

Sicherheit in Technik und Chemie

March 08th 2018

PANIC 2018 Validation Workshop La Jolla, CA, USA

WORKSHOP SESSION 3 (E) UNCERTAINTY ANALYSIS

Michael Maiwald

Bundesanstalt für Materialforschung und -prüfung (BAM) Division 1.4 Process Analytical Technology

Richard-Willstätter-Str. 11 D-12489 Berlin, Germany

Part 1: Basic Terms and Definitions

Practical Statistics

"Politicians use statistics in the same way that a drunk uses lamp-posts for support rather than illumination"

Andrew Lang (1844–1912) was a Scottish poet, novelist, and literary critic, and contributor to anthropology

Source: https://en.wikiquote.org/wiki/Andrew_Lang

Measurement

- In general, the result of a measurement is only an approximation or estimate of the value of the measurand and thus is complete only when accompanied by a statement of the uncertainty of that estimate.
- In practice, the required specification or definition of the measurand is dictated by the required accuracy of measurement
- In many cases, the result of a measurement is determined on the basis of series of observations obtained under repeatability conditions
- Variations in repeated observations are assumed to arise because influence quantities that can affect the measurement result are not held completely constant

Errors, Effects, and Corrections

- In general, a measurement has imperfections that give rise to an error in the measurement result. Traditionally, an error is viewed as having two components, namely, a random component and a systematic component.
- Random error presumably arises from unpredictable or stochastic temporal and spatial variations of influence quantities.
 - The effects of such variations, hereafter termed random effects, give rise to variations in repeated observations of the measurand.
- Systematic error cannot be eliminated but it too can often be reduced.
 - If a systematic error arises from a recognized effect of an influence quantity on a measurement result the effect can be quantified and a correction or correction factor can be applied to compensate for the effect.

Uncertainty

- The uncertainty of the result of a measurement reflects the lack of exact knowledge of the value of the measurand. The result of a measurement after correction for recognized systematic effects is still only an estimate of the value of the measurand because of the uncertainty arising from random effects and from imperfect correction of the result for systematic effects.
- In practice, there are many possible sources of uncertainty in a measurement, among others including:
 - incomplete definition of the measurand;
 - imperfect realization of the definition of the measurand;
 - non-representative sampling the sample measured may not represent the defined measurand;
 - inadequate knowledge of the effects of environmental conditions on the measurement or imperfect
 - measurement of environmental conditions;
 - finite instrument resolution or discrimination threshold;
 - inexact values of measurement standards and reference materials; ...

Accuracy, Trueness, and Precision Adjustment

The accuracy of (instrumental) analytica measurements (i.e., its trueness and precision) can be influenced (c.f., optimised) by adjustment of the instrument as well as by selection of the analytical method.

Part 2: Why statistics?

- Distributions:
 - Normal Distribution
 - Student's t-distribution

Normal Distribution

Central Limit Theorem:

numerous sources of arbitrary distribution are (equally) contributing to the measurement result

=> Gauss distribution

2018-03-08

Most often we can assume that measurements are normally distributed

Normal Distribution

The **normal distribution**, also called **Gaussian distribution** is a **continuous probability distribution** and can be closely approximated by a curve called the "*normal distribution curve*"

$$p = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The function can be described by μ (arithmetic mean of a population) and σ (standard deviation of a population)

 $\boldsymbol{\sigma}$ characterise the dispersion of the values

Sample & Population

Sample:

only subset of population is known, the number of samples *N* is limited

 ${\cal N}$ limited

so x and s can be determined as estimates of μ and σ

- Rules of statistics
- Declarations as probabilites

Population:

all possible data are available, *N* is infinite

 $(N \rightarrow \infty)$

so μ and σ can be calculated

Sample & Population

N limited

Sample:

Estimated mean value of the sample

Estimated value of the standard deviation s and variance s² of the sample

 $s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$

 $(N \rightarrow \infty)$

Population: Mean value of the population μ

Standard deviation σ and variance σ^2 of the population

From Now On Only Samples

Description of sets of repeated measurements

For a set of n values x_i

Standard Deviation

 $s(x_i) = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2}$

Standard Deviation of the Mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} (x_i)$$

