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Abstract 

Corrosion fatigue (CF) of duplex stainless steel (DSS) X2CrNiMoN22-5-3 was investigated in in-situ geothermal conditions of 
the Northern German Basin (NGB). The influence of the load type on CF behavior of the alloy was examined by applying 
push/pull and rotating bending cyclic load to failure. The hour-glass shaped specimens with both polished and precisely turned 
surface finish were tested in corrosion chambers allowing for the permanent circulation of Northern German Basin electrolyte 
heated to 369 K. Additionally, the influence of a protective cathodic potential on the CF life expectancy was investigated by 
employing a potentiostat. The rotating bending cyclic load led to a higher CF life expectancy, which decreased with increasing 
duration of the experiment due to a higher deterioration rate of the material. The application of a cathodic potential caused a 
significant increase of the CF lifespan from 4.7 x 105 (open-circuit potential (OCP)) to 107 cycles (preset threshold cycle number) 
for the potential range from USHE = – 450 to – 900 mV. Microstructural analysis of the CF damage revealed horizontal grain 
attack within corrosion pit cavities, multiple fatigue cracks and preferable deterioration of the austenitic phase.  
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1. Introduction 

Corrosion fatigue (CF) is a phenomenon, which may occur in technological applications with simultaneous 
mechanical and corrosive load. This specific type of compound load is often present in the field of geothermal 
energy extraction and may lead to significant reduction of the component’s service life and hence to malfunction or 
even premature failure of an entire facility. The knowledge of the CF behaviour of the material employed is thereby 
crucial for developing a trustworthy component with long service life expectancy. 

 
It is known, that CF can be enhanced in the presence of chlorides, hydrogen sulphide (H2S) and CO2 [1–5]. 

Furthermore, the endurance of the material may be negatively influenced by an increase of temperature, increase of 
mechanical applied load and decrease of the pH value in case of highly alloyed steels [6–9]. On the contrary, the life 
span of a material can be positively influenced by increasing the chromium content and by the presence of internal 
compressive stress. The lack of a general model for a CF simulation is due to the majority of CF endurance 
predictions being based on the empirical data [10]. 

 
The following work investigates CF of the duplex stainless steel X2 CrNiMoN 22-5-3 (UNS S31803) under the 

geothermal conditions of the Northern German Basin. The specific stainless steel is well known in industry for its 
excellent general corrosion resistance [11, 12] and good resistance to stress corrosion cracking [13]. These 
characteristics, combined with high strength, make this alloy the most widely produced DSS today [14] and the 
desirable candidate for geothermal applications in the future. Several previous studies investigated the CF of this 
specific alloy [14–17], however, none of those were addressed to the corrosion fatigue under geothermal conditions. 

2. Material and experimental setup  

2.1. Material 

The tested DSS alloy X2 CrNiMoN 22-5-3 was manufactured by means of continuous castingfollowed by an 
appropriate tempering and water quenching. This fabrication procedure assures proper final microstructure and 
absence of strength lowering intermetallic phases. It had been empirically proved that duplex stainless steel grades 
exhibit their optimal performance once the content of austenitic and ferritic phases is balanced. The equilibrium of 
both phases, therefore, became standard for this specific type of alloys [18]. In order to confirm the material’s 
chemical composition, samples underwent an additional analysis by means of spark emission spectrometry 
SPEKTROLAB  and by Electron Probe Microanalyzer. Table 1 summarizes the chemical composition of the alloy.  

     Table 1. Chemical composition of the specimens tested (in mass percent) 

phases C Si Mn P S Cr Mo Ni N 

α & γ** 0.023  0.48 1.83 0.024 0.008 22.53 2.92 5.64 0.146 

α* 0.02 0.55 1.59 - - 24.31 3.62 3.81 0.07 

γ* 0.03 0.47 1.99 - - 20.69 2.17 6.54 0.28 

*spark emission spectrometry SPEKTROLAB M (Spektro) 

**Electron Probe Microanalyzer JXA8900-RL 

 

Table 2 shows the major mechanical properties of the alloy. The high strength values result from the material’s 
fabrication process, its dual balanced microstructure and of the additional alloying elements, in particular nitrogen 
[19, 20]. Fig. 1 depicts the alloy’s microstructure obtained via etching prior to fatigue testing. 

