value problem
under consideration and another to update the inelastic field
quantities for the next iteration/increment. Order-reduction
techniques are hence an attractive option to reduce the com-
putational cost associatedwith repeatedly assembling/solving
the HFGMC system of equations.
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3. Order-Reduction Concepts
Applied to the HFGMC

3.1. Proper Orthogonal Decomposition (POD). As previously
mentioned, POD is a technique that can be used to efficiently
represent a large system of equations. Suppose that the
solution to (3) (i.e., U of length n) can be obtained a priori.
The vector U can be expressed by U = Vw, where V =[V1,V2, . . . ,Vn] is a set of 𝑛 arbitrary orthonormal basis vec-
tors that span the solution space and w is a coefficient vector
of length 𝑛. The goal of POD is to determine an approximate
solution to U, Û = V̂ŵ, where V̂ = [V1,V2, . . . ,Vk] is a
set of the first 𝑘 vectors of V, ŵ is a vector comprised of the
first 𝑘 components of w, and 𝑘 ≤ 𝑛. Note that, for optimal
computational performance, 𝑘 ≪ 𝑛.

The method of snapshots [30] was used to determine the
set of 𝑘 orthonormal basis vectors and, hence, the size of
the reduced set of equations. Suppose that the solution to
(3) (i.e., U) for an RUC under a particular set of applied
strains/stresses is known at a given loading increment (or
iteration).This solution (i.e., a “snapshot”) can be assigned to
the first column of a new matrix, M. Additional columns of
M can be populated using any converged (or preconverged)
incremental solution to (3) for a given RUC architecture. A
singular value decomposition (SVD) of the snapshot matrix,
M, can be performed and is expressed as

M = VΣZ𝑇, (4)

where V and Z are the left- and right-singular vectors,
respectively, and Σ is a diagonal matrix of singular values
arranged in descending order. The matrix V is then used to
populate V̂ [2].

In this study, POD is applied to solidmechanics problems
involving generalized Hooke’s law including plasticity, and
the snapshot matrix is assembled using individual solutions
of (3) (i.e., fluctuating displacements within the RUC). POD
is used to generate the best statistical fit to this multidimen-
sional data set but is completely independent of the physical
nature and origin of the data [12]. Hence, POD has been
successfully applied to wide variety of physics-based (e.g.,
fluid dynamics [7–9]) and non-physics-based (e.g., image
recognition [20]) problems.

3.2. Order-Reduced HFGMC. Consider the HFGMC system
of equations given by (3) (referred to herein as the reference
solution). As a result of performing POD, an approximate
solution for U can be expressed by Û = V̂ŵ where ŵ
can be referred to as the order-reduced solution vector. This
approximate solution is substituted into (3) and results in an
overdetermined system of linear equations (𝑛 equations with𝑘 unknowns, 𝑘 < 𝑛) and a residual, r.

KV̂Ŵ = f + g + r. (5)

The residual effectively contains contributions that fall out-
side of the subspace spanned by V̂. This implies that V̂Tr =
0 since each basis vector in V̂ is orthogonal to r (i.e., the
contribution from the remaining basis vectors in V). The

residual can be eliminated from (5) by multiplying each side
by V̂T. This imposes the orthogonality constraints on the
residual and results in a reduced set of 𝑘 × 𝑘 equations.

V̂TKV̂ŵ = V̂T (f + g) . (6)

In effect, the same basis vectors are used for both
approximating the reference solution and performing the
projection to the reduced system. This is commonly referred
to as Galerkin-based POD (cf. [6]). However, for nonlinear
HFGMC problems, this Galerkin POD approach led to
numerical instabilities. Petrov-Galerkin projection was used
to overcome these instabilities [6]. Rather than performing
the projection by multiplying (5) by V̂T, it can be multiplied
by V̂TKT resulting in a reduced set of 𝑘 × 𝑘 equations; that is,

V̂TKTKV̂ŵ = V̂TKT (f + g) . (7)