Variance

$$s(\overline{\mathbf{x}}_i) = \frac{s(x_i)}{\sqrt{n}}$$

$$V(x_i) = s^2(x_i)$$

Relative Standard Deviation or Coefficient of Variation

$$\underline{RSD}_{2018-03-08} = \frac{s(x_i)}{\overline{\chi}} \text{ or } RSD(\%) = CV\% = \frac{s(x_i)}{\overline{\chi}} \cdot 100$$
PANIC Validation Workshop 2018, La Jolla, CA, USA

Example: Mean Values and Standard Deviations of NMR Measurements

Three multiplets and triplicate measurements

Data							
Sample	Mult1	Mult2	Mult3	Ave	Std dev	%RSD	
1	98,462	96,83	97 <i>,</i> 95	97,7473	0,83466	0,8539	
2	98,529	97,129	98,193	97,9503	0,73087	0,74616	
3	98,475	96,829	98,052	97,7853	0,85479	0,87415	
Average	98,4887	96,9293	98,065	97,8277			
Std dev	0,03553	0,17292	0,12202	0,70648			
%RSD	0,03607	0,1784	0,12443	0,68086			/ /L
				_			
					e e	emical shift, δ / ppm	naci i diria issimeto

EXCEL:

- STDEV.S is called the "N-1" method and assumes that its arguments are a sample of the population
- STDEV.P is the "N" method and is based on the entire population given as arguments

Thanks to Mike Bernstein

Variance and Covariance

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} (x_i)$$

$$\operatorname{var}(x_i) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\operatorname{cov}(x_i, y_i) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{x})$$

$$r = \frac{\sum (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \cdot \sum (y_i - \overline{y})^2}$$

 \overline{y}

Confidence Interval

Student's t-Distribution

Probability distribution used when the population is normally distributed, but the sample size is small.

When the sample mean is m and s(x) is the sample standard deviation, then the quantity

$$t = \frac{\bar{x} - \mu}{s(x_i) / \sqrt{n}}$$

has a *t* distribution with v = n - 1 degrees of freedom.

.

Student's t-Distribution

William Sealy Gosset

Died Canterbury, Kent, England October 16, 1937 (aged 61) Beaconsfield, Buckinghamshire, England

Known for Student's t-distribution

PANIC Validation Workshop 2018, La Jolla, CA, USA

Student's t-Distribution

7	*	1	1	1		1	1		1
m \	0,10	0,05	0,025	0,020	0,010	0,005	0,003	0,002	0,001
1	6,314	12,706	25,452	31,821	63,657	127,3	212,2	318,3	636,6
2	2,920	4,303	6,205	6,965	9,925	14,089	18,216	22,327	31,600
3	2,353	3,182	4,177	4,541	5,841	7,453	8,891	10,214	12,922
4	2,132	2,776	3,495	3,747	4,604	5,597	6,435	7,173	8,610
5	2,015	2,571	3,163	3,365	4,032	4,773	5,376	5,893	6.869
6	1,943	2,447	2,969	3,143	3,707	4,317	4,800	5,208	5,959
7	1,895	2,365	2,841	2,998	3,499	4,029	4,442	-4,785	5,408
8	1,860	2,306	2,752	2,896	3,355	3,833	4,199	4,501	5,041
9	1,833	2,262	2,685	2,821	3,250	3,690	4,024	4,297	4,781
0	1,812	2,228	2,634	2,764	3,169	3,581	3,892	4,144	4,587
2	1,782	2,179	2,560	2,681	3,055	3,428	3,706	3,930	4,318
4	1,761	2,145	2,510	2,624	2,977	3,326	3,583	3,787	4,140
6	1,746	2,120	2,473	2,583	2,921	3,252	3,494	3,686	4,015
8	1,734	2,101	2,445	2,552	2,878	3,193	3,428	3,610	3,922
0	1,725	2,086	2,423	2,528	2,845	3,153	3,376	3,552	3,849
2	1,717	2,074	2,405	2,508	2,819	3,119	3,335	3,505	3,792
4	1,711	2,064	2,391	2,492	2,797	3,092	3,302	3,467	3,745
6	1,706	2,056	2,379	2,479	2,779	3,067	3,274	3,435	3,704
8	1,701	2,048	2,369	2,467	2,763	3,047	3,250	3,408	3,674
0	1,697	2,042	2,360	2,457	2,750	3,030	3,230	3,386	3,646
0	1,645	1,960	2,241	2,326	2,576	2,807	2,968	3,090	3,291

Part 3: Conventional Linear Calibration

- Examples for univariate and linear calibrations
- Regression analysis
- Examples from NMR spectroscopy

Agenda Part 3.