     Table 2. Mechanical properties of X2 CrNiMoN 22-5-3; tested in longitudinal phase direction 

Alloy yield strength (MPa) tensile strength (MPa) 

X2CrNiMoN22-5-3 672 854 
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Fig.  1 Microstructure of experimental alloy prior to testing; (a) transversal and (b) longitudinal sections respecting the casting direction [18]. 
Etching: Beraha II 

The chemical composition of the synthetically produced aquifer solution of the Northern German Basic [21] is 
given in Table 3. 

 
Table 3 Chemical composition of the Northern German Basin electrolyte 

 NaCl KCl CaCl2 x 
2H2O 

MgCl2 x 
6H2O 

NH4Cl ZnCl2 SrCl2+ 
6H2O 

PbCl2 Na2SO4 pH value 

g/L 98.22 5.93 207.24 4.18 0.59 0.33 4.72 0.30 0.07 5.4 - 6 

2.2. Experimental setup 

In order to investigate the influence of the load type on the CF alloy’s behaviour, the two major experimental 
series, namely push/pull and rotating bending series, were accomplished. Due to the distinct nature of the 
mechanical load applied, the experiments were performed employing two different corrosion chambers. The 
chambers were developed, manufactured and tested specifically for the following CF tests. The push/pull 
experimental series were carried out on the horizontal fatigue testing machine Schenk-Erlinger Puls PPV. The 
experimental setup is shown in Figure 2.  
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Fig.  2 Experimental setup for the geothermal in situ fatigue testing; schematic representation. 
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The rotating bending experimental series were completed on the in-house designed rotating bending fatigue 
testing machine. On account of comparability the boundary conditions as well as the measuring devices applied 
were identical in both experimental series. Taking into account the rotation of the specimen, a modified OCP 
measuring setup was applied. Additionally to the Ag/AgCl wire electrode a brush was installed to establish direct 
contact with the shouldered section of the specimen Figure 2 shows the major components of experimental setup for 
the fatigue tests. 

 
The design of both corrosion chambers allowed for advantageous installation of sensors and additional 

components in immediate proximity to the critical cross-section of a specimen. The volumetric constant flow of the 
corrosion medium, which was provided by the internally developed gear type pump, accounted to v̇ = 2.5 × 
10−6 m³/s. The theoretical flow velocity of the electrolyte at specimen’s critical cross-section was therefore 
ω0 = 1.7 × 10−3 m/s. The electrolyte underwent preheating within the main electrolyte reservoir and was held at a 
constant temperature of 369 K via control unit and additional heater, which was installed directly prior to the 
corrosion chamber entry. The resulting temperature fluctuation did not exceed ± 0.3 K. The mean frequency of 
cyclic load applied accounted to 30-33 Hz. The open-circuit potential of the specimen was recorded by the shock 
proof Ag/AgCl wire electrode. 

2.3. Specimen 

The shape and dimensions of hourglass specimens were selected in accordance to the standard 
DIN EN ISO 11782-1 and to the recommendations of the FKM Research Issue 217 [22]. The critical cross-section 
of both specimen types  is 12.5 mm in diameter; the total contact surface area did not undergo 25 cm2 in order to 
minimize the influence of irregularities [23]. The schematic drawing of specimens for push/pull and rotating 
bending fatigue experiments are exhibited in Figure 3. 

           

 

Fig. 3 Specimens for (a) rotation bending and (b) push/pull CF tests 

The effect of electric insulation on the open-circuit potential of the specimen was examined via push/pull 
experimental series. The additional insulating components, which were manufactured of glass-reinforced epoxy and 
PVC, allowed insulation of the subsystem specimen/ corrosion chamber from the rest of horizontal fatigue testing 
machine.  