It should be noted that in order to set up the reduced set of
equations, the 𝑛×𝑛matrixK and 𝑛×1 vectors f and gmust be
determined.The 𝑘×𝑘 reduced stiffnessmatrix, K̂ = V̂TKTKV̂,
will only change if subcell properties are updated (e.g., due
to a temperature change, damage, etc.). The approximate
reference solution can be recovered by using the relationship
Û = V̂ŵ once (7) is solved. In effect, the original set of𝑛 = 6𝑁𝛽𝑁𝛾 equations can be converted into a potentially
much smaller set of 𝑘 equations and solved. However, by only
including 𝑘 of the 𝑛 orthonormal basis vectors, an error is
introduced. The goal of an order-reduction technique in this
context is to determine the smallest system of equations while
minimizing the approximation error. An accurate order-
reduced model can likely be generated provided that the
orthonormal basis vectors capture the variation in input
parameters (e.g., material properties, loading conditions).
It is important to note that the generation of the order-
reduced model is performed as part of an independent
(“offline”) step using solutions obtained from running one or
multiple predetermined representative problems of interest.
Hence, while this one-time step does require some added
computational time, the benefit of order-reduced approaches
can be more readily observed when a particular problem
is repeatedly solved (e.g., Monte Carlo, optimization, or
multiscale techniques).

4. Microscale Simulations of
Thermoinelastic Composites

4.1. Analysis Details. The computational efficiency of the
order-reduced nonlinear HFGMCmethod was evaluated for
an E-glass fiber and Nylon 12 matrix composite system.
The E-glass fiber was assumed to be isotropic and linearly
elastic and was assigned temperature-independent material
properties [31]. The Nylon 12 matrix was assumed to be
isotropic with an elastic-perfectly plastic material response
and temperature-dependent material properties [32, 33]. The
applicable Young’s modulus (𝐸), Poisson’s ratio (]), secant
coefficient of thermal expansion (CTE), and yield stress (𝜎𝑦)
are presented in Table 1 as a function of temperature (𝑇).
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Table 1: Fiber and matrix constituent properties.

T (∘C) E (MPa) ] 𝜎y (MPa) CTE (𝜇𝜀/∘C)
Fiber - 74000 0.20 - 4.9

Matrix

−25 2100 0.36 54.0 158.0
0 1400 0.36 43.9 158.0
23 950 0.36 28.0 158.0
50 480 0.36 18.0 158.0

(a) (b)

(c) (d)

Figure 2: Four randomized RUC architectures comprised of (a) 256, (b) 1024, (c) 2116, and (d) 5184 subcells where blue indicates an E-glass
fiber subcell and green indicates a Nylon 12 matrix subcell.

Ricks et al. [17] previously demonstrated that the com-
putational efficiency of the order-reduced HFGMC for lin-
early elastic constituents strongly depends on the number
of subcells in the RUC. In this study, four distinct RUCs
with a nominal 60% fiber volume fraction and a random
microstructure were generated using a recently developed
RUC generator [34]. These RUCs have 256, 1024, 2116, and
5184 subcells and are shown in Figures 2(a)–2(d), respectively.
Furthermore, the number of subcells occupied by elastic
materials was fixed at 60% in order to more accurately
compare results for the different size RUCs.

In the HFGMC, a combination of global stress or strain
components and a temperature change can be applied to an
RUC. For this study, a 2% normal strain in the 𝑦2-direction
(cf. Figure 1(b)) was applied over 150 loading increments to
each of the four RUCs in Figure 2. With the exception of the
axial stress in the 𝑦2-direction, all other applied stress com-
ponents were set to zero. Additionally, a linear temperature
increase from −25∘C to 50∘C was applied. The temperature
and mechanical loads were imposed simultaneously in order
to require assembly and solution of the HFGMC equations
for each loading increment which represents themost general
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loading case. A total of 49 integration points were assigned
to each subcell. This number was found to be the minimum
necessary to achieve convergence of the inelastic strain/stress
field for the reference solution. A fixed, conservative number
of iterations (i.e., 50) were performed for each increment.
Since multiple unique RUCs were considered in this study,
no robust criterion was specified to establish convergence
of the inelastic fields. Rather, analyses were performed to
establish an appropriate fixed number of iterations necessary
for convergence for all RUCs. By basing convergence on
a fixed number of iterations, an appropriate comparison
of the computational cost for the different RUCs could be
performed without having to consider whether fewer/more
iterations were required for a particular RUC analysis.