- Adjustment, calibration and other terms
- Calibration using a linear function
 - Basics and requirements for linear regressions
 - Estimation of the regression line
 - Confidence interval for slope and the linear function
 - Examples
- Tests on linearity
 - Plotting the residues
- Norms and literature for calibration with linear and non-linear functions

Examples

Calibration

A calibration determines the **functional relationship** between the measurand and the analytical property to be determined.

This will also set the permissible **operating range** of the measurements.

The quality of an analytical measurement is not associated with the (financial) cost of a measurement nor of the instrument.

Linearity of the calibration refers to the concrete analysis method and the preferable proportionality between the signal and the feature (concentration), after carrying out all steps of the method.

However, it is only necessary to have a mathematically describable connection between the signal and the feature (concentration).

Sensitivity and Analytical Sensitivity

(a) "Ability of an examination procedure to differentiate adjacent values";

(b) IUPAC*: "Proportionality between the signal and the measured value of a measuring channel (to be determined)";

(c) Slope of the calibration line.

*IUPAC: "International Union of Pure and Applied Chemistry", 1919 as subsequent organisation of "International Association of Chemical Societies" Webpage: chemistry.rsc.org/rsc/iupac.htm

Analytical Sensitivity

Since the definition of sensitivity does not take into account the precision, the analytical sensitivity is defined

Analytical Sensitivity

The method (a, left) has a higher analytical sensitivity than method (b, right), although the calibration function has the same slope

Example: Analytical Sensitivity Comparison HF/LF (5 mm) and <u>Analytical Sensitivities ¹H</u>, ¹⁹F

Signal-to-noise ratios [35] for differently concentrated ethyl benzene solutions in acetone-d6 for MR-NMR with different sample geometries compared to HR-NMR spectrometer.

Ethylbenzene in	MR NMR	HR NMR	
CDCl ₃ : c/% (mass)	5 mm glass ^a ID 4.2 mm	1/16" polymer tubing	5 mm glass ^a ID 4.2 mm
1	303	-	23,727
10	1939	60	n. a.

^a NMR tube: Deutero, Economic ID 4.20 ± 0.05 mm.

Detection limits (LOD) and quantification limits (LOQ) of 2,2,2-trifluoroethanol in deuterated water according to [36] in mol L^{-1} of a MR-NMR with different sample geometries.

TFE in D ₂ O	Polymer	Polymer	5 mm glass ^a	5 mm glass ^a
	tubing 0.04″	tubing 0.04″	ID 4.2 mm	ID 4.2 mm
	¹ H 43.5 MHz	¹⁹ F 40.2 MHz	¹ H 43.5 MHz	¹⁹ F 40.2 MHz
$LOD/mol L^{-1}$	0.043	0.112	0.019	0.016
$LOQ/mol L^{-1}$	0.130	0.335	0.058	0.049
Analytical sensitivity/ L mol ⁻¹	74.6	57.0	1242	892

^a NMR tube: Deutero, Economic ID 4.20 ± 0.05 mm.

[35] T.D.W. Claridge, J.E. Baldwin, F.R.S. Williams, R.M. Williams (Eds.), High-Resolution NMR Techniques in Organic Chemistry, Pergamon, Bd. 19. Amsterdam, 1999. ISBN: 0-08-042799-5

[36] J. Mocak, A.M. Bond, S. Mitchell, G. Scollary, A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques, Pure Appl. Chem. 69 (1997) 297–328, http://dx.doi.org/10.1351/pac199769020297

Ethylbenzene in Acetone-d6

5 mm glass tube HF vs. LF: factor of 78.3 (for 1% ethyl benzene) theoretical value of 72.3 since S/N varies with $B_0^{7/4}$

2,2,2-Trifluoroethanol in D_2O

Analytical sensitivities are reduced by a factor of 16.7 (¹H) and 15.7 (¹⁹F) comparing 5 mm glass tube (4.2 mm ID) to polymer tubing flow cell (1.02 mm ID)

Zientek, N. et al. J Mag Res, 249 (2014) 53-62

Other Common Definitions

Adjustment: The measuring device is set so that measurement deviations are as small as possible or do not exceed the working range! This is a technical intervention in the measuring device, calibrations lose their validity.

