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Motivation

Within the CONSENS Project [1], the challenge to adapt a 
commercially available benchtop NMR spectrometer to the full 
requirements of an automated chemical production environment 
was tackled successfully. The developed online NMR module (Fig. 1) 
was provided in an explosion proof housing and involves a compact 
NMR spectrometer together with automated data acquisition and 
evaluation unit, flow control, as well as data communication.
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In the studied model reaction two aromatic substances (Eq. 1) are 
coupled initiated by a lithiation step:

Model Reaction

FNB Aniline Li-HMDS NDPA HMDS

Eq. 1: Reaction scheme, FNB: 1- Fluoro- 2- nitrobenzene, Li-HMDS: Lithium bis(trimethylsilyl)amide, 
NDPA: 2-Nitrodiphenylamine

Online NMR Spectra

· Reaction was investigated 
in semi-batch mode

· Two spectrometers 
(43 MHz and 500 MHz) 
were connected to process 
in by-pass via flow cells
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Fig. 2: Online low-field NMR spectra (43 MHz), 
single scan each 15s.

Fig. 1: Modular production plant for continuous synthesis of organic compounds (a) 
monitored by  an online NMR module (b)

Quantitation and Online Validation

Fig. 3: Comparison of high-field (reference) and 
low field NMR results during steady state 
conditon in lab environment 

Discussion 

· Good agreement between LF and HF NMR spectrometers
· Suitable method for monitoring the model reactions
· Modeling of pure component spectra signifficantly reduces 

calibration effort compared to statistical models

Flexible Peak Functions
Pure component models based on Pseudo-Voigt functions (Eq. 2) 
can be derived via peak fitting of measured pure comptonents [2] 
or by the use of spin calculations.

(a) (b)

Relative Quantitation
Calibration free

Absolute Quantitation
1-point calibration

A = Peak area, n = Number of nuclei, CCF = Concentration conversion factor

· daily check possible

· derived from neat solvent signal or raw 

material concentration
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Fig. 4: Validation of fully 
automated online NMR 
module in direct loop control. 
The continuous synthesis of 
NDPA was monitored in an 
industrial pilot plant. The 
delay time between step 
changes of pumps and NMR 
signal change was in 
between 3-5 min.
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Eq. 2: α = maximum, γ = width, δ = position, β = Gaussian-Lorentzian-ratio

Source: Invite GmbH
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