4.2. Generation of the Order-Reduced HFGMC Models. As
previously mentioned, the method of snapshots was used
to determine the orthonormal basis vectors required to
approximate the reference solution and project to the reduced
subspace. This technique requires that the solution to each
of HFGMC system of equations be obtained at a number
of time/loading intervals (snapshots). For instance, Ricks et
al. [17] obtained snapshots by independently varying the six
strain components, and an SVDwas performed to determine
the orthonormal basis vectors. These basis vectors are substi-
tuted into (7) and used to generate an order-reduced model.
This process was performed offline prior to performing an
analysis of interest. For linearly elastic materials without any
temperature change, the effective elastic stiffness tensor for
the RUC was calculated when generating the snapshots. This
tensor can be stored to eliminate the need to calculate the
mechanical strain concentration tensor in the order-reduced
HFGMC. As such, Ricks et al. [17] demonstrated that a
single order-reduced model can accurately and efficiently
represent the full HFGMC system of equations. Additionally,
for isothermal elasticity, a solution to the HFGMC system of
equations is only required once per increment (no need for
an iterative procedure).

However, when thermoinelastic materials are consid-
ered, eight unique HFGMC systems of equations must be
repeatedly assembled and solved in order to determine the
mechanical strain concentration tensor and the solution due
to the applied loading conditions. More details concerning
these eight systems of equations can be found in the appendix.
A single order-reduced model is unlikely to accurately and
efficiently represent all eight systems of equations. For sim-
plicity, in this work, a family of eight order-reduced models
were used in an analysis of each RUC.The first six of the eight
order-reduced models were used to establish the mechanical
strain concentration tensor. The remaining two models were
used to solve the actual problem with the applied loading
conditions.

In order to establish the eight order-reduced models, the
previously described loading conditions (Section 4.1) were
applied to each RUC. The converged solution at each of 150
temperature increments for each set of equations was used
to populate eight snapshot matrices (one for each unique
set of equations). An SVD was performed on each snapshot
matrix and was used to generate a set of orthonormal basis
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Figure 3: Singular values of the snapshot matrix for each of eight
sets of simultaneous equations for a 256 subcell RUC.

vectors. Figure 3 contains a plot of the first 30 singular values
associated with each of the eight order-reduced models for
the 256 subcell RUC (i.e., Figure 2(a)). The singular values
for each of the eight solutions decreased by several orders
of magnitude over the first ten singular values. Similar plots
were obtained for the other 1024, 2116, and 5184 subcell
RUCs. This suggested that accurate order-reduced models
could likely be generated using a relatively small number of
basis vectors. Conceivably, each of the eight order-reduced
HFGMC models for a given RUC can require a distinct
number of basis vectors. Since the plot of the singular values
was similar for the first six models (used to establish effective
properties) and the boundary conditions are similar, a con-
stant number of basis vectors was used for the first six models
for each RUC configuration. Similarly, a different number of
basis vectors was used for the remaining twomodels (used to
solve the actual boundary value problem). Future studies will
investigate more robust methods to establish the appropriate
size of each order-reduced model within HFGMC.

4.3. Assessment of the Order-Reduced HFGMC Models for
Determining Effective Properties. The accuracy of the family
of order-reduced models for each of the 256, 1024, 2116,
and 5184 subcell RUCs was assessed by performing multiple
simulations, each with a different number of basis vectors.
Recall that the first six of eight order-reduced models for a
given RUC are used to establish RUC effective properties.
Since these properties influence the global fields, the error
in the effective elastic stiffness and thermal stress tensors
was determined by performing a series of analyses using
one to ten basis vectors (𝑘 = 1, 2, . . . , 10). Recall that, for
this study, the effective properties do not depend on the
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Figure 4: Error in the effective elastic stiffness tensor for the 256
subcell RUC of an E-glass/Nylon 12 composite at each temperature
increment for the first six of eight order-reduced models each
containing k = 1–10 basis vectors.