Other Common Definitions

Range (Working Range): "analytically usable area between the limit of detection of a measuring channel and the linearity limit. Characteristic or concentration range for acceptable/confirmed information about the accuracy, precision, selectivity, linearity, and robustness."

Example: Limit of Detection

Quantification of Ethanol in Pure Water @ 500 MHz

Reference	Absolute quantification by signal integration on basis of spectrometer electronics (single point calibration) found	
3.401 g/kg \approx 73.8 mmol L ⁻¹ 1.139 g/kg \approx 24.7 mmol L ⁻¹ 0.859 g/kg \approx 18.7 mmol L ⁻¹ 0.239 g/kg \approx 05.2 mmol L ⁻¹ 0.027 g/kg \approx 00.6 mmol L ⁻¹	76.4 \pm 0.3 mmol L ⁻¹ 25.7 \pm 0.3 mmol L ⁻¹ 19.3 \pm 0.2 mmol L ⁻¹ 05.3 \pm 0.2 mmol L ⁻¹ 00.6 \pm 0.3 mmol L ⁻¹	
¹ H spectrum eth	$_{4}$ $_{2}$ $_{2}$ $_{2}$ $_{-2}$ $_{2}$ $_{-2}$ $_{-2}$ $_{-2}$ $_{-2}$ $_{-2}$ $_{-2}$ $_{-2}$	-4 ppm

Example: Limit of Detection Quantification of Ethanol in Water

Basics of linear regression

A calibration function (to be determined between the size (characteristic) and a measured signal) is usually a linear function within the analytical range (working range).

Both in the definition of this functional relationship, the calibration itself, as well as during all subsequent measurements, experimentally determined data points are linearly correlated.

These data points are limited in their number and by the experiment more or less prone to error. It is called a "linked sample".

At approximately linearly correlated variables *x* and *y* "regression lines" can be obtained following the rules of mathematical statistics and best possible predictions of *y* for a given *x* and vice versa can be made.

If the following requirements are met, one can generally use the procedures outlined below to find a regression line as well as important parameters upon its validity.

Prerequitites

- The value for x can be measured accurately
- All statistical fluctuations are attributed to the variable y
- The expected value of y(x) depends linearly from x: $E(y(x)) = \alpha + \beta \cdot x$
- For every fixed x its y(x) is normally distributed (GAUSS distribution) with the expected value E(y(x)) and constant, from x independent scattering* σ
- There are *n* given measuerment points $(x_i; y_i)$ with i = 1, 2, ..., n.

*Note: The size of σ is unimportant, only σ may not depend on x. It is a constant. There are also approaches with σ proportional to x or x², etc.

What to do, if the requirements are not fulfilled?

- There are other methods, for example, whether there is a regression line, or not at all
 - \rightarrow F tests
- There are also other statistical procedures if one or several of the above conditions are not fulfilled, as for example
 - The variances of the measured values behave inhomogeneous (heteroscedasticity)
 - \rightarrow weighted regression
 - Errors in the determination of the value x cannot be neglected
 Generalised Least Squares, in particular orthogonal regression
 - Under the underlying calibration data are outliers, which must remain unconsidered in the regression function
 - \rightarrow outlier elimination or robust regression

Target and approach

Wanted

- (1) Estimates for the slope *b* and the distance *d* above the mean value \bar{x} , where $E(y(x))\beta(x-\bar{x}) + \delta$ and $\alpha = \delta \beta \cdot \bar{x}$
- (2) Confidence interval for the slope β and the linear function $\alpha = \delta \beta \cdot \bar{x}$

k

Calibrating With Linear Functions (1) Estimate of the regression line

Following estimates give the best regression line:

• Estimate *b* for the slope β

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})y}{\sum_{i=1}^{n} (x_i - \bar{x}^2)} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x}^2)} = \frac{\sum_{i=1}^{n} x_i \cdot y_i - n \cdot \bar{x} \cdot \bar{y}}{(n-1) \cdot s_x^2} = \frac{s_y \cdot r}{s_x}$$