 

a 

b 
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The effect of the cathodic potential was investigated via potentiostat in push/pull experiments. Cathodic 
potentials were applied via additional net-shaped counter electrode, which was mounted inside the corrosion 
chamber in the vicinity of the critical specimen’s cross-section, however, without establishing direct contact with the 
latter and allowing for sufficient electrolyte circulation. The cathodic potentials were applied by potentiostat under 
constant purely alternating load amplitude of 275 MPa.  

3. Results and Discussion 

3.1. Open-circuit potential OCP 

The additional electric insulation of the otherwise electrically grounded fatigue testing machine lead to a decrease 
of OCP fluctuations and to a general stabilisation of OCP values (Fig. 4). The initial OCP values shifted towards 
more noble magnitude in response to insulation. Moreover, the range of initial values decreased from USHE (–110 to 
–200) to (–5 to –65 mV) applying the insulated test setup. 

 

 
Fig. 4 Effect of electric insulation of fatigue testing machine (a) OCP behaviour of uninsulated and (b) insulated 

setup 
 
The remarkable drop of the OCP values was observed during the ending phase of each test independently from 

the electric insulation and other variable parameters applied. The potential fall began approximately 10 minutes 
prior to the final mechanical failure of a specimen and became thereby an earliest termination indicator. The 
potential drop can be explained by the formation of cracks, the passive layer is destroyed and the newly formed 
crack surface comes into contact with the corrosive medium [24]. An analogous behaviour of the OCP was observed 
in earlier studies [8, 25]. Considering the observed effect of electric insulation, the following experimental series, 
i.e. the comparison of the surface finish influence as well as the rotating bending experimental series were 
accomplished on the setups employing distinct electric insulation. 

3.2. Load cases 

The goal of the research work was to obtain experiment S-N-diagrams are a wide spaced way to describe fatigue 
life expectancy of a material under specific conditions. Moreover, this type of a diagram allows straightforward 
comparison of the fatigue life span concerning the influence of additional parameters applied. 
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The reference fatigue tests in air appointed an endurance limit of 485 MPa for X2 CrNiMoN 22-5-3 considering 
107 cycles as threshold reference. Figure 5 summarises the experimental data combined with the corresponding 50% 
probability S-N curves for both load types. The slope factors of rotating bending and push/pull experimental series 
accounted to k=8.2 and k=19 respectively. The higher slope coefficient value in case of rotation bending 
experiments describes the higher degradation rate of the alloy. The superior CF-properties of the rotation bending 
load was significant in the cycle range 105 to 106 and decreased with the increasing number of cycles. The S-N 50% 
probability diagrams converged at approximately 3.5 × 106 cycles or 30 experimental hours, eliminating the 
advantage of the rotation bending load. 

 

Fig. 5 Rotation bending vs. push/pull cyclic load in situ geothermal NGB conditions; 50% probability S-N curves 

 
The fatigue experiments in air show a lower decline of the rotating bending for the entire experimental cycle span 

including the endurance limit section, i.e. convergence or overlapping of push/pull and rotation bending S-N curves 
diagrams is nonexistent. The advantage of rotating bending load over the push/pull purely alternating load in case of 
steel alloys loaded in air could be approximated by the factor 1.11-1.25, which correlates well with the results 
obtained in the initial experimental period [26]. A more negative slope factor of the rotation bending experimental 
series can be explained with the dominant influence of corrosion degradation caused by corrosion. 