inelastic state or applied mechanical loading and are only a
function of temperature. Hence, the temperature was varied
over 150 increments from−25∘C to 50∘Candonly the effective
properties were determined at each temperature. The error
associated with each temperature increment was calculated
using the following relationship:

Err = AR − AOR
2AR

2 , (8)

where A represents either the vectorized effective elastic
stiffness tensor or the effective thermal stress tensor, the
subscripts R and OR correspond to the reference or order-
reduced vectors, respectively, and ‖ ⋅ ‖2 denotes the 𝐿2-
norm. Figure 4 shows the error in the effective elastic
stiffness tensor for the 256 subcell RUC at each temperature
increment for order-reduced models containing one to ten
basis vectors.The error was observed to be relatively constant
as the temperature varied for a given model. Furthermore,
as the number of basis vectors used in the order-reduced
models increased (𝑘 ≥ 5), the error became increasingly
negligible. Similar trends were observed for the error in the
effective thermal stress tensor. Since both the effective elastic
stiffness and thermal stress tensors are calculated using the
mechanical strain concentration tensor [1], the two tensors
have similar errors for order-reduced models with the same
number of basis vectors. Analogous error estimates in the
effective properties for the 1024, 2116, and 5184 subcell RUCs
were obtained and closely resembled those of the 256 subcell
RUC. Hence, for all RUCs, 𝑘 = 5 was determined to yield
accurate effective properties and was used in subsequent
assessments of the subcell/global fields. In essence, the first
six of eight order-reduced models for a given RUC involved
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Figure 5: Average error in the global/subcell stresses for each RUC
of an E-glass/Nylon 12 composite for order-reducedmodels (last two
of eight) with varying numbers of basis vectors.

solving a dense set of 𝑘 = 5 equations, while the reference
(unreduced) model was comprised of a highly sparse set
of 𝑛 = 1536–31,104 equations depending on the RUC
architecture considered.

4.4. Assessment of the Order-Reduced HFGMC Models for
Determining Global/Local Fields. In order to assess the accu-
racy of the remaining two order-reduced models for each
RUC architecture, the global and subcell stress fields were
evaluated where the number of basis vectors was varied, k
= 1–25, for each model. Recall that these two order-reduced
models were used to determine global/local fields under
the applied loading conditions. As previously mentioned,
each of these two models used the same number of basis
vectors for a given simulation.The error in the global/subcell
stress field was calculated using (8), where A corresponded
to the 6 × 1 global or subcell stress vector. The error in
subcell stresses was averaged across all iterations for each
RUC for a given number of basis vectors. Similarly, for each
RUC, the error in subcell stresses was determined for each
subcell at all iterations and then averaged. Figure 5 contains
a plot of the average error in global/subcell stresses as a
function of the number of basis vectors (𝑘) for each of the
256, 1024, 2116, and 5184 subcell RUCs. In general, as the
number of basis vectors in the last two order-reduced models
increased, the average error in both the global and subcell
stresses decreased by orders of magnitude. Not surprisingly,
the average error in subcell stresses was typically greater
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Figure 6: Speedup factors calculated from the (a) assembly/solution step runtimes and (b) total runtimes for each RUC as a function of the
number of basis vectors used in the last two of eight order-reduced models.

than that of the global (continuum-averaged) stresses. Minor
differences in the order-reduced approximations will lead
to larger fluctuations in the calculated local subcell stress
fields than for the global (homogenized) stress field. Hence,
more basis vectors will be required to obtain a desired
level of accuracy in the calculated subcell fields than that
required to obtain the same accuracy in the global fields.
Of course, such results are also highly dependent on the
local distribution of features and properties within a given
RUC, as well as the applied thermomechanical loading. For
example, an order-reduced model of the 1024 subcell RUC
(Figure 2(b)) with 11 basis vectors is required to calculate
global/subcell stresses with an error of less than 1% relative
to the reference (unreduced) model (Figure 5). In contrast,
only nine basis vectors are required to achieve a similar level
of accuracy for the more complex and highly discretized 5184
subcell RUC (Figure 2(d)). Similarly, for a given number of
basis vectors, the estimated error for an order-reducedmodel
of the 1024 subcell RUC (Figure 2(b)) exceeds that for the
more highly refined 2116 subcell RUC containing significantly
more E-glass fibers (Figure 2(c)). Hence, the optimal size
of the order-reduced model necessary to simulate a given
RUC is problem specific and driven by local features (i.e.,
material distribution or regions of intense inelasticity), as
well as the applied loading. Nonetheless, the error associated
with each of the order-reduced models of the 256, 1024,
2116, and 5184 subcell RUCs became exceedingly small once
the number of basis vectors exceeded k ≥ 10–15. Addi-
tionally, some local instabilities were observed for the 5184
subcell RUC for smaller order-reduced models (𝑘 = 3, 4).
These instabilities are likely the result of the order-reduced
model not being accurate for such a low number of basis
vectors.