Pocket calculator formula

- Estimate *d* for the distance δ over the *x* axis at the center point \bar{x}
 - $d = \bar{y}$
- Estimate *a* for the y axis intercept α

$$a = d - b \cdot \bar{x}$$

Calibrating With Linear Functions (1) Estimate for the regression line

The regression line is then

 $y = b(x - \overline{x}) + d$ or $y = bx + d - b\overline{x}$

For ist estimates one has to calculate as follows:

Mean values ("center points") of the measured values in x and y direction

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

 Estimates for the standard deviations of the samples in x and y direction

$$s_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x}^{2})}{n-1}} = \sqrt{\frac{(\sum_{i=1}^{n} \bar{x_{i}}^{2}) - n \cdot \bar{x}^{2}}{n-1}}$$

$$s_{y} = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \bar{y}^{2})}{n-1}}$$
Pocket calculator formula

(1) Estimate for the regression line

Notes

- the correlation coefficient is a number between -1 and 1, which describes the correlation of two variables
- If the covariance (correlation) is ≠ 0, the two quantities certainly are not independent. Unfortunately, the contrary does not apply!
- Only if the two variables are normally distributed from r = 0 follows the independence of both quantities.
- r = 1 does not mean, the slope $\beta = 1!$
- In the context of "calibration quality" please forget r!

(2) Confidence interval for slope and regression line

Go ahead with the following recipe:

Select a probability of error α

"I would like to be no more than $\alpha = 0.05 = 5$ % (also $\alpha = 1$ %, etc.) of all cases wrong and reject the true values of α and β - although they are correct"

• Read $c = t_{\frac{\alpha}{2};n-2}$ from the *t* distribution with *n*-2 degrees of freedom

Calibrating With Linear Functions t distribution

<i>m</i> \	0,10	0,05	0,025	0,020	0,010	0,005	0,003	0,002	0,001
1	6,314	12,706	25,452	31,821	63,657	127,3	212,2	318,3	636,6
2	2,920	4,303	6,205	6,965	9,925	14,089	18,216	22,327	31,600
3	2,353	3,182	4,177	4,541	5,841	7,453	8,891	10,214	12,922
4	2,132	2,776	3,495	3,747	4,604	5,597	6,435	7,173	8,610
5	2,015	2,571	3,163	3,365	4,032	4,773	5,376	5,893	6.869
6	1,943	2,447	2,969	3,143	3,707	4,317	4,800	5,208	5,959
7	1,895	2,365	2,841	2,998	3,499	4,029	4,442	-4,785	5,408
8	1,860	2,306	2,752	2,896	3,355	3,833	4,199	4,501	5,041
9	1,833	2,262	2,685	2,821	3,250	3,690	4,024	4,297	4,781
10	1,812	2,228	2,634	2,764	3,169	3,581	3,892	4,144	4,587
12	1,782	2,179	2,560	2,681	3,055	3,428	3,706	3,930	4,318
14	1,761	2,145	2,510	2,624	2,977	3,326	3,583	3,787	4,140
16	1,746	2,120	2,473	2,583	2,921	3,252	3,494	3,686	4,015
18	1,734	2,101	2,445	2,552	2,878	3,193	3,428	3,610	3,922
20	1,725	2,086	2,423	2,528	2,845	3,153	3,376	3,552	3,849
22	1,717	2,074	2,405	2,508	2,819	3,119	3,335	3,505	3,792
24	1,711	2,064	2,391	2,492	2,797	3,092	3,302	3,467	3,745
26	1,706	2,056	2,379	2,479	2,779	3,067	3,274	3,435	3,704
28	1,701	2,048	2,369	2,467	2,763	3,047	3,250	3,408	3,674
30	1,697	2,042	2,360	2,457	2,750	3,030	3,230	3,386	3,646
00	1,645	1,960	2,241	2,326	2.576	2,807	2,968	3,090	3,291

(2) Confidence interval for slope and regression line

calculate

$$r = \frac{1}{s_x \cdot s_y} \cdot \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$$

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} [b(x_i - \bar{x}) + d + y]^2} = \sqrt{\frac{n-1}{n} (s_y^2 - b^2 \cdot s_x^2)}$$

Taschenrechnerformel

s is a measure, how far the measurement points deviate from the regression line.