3.3. Influence of the Electrochemical Potential 

The applied potentials ranged from USHE = –900 to +100 mV and covered partially anodic and cathodic domains. 
The result obtained are summarised in Figure 6. The specimens loaded in an anodic potential domain exhibited the 
reduction of the CF life expectancy. The velocity of deterioration correlated with the value of potential applied, i.e. 
the increasing potential led to the decrease of the alloy’s CF life expectancy. The potentials of the cathodic range led 
to a significant increase of cycles to failure. The advantage of cathodic potential and the related increase of cycles 
corresponded to the decreasing value of potentials applied. The specimens loaded within the potentials USHE = –450 
to –900 mV reached a preset threshold of 107 cycles without indicating mechanical failure and were declared as 
runouts. Furthermore, the cathodic potential range led to an explicit discharge of hydrogen from the specimen’s 
surface. The results obtained show that the manifestation of pitting corrosion, which was assumed as a notch-based 
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initiation zone of fatigue crack propagation, can be successfully hindered via application of an appropriate cathodic 
potential.  

 

Fig. 6 Influence of applied potential on CF life expectancy of X2 CrNiMoN 22-5-3; polished surface finish, push/pull load 

3.4. Microstructure of Corrosion Damage (Corrosion Fatigue Cracking) 

The evaluation of the CF damage was accomplished by means of both optical and scanning electron microscopy 
(SEM). The direct contrasting juxtaposition of the damage observed was advantageous in terms of understanding the 
influence of load type on the formation of CF cracks. The investigated fatigue cracks were divided into major and 
secondary cracks. The major cracks, which lead to failure, were characterised by a well pronounced residual 
opening and macro dimensions. The major fatigue cracks occurred predominantly in immediate proximity to the 
specimen’s critical cross-section and were responsible for the final mechanical failure of a specimen. The secondary 
fatigue cracks, on the contrary, exhibited micro dimensions and did not possesses noticeable residual opening. The 
latter cracks could therefore only be observed via sufficient magnification. Figure 7 shows an etched microsection of 
a major fatigue crack. The crack’s propagation path lay predominantly perpendicularly to the direction of load 
applied and crosses both phases of the alloy without indicating a preferable propagation phase. The termination 
region showed moderate branching within the partially curved propagation path.  
 

 

Fig. 7 Microsection through a major fatigue crack; precisely turned surface, push/pull load 
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Figure. 9 demonstrates a microsection through corrosion pit, which was associated with a secondary crack. The 
distinct horizontal grain attack with an enhanced deterioration within the boundary surface was registered in the pit 
cavity. The latter may indicate potential proneness of the alloy to intergranular attack in NGB environment. The 
remaining ferritic lamellae in the pit’s cavity (dark) indicate preferable deterioration of the austenitic phase (bright). 
The propagation of a fatigue microcrack, which initiated in the base of the pit’s cavity possessed an arbitrary path 
and no residual opening, emphasising relatively young age of this specific crack. This type of micro corrosion pits 
were identified due to the presence of corrosion stains in their immediate proximity. - It is supposed that under given 
experimental conditions, corrosion pit initiation has primary character. Initiated corrosion pits first grow in 
dimension reaching a critical size, being then followed by formation of a fatigue crack due to a notch effect.   

 

 
Fig.9 Microsection through secondary crack; precisely turned surface finish, push/pull load. Etching: Beraha II 

 
 

4. Conclusions  

The type of cyclic load applied significantly influenced CF life expectancy of the alloy. The advantage of rotation 
bending load, however, decreased with increasing experimental duration due to the higher deterioration rate of the 
alloy. The rotation bending and push/pull S-N curves converged at approximately 4x106 cycles. The surface finish 
quality is another factor that may contribute to the CF life span. The advantage of additional polished surface finish 
was registered for the cycle number >106 and increased corresponding to experimental duration. The potentials 
applied in a cathodic range led to significant improvement of alloys life expectancy compared to the results obtained 
via OCP. Considering constant cyclic push/pull load of 275 MPa, no mechanical failure was observed for the 
cathodic potential range USHE = –450 to – 900 mV, when employing specimens with polished surface. The latter 
recognition indicates eventual capacity for this type of protection in industrial applications. The corrosion damage 
observed consisted primarily of fatigue cracks combined with highly localized pitting corrosion. Closer investigation 
of corrosion pits revealed partially intergranular corrosion and deterioration of the austenitic phase. 
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