The computational efficiency of the order-reduced mod-
els was assessed for each RUC architecture. The time spent
assembling/solving the HFGMC systems of equations was
determined for the reference model for each RUC and
the corresponding family of order-reduced models. Since
each order-reduced model requires mapping to and from
the order-reduced system of equations at each increment/
iteration (i.e., additionalmatrixmultiplications are required),
the computation runtimes for the order-reduced models
include both the mapping operations and iterative solution
of eight sets of simultaneous equations. The total runtime for
a given RUC analysis was also determined.The total runtime
had two main contributions: (i) the eight separate equation
assembly/solution steps and (ii) the localization step used to
calculate the inelastic field at individual integration points.
These two factors represented >90% of the total analysis
runtime. Note that read/write operations involving storage
of local subcell field quantities were not included in this
performance assessment since such operations are unaffected
by the order-reduction procedures.

Speedup factors were calculated by dividing the appropri-
ate reference solution runtime by the order-reduced runtime,
where the minimum number of basis vectors was selected
such that the error in the average subcell stresses did not
exceed 1%. As a reminder, k = 5 basis vectors were employed
in the first six sets of eight order-reduced HFGMC equations.
Figure 6 shows the effect of varying the number of basis
vectors in the latter two sets of order-reduced equations on
speedup factors. The speedup factors for (i) the equation
assembly/solution and (ii) total analysis runtimes are shown
in Figures 6(a) and 6(b), respectively, for the order-reduced
models for each of the RUCs. Regardless of the RUC archi-
tecture, as the number of basis vectors used in the last two
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order-reducedmodels increased, the speedup factor from the
equation assembly/solution steps decreased proportionally.
More importantly, for a given number of basis vectors, the
more highly discretized and complex order-reduced 2116
and 5184 subcell RUC models displayed markedly higher
assembly/solution speedup factors than did the less refined
256 and 1024 subcell models. This trend is consistent with
previously reported results for RUCs with elastic constituents
[17]. Regardless of the number of basis vectors employed
and the RUC architecture, significant computational savings
in the equation assembly/solution steps were achieved. For
instance, order-reducedmodels with less than 1% error in the
subcell stress fields were 4.8–6.3 times faster than the refer-
ence solution (Figure 6(a)). This underscores the advantage
of using order-reduction techniques in themultiscale analysis
of materials with complex microstructures.

Interestingly, the significant improvement in equation
assembly/solution step runtimes associated with each of
the order-reduced RUC models did not translate into a
similar improvement in the total runtime. The speedup
factors in total runtimes varied, ∼1.3–1.6, depending on
the RUC architecture and were relatively insensitive to the
number of basis vectors (Figure 6(b)). In spite of substantial
improvements in equation assembly/solution step runtimes
associated with the order-reduced models, this difference
between the total runtimes for the order-reduced and ref-
erence models appears dominated by the fraction of the
total runtime spent numerically evaluating the inelastic field
quantities at each integration point. The procedure used to
assess the Nylon 12 matrix inelasticity was identical for the
reference model and order-reduced models. Depending on
the RUC architecture, roughly 50–70% of the total runtime
was dedicated to evaluation of the inelastic field. Hence,
the benefits of order-reduction can only be realized for the
remaining 26–46% of the total runtimes associated with
equation assembly/solution processes. Nonetheless, use of
order-reduction techniques resulted in a 21–38% reduction in
total runtimes.The improvement in computational efficiency
may become more pronounced for RUCs containing fewer
inelastic matrix subcells. As an aside, the fraction of the total
runtime spent assembling/solving the HFGMC equations
seems to be more dependent on the local distribution of
properties within an RUC rather than the level of refinement
and/or complexity of a given RUC. Additional analyses for
increasingly refined orderedmicrostructures (rather than the
randomones considered in this study) yielded similar results.