• b, d, s_x and s_y are also calculated

(2) Confidence interval for slope and regression line

• Confidence interval for the slope β

$$b - c \cdot \frac{s}{s_x} \sqrt{\frac{n}{(n-1) \cdot (n-2)}} \le \beta \le b + c \cdot \frac{s}{s_x} \sqrt{\frac{n}{(n-1) \cdot (n-2)}}$$

As an approximation also the following formula can be used

$$\overline{s_x} \sqrt{(n-1) \cdot (n-2)} = \frac{1}{r} \frac{1}{\sqrt{n-2}}$$

(2) Confidence interval for slope and regression line

 Confidence interval for the y value at given x (and, e.g., the y axis intercept at x = 0)

Estimate of the scatter of $y(x_0)$ for given x_0 . Here, for a number of supporting points x_0 the following function is computed.

(2) Confidence interval for slope and regression line

Meaning: the calculated regression line is found to be within the red area to 95 %.

Test on linearity

Enforced proportionality?

Test on linearity

Calibrating With Linear Functions Test on linearity – plotting the residues

 \rightarrow Difference between a fitted function and its measured data points

Hoping to Calibrate With Linear Functions **S** BAM Test on linearity – recognition of trends

Example 1: Carbamazepine im Water (500 MHz)

Calibrating With Linear Functions Example 2: 2,2,2-trifluoroethanol (43 and 500 MHz)

Calibration of 2,2,2-trifluoroethanol with ¹H NMR spectroscopy: Plot of NMR signal areas versus amount of substance concentrations and plot of residues to linear function

LoD 43 MHz 5 mm Glass ID 4.2 mm (*)

(*)NMR tube: Deutero, Economic ID 4.20 ± 0.05 mm

Zientek, N. et al. J Mag Res, 249 (2014) 53-62

LoD 43 MHz Polymer Tubing ID 1 mm (0.04")

Zientek, N. et al. J Mag Res, 249 (2014) 53-62

LoD 500 MHz 5 mm Glass ID 4.2 mm (*)

^(*)NMR tube: Deutero, Economic ID 4.20 ± 0.05 mm

Zientek, N. et al. J Mag Res, 249 (2014) 53-62

PANIC Validation Workshop 2018, La Jolla, CA, USA

Example 3: Proposal for a low-field NMR spectroscopy comparison study (43 and 500 MHz)

1,2,4,5-tetramethyl-benzene and 1,2,4,5-tetrachloro-3-nitrobenzene

Significance Tests – Example 1 Significance of Precision of two Data Analysis <u>Me</u>thods

Example: Comparison study (500 MHz)

- Two different data analysis methods (manual vs. MATLAB)

S BAM

Significance Tests – Example 2

Significance of Difference in Certificate Values

from two Data Analysis Methods

Example: Comparison study (43 MHz)

- Two different data analysis methods (manual vs. MATLAB)

Part 4: Significance Tests

- T-Test
- F-Test
- ANOVA

Significance Tests – Overview

A decision at a given level of confidence about a population is based on observations from a sample of the population

t test

- Testing for significant difference between the
 - means and a reference value
 - two data sets (difference of means) or
 - difference between pairs of measurement

F test

 Testing for significant difference between the spreads of two data sets (difference of s)

One-sided/Two-sided Probabilities

One Side

Probability that x is less than μ +1,6 s

Probability that x is greater than μ +1,6 s

Two Sides

Probability that x is within the range $\mu \pm 2s$ Probability that x is outside the range $\mu \pm 2s$

Significance Test in 8 Steps

- 1. Formulate the question
- 2. Select the test
- 3. Decide on one or two-sided test
- 4. Choose the level of significance
- 5. Define Null and Alternative hypothesis
- 6. Determine the Critical value
- 7. Evaluation of the test statistic using the appropriate equations
- 8. Decisions and conclusions

Significance Test – Step 5

. 5. Define Null and Alternative hypotheses

Null hypothesis H_o

- The term null is used to imply that there **is no** difference between the observed and known value, other than that which can be attributed to random variation ($\mu = x$)

Alternative hypothesis H₁

- the opposite of the null hypothesis - there is a difference $(\mu \neq x)$, where x is a sample mean, μ is a true value

Significance Test – Step 6

[•] 6. Determine the critical value

The *critical value* for a hypothesis test is a threshold to which the value of the test statistic in a sample is compared to determine whether or not the null hypothesis is rejected.