The order-reduction procedures presented herein
resulted in up to a sixfold increase in the computational
efficiency associated with equation assembly/solution proc-
esses inHFGMC.The relative improvement in computational
runtimes was not as pronounced as for traditional FE order-
reduced approaches that involve an iterative solution of
simultaneous equations with a sparse, symmetric, and
banded stiffness matrix. In contrast, the nonlinear HFGMC
simultaneous equations contain a sparse, unsymmetrical,
unbanded, and ill-conditioned stiffness matrix. Moreover,
significantly more integration points are required to achieve
a converged inelastic field in HFGMC. Despite these
disadvantages, the nonlinear HFGMC is intrinsically faster

than traditional (unreduced) FE analyses [1]. The relative
improvement in computational runtimes for order-reduced
HFGMC models, however, will likely be lower than for
order-reduced FE models. In the future, the efficiency
of order-reduced HFGMC models can be improved by
implementing direct assembly techniques that can be
used to apply the order-reduction at the RUC subcell
equations rather than the fully assembled global equations
[35, 36]. Additionally, although this study considered an E-
glass/Nylon 12 material system, similar computational results
will likely be obtained for these RUC architectures if different
constituents are used. Minor differences may arise due to the
numerical solution of the individual systems of equations.
By coupling improved plasticity algorithms with direct
assembly techniques, the order-reduction HFGMC model
developed in this work can provide significant computational
savings over the traditional procedure. This improvement is
essential for developing higher-fidelity multiscale analysis
procedures.

5. Conclusions

In this study, the High-Fidelity Generalized Method of
Cells (HFGMC) global system of n × n equations for
doubly periodic repeating unit cells (RUCs) comprised of
E-glass fibers and a Nylon 12 matrix was reduced in size
through the use of Proper Orthogonal Decomposition with
Petrov-Galerkin projection. The order-reduced system of
equations was compared to the unmodified HFGMC equa-
tions for micromechanics models with four distinct RUCs
of increasing complexity (256 to 5184 subcells). For all
RUCs, relatively small order-reduced models were found to
accurately reproduce effective properties (five basis vectors)
and global/subcell stresses (six to eleven basis vectors). A
4.8–6.3𝑥 speedup in the equation assembly/solution process
was achieved while not exceeding a 1% error in the average
subcell stresses. Moreover, total runtimes were reduced by
21–38%. The discrepancy between the speedup of the assem-
bly/solution procedure and the total runtime is attributable
to the fact that a significant fraction of the computational
time in HFGMC is spent evaluating inelastic fields. Such
calculations do not benefit from the use of order-reduction
procedures. Current work is aimed at further improving the
computational efficiency of the order-reduced HFGMC by
performing order-reduction at the subcell level rather than
the global level.

Appendix

Brief Overview of the Eight
Sets of HFGMC Equations

In a typical nonlinear HFGMC analysis, eight unique sets of
equations are generated and solved. This section contains a
brief overview describing the nature of these equations. The
reader is referred to [1, 37] for more details regarding the
specific numerical implementation.



10 Mathematical Problems in Engineering

In the HFGMC, a second-order expansion of the subcell
displacement field is performed and is given by

𝑢𝑖(𝛽𝛾) = 𝜀𝑖𝑗𝑥𝑗 +𝑊(𝛽𝛾)𝑖(00) + 𝑦2(𝛽)𝑊(𝛽𝛾)𝑖(10) + 𝑦3(𝛾)𝑊(𝛽𝛾)𝑖(01)
+ 12 (3𝑦2(𝛽)

2 − ℎ2𝛽4 )𝑊(𝛽𝛾)𝑖(20)
+ 12 (3𝑦3(𝛾)

2 − 𝑙2𝛾4 )𝑊(𝛽𝛾)𝑖(02) .
(A.1)

For perfect elasticity, a linear variation in strain and stress
within a subcell results from the displacement field given by
(A.1). When thermoinelasticity is admitted, a higher-order
representation of the subcell strain and stress field is required
[1, 37]. The subcell strain field can be expressed using a
Legendre polynomial, 𝑃, expansion by

𝜀𝑖𝑗(𝛽𝛾) = ∞∑
𝑚=0

∞∑
𝑛=0

√(1 + 2𝑚) (1 + 2𝑛)𝑒(𝛽𝛾)𝑖𝑗(𝑚𝑛)𝑃𝑚 (𝜁2(𝛽))
⋅ 𝑃𝑛 (𝜁3(𝛾)) ,

(A.2)

where nondimensional variables 𝜁𝑖(⋅) map the subcell coordi-
nates onto the interval −1 ≤ 𝜁𝑖(⋅) ≤ 1 (i.e., 𝜁2(𝛽) = 2𝑦2(𝛽)/ℎ𝛽
and 𝜁3(𝛾) = 2𝑦3(𝛾)/𝑙𝛾) and 𝑒(𝛽𝛾)𝑖𝑗(𝑚𝑛) are the strain coefficients.
The average strains in a subcell are given by 𝑒(𝛽𝛾)

𝑖𝑗(00)
[1, 37]. A

similar expression to (A.2) for the subcell stresses can also be
derived. The average total subcell strains can then be related
to the RUC-averaged applied total strains, 𝜀, through

e(𝛽𝛾)
(00)

= A(𝛽𝛾)𝜀 +D(𝛽𝛾), (A.3)

where A(𝛽𝛾) is the 6 × 6 mechanical strain concentration
matrix for the subcell and D(𝛽𝛾) is a 6 × 1 vector that
accounts for current thermoinelastic effects in the subcell.
A(𝛽𝛾) is used to calculate RUC-averaged effective properties
and is found by independently setting the components of
𝜀 to unity. At the same time, all other RUC-averaged total
strain components and thermoinelastic effects (i.e., D(𝛽𝛾))
are set to zero. This procedure is similar to finite-element
based homogenization techniques [38]. For example, the first
column of A(𝛽𝛾) can be found by setting 𝜀11 = 1 and all
other strain components equal to zero along with D(𝛽𝛾) = 0.
Practically, this is implemented by assembling and solving a
set of equations given by (3). In this case, f = f(𝜀), g = 0
(no thermoinelastic effects), and the solution,U, contains the
surface-averaged fluctuating displacements in each subcell,
u(𝛽𝛾). The relationships between u(𝛽𝛾) and e(𝛽𝛾)

(00)
can be found

in [1, 37]. Using (A.3), the first column of A(𝛽𝛾) is then equal
to e(𝛽𝛾)
(00)

. Six unique sets of equations are therefore required
in order to calculate A(𝛽𝛾). The relationships between A(𝛽𝛾)
and the RUC-averaged effective properties can be found in
[1, 37].This stepmust be performed at each loading increment
during which the subcell material properties change (e.g.,

due to temperature or damage). Furthermore, as previously
mentioned, the stiffnessmatrix,K, for each of these equations
is identical.

The remaining two sets of equations are assembled and
solved iteratively at each loading increment and are used to
determine the subcell elastic and inelastic fields. For both of
these sets, K remains unchanged and is independent of any
inelastic effects. A seventh set of equations (same form as (3))
based on the current applied loading conditions and inelastic
state can be assembled, solved, and used to calculate the
subcell total strains and stresses. Similar to the procedure for
calculating effective properties, the eighth set of equations is
used to calculate the thermoinelastic vector, D(𝛽𝛾), by setting
𝜀 = 0. The relationships between D(𝛽𝛾) and RUC-averaged
inelastic strains/stresses can be found in [1, 37]. The RUC-
averaged inelastic strains are then used to modify 𝜀 at the
next iteration. This iterative procedure is described in more
detail in [37]. At the end of an iteration, convergence can
be verified by checking against some user-specified criterion.
Alternatively, a sufficiently high number of iterations can
be performed to ensure that the local inelastic fields have
converged.
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