Critical value for any hypothesis is set by

- the level of significance required
- degrees of freedom
- whether the test is one-sided or two-sided

Critical values can be found in tables/textbooks.

One Sample *t*-Test

Comparison of experimental mean with a reference value or a nominal value

$$t_{calc.} = \left(\overline{x} - x_0\right) / \frac{s}{\sqrt{n}}$$

s is a sample standard deviation, *n* sample size, \overline{x} sample mean, and x_0 the stated value

 t_{crit} value for $\alpha = 0.05$ and degree of freedom v = n-1

Two Samples t-Test

Comparison of two experimental means, when two samples are drawn from a population with different standard deviations

Two Samples *t*-Test

x_1	x_2	two-sample t test, same variance		
10.08795	10.3435		var 1	var 2
13	12	mean	14.5	13
15	15	variance	4.000004694	3.000014192
17	10.3	observations	16	14
18.2	13	pooled variance	3.535723389	
12	12	hypothetic difference of the mean	0	
15	11	dof	28	
16.6	15.6	t statistics	2.179794237	
14	14	P(T<=t) one-sided	0.018919954	
13	13	critical t value, one-sided	1.701130908	
15	13	P(T<=t) double-sided	0.037839908	
15	15	critical t value, double-sided	2.048407115	
14	14.7			
13.2	13.0565			
15		two-sample t test, different variances		
15.91205				
			var 1	var 2
16	14	mean	14.5	13
14.5	13	variance	4.000004694	3.000014192
4.000004694	3.000014192	observations	16	14
		hypothetic difference of the mean	0	
		dof	28	
		t statistics	2.201395058	
		P(T<=t) one-sided	0.018058168	44
		critical t value, one-sided	1.701130908	9
		P(T<=t) double-sided	0.036116337	
		critical t value, double-sided	2.048407115	<u></u>

The *F* test establishes if there is a significant difference between variances.

F test considers the ratio of two sample variances, i.e. ratio of the squares of the standard deviations, s_1^2/s_2^2 .

Answer the question: are the spreads different, i.e., do the two sets of data come from two separate populations?

Statistics for the F Test

The F-value is calculated according to equation

$$F_{calc.} = s_1^2 / s_2^2$$
, where $s_1^2 > s_2^2$

The ratio is compared with F_{critical} values from tables.

 $F_{critical}$ is based on two values of degrees of freedom $V_1 = n_1 - 1$ and $V_2 = n_2 - 1$.

Significance Tests – Back to Example 2

Significance of Difference in Certificate Values

from two Data Analysis Methods

Example: Comparison study (43 MHz) - Two different data analysis methods (manual vs. MATLAB)

t and F values from EXCEL

X 🚽 🤊 - 🕾	~ ↓	-			M	lappe1	- Micro	osoft Excel n	ichtko	mmerzielle
Datei Start	Einfügen Seitenlayout Formeln Daten Überprü						fen Ansicht Add-Ins			
i k		* 18 ·	A A I	= =	187 -		Text		*	- Silling the second se
Einfügen	F K U	- 🖽 - 🅭	- A - I	F≣∃	##	* 1 * *		% 000 *,0	0 ,00 0 ≯,0	Bedingte Formatierur
Zwischenablage 🗔	S	chriftart	15	Ausric	htung	6		Zahl	15	
SUMME	• (*	$X \checkmark f_x =$	TINV(0.05	, 8)						
	A B		В	В		C		D		
1										
2										
3		=TINV(0.05, 8)					2.3060041			
4										

	А	В	С	D
1				
2				
3		=FINV(0.05	, 4, 4)	6.3882329
4				

ANOVA – What is it Good For?

ANOVA separates different sources of variation

- Variation within a group
- Variations between groups

Estimates of variance can be compared

ANOVA can be applied to any data, that can be grouped by a (many) particular factor (s)

ANOVA is used to compare sets of data

Acknowledements to Wolfram Bremser, BAM

Literature:

 GUM: Guide to the Expression of Uncertainty in Measurement <u>https://www.bipm.org/en/publications/guides/gum.html</u>

Contact: michael.maiwald -at- bam.de