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Abstract
In the present study, we applied a regularized inversionmethod to extract the particle size,magnetic
moment and relaxation-time distribution ofmagnetic nanoparticles from small-angle x-ray scattering
(SAXS), DCmagnetization (DCM) andAC susceptibility (ACS)measurements. For themeasurements
the particles were colloidally dispersed inwater. Atfirst approximation the particles could be assumed
to be spherically shaped and homogeneouslymagnetized single-domain particles. Asmodel functions
for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM)
and theDebyemodel (ACS). The extracted distributions exhibited features/peaks that could be
distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis
of these peaks enabled, in combinationwith a prior characterization of the particle ensemble by
electronmicroscopy and dynamic light scattering, a detailed structural andmagnetic characterization
of the particles. Additionally, all three extracted distributions featured peaks, which indicated
deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one
expected for individually dispersed, homogeneouslymagnetized nanoparticles. These deviations
could bemainly attributed to partial agglomeration (SAXS,DCM,ACS), uncorrelated surface spins
(DCM) and/or intra-well relaxation processes (ACS). Themain advantage of the numerical inversion
method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions
are required, which enabled the detection of these contributions.We highlighted this by comparing
the results with the results obtained by standardmodelfits, where the functional formof the
distributionswas a priori assumed to be log-normal shaped.

1. Introduction

As evident from recent review articles [1–4], biomedical application ofmagnetic iron oxide nanoparticles
(IONPs) is presently an intensely investigated,multi-disciplinary field of research.However, to this day there
exists no standardizedway of characterizing IONPs. In this sense, regulatorywork is necessary prior to clinical
application to guarantee a safe and effective implementation of IONPs [5, 6]. To disclose unambiguously the
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interrelations between structural andmagnetic properties of ensembles of IONPs usually a combination of
several techniques is applied, such as transmission electronmicroscopy (TEM), dynamic light scattering (DLS),
small-angle x-ray scattering (SAXS), DCmagnetization (DCM) andAC susceptibility (ACS)measurements. The
standardization process then should include a precise control of themeasurement procedures itself as well as of
the data analysis.

The theoretical framework defining the interrelations between particle structure andmagnetic properties is
well established in the ideal case of homogeneouslymagnetized, single-domain and non-interacting particles
[7–9]. The same applies to the relaxation dynamics of colloidally dispersedmagnetic nanoparticles. These
relations are commonly used to extract for example the intrinsic core or hydrodynamic size distributions from
DCM [10–12] or ACSmeasurements [13, 14]. Asmodel functions forDCMandACSmeasurements, the
Langevin function [15] (DCM) andDebyemodel [16] (ACS) are used, respectively. The classical approach to
extract the characteristic distributions is tofit the experimental data with the respectivemodel function under
assumptions regarding the line shape. Usually a log-normal shape is a priori assumed for the intrinsic
distributions [10–14]. But several factors can result in deviations of themacroscopically determined, apparent
distribution functions from the intrinsic ones. In particular dipolar interactions can lead to particle
agglomeration [17–20], which can significantlymodify themacroscopically detectedmagnetization behavior of
the particle ensemble. To infer the intrinsicmoment or relaxation time distribution fromdatafits, severalmean
field approaches exist to analyticallymodel the influence of dipolar interactions on isothermal [21–23] or
dynamicmagnetizationmeasurements [24, 25], respectively.

However, an alternative approach to analyticalmodel fits can be found in the literature. In [26–29] for
example, the discrete, apparentmoment distributions of IONP ensembles were extracted fromM(H) data
numerically, using simply the Langevin equation as amodel function. In these cases no a priori assumptions
regarding the line shape of the extracted distribution have to bemade and data analysis is ultimately performed
by interpreting the obtained apparent distributions. Similar numerical approaches are also commonly used to
infer the hydrodynamic size distribution of nanoparticles fromDLSmeasurements [30, 31] or to analyze the
small-angle scattering data of nanoparticle ensembles [32–36].

In the current workwe use the same numerical approach as applied in [36] for the analysis ofmagnetic
multi-core nanoparticles to systematically evaluate SAXS,DCMandACS data of a dilute, colloidal dispersion of
single-domain IONPs. Initially, we extracted the discrete particle size distribution from the SAXS data, the
moment distribution from theDCMdata and the relaxation time distribution from theACS data. Afterwards,
we further analyzed the distributions to disclose the relations between the structural and themagnetic properties
of the nanoparticles. This approach, in combinationwith classical TEMandDLS analysis, as well as
magnetizationmeasurements of the immobilized particles, enabled us to perform a very detailed
characterization of the IONP ensemble. Additionally, we highlight the influence of particle agglomeration and/
or uncorrelated surface spins on themeasurement signals by comparing the extracted distributions to the results
of standardmodelfits, where a log-normal shape of the distributions was a priori assumed.

2. Experimental procedure

The synthesis of the IONPswas carried out by thermal decomposition of an iron oleate complexmixedwith
oleic acid in 1-octadecene [37]. In a round-bottomed flask equippedwith amechanical stirrer and a reflux
condenser under a nitrogen flow, the iron(III) oleate (4.5 g, 5 mmol, 7% iron)wasmixedwith oleic acid (0.7 g)
in 1-octadecene (50 ml). Themixture was stirred and heated up until reflux (320 C◦ ) at 3 C min 1-◦ with a
heatingmantle. Stirring and nitrogen flowwere stopped once the temperature reached 100 C◦ . The resulting
suspensionwaswashedwith ethanol, centrifuged at 3944 g and redispersed by agitation (ten times). The
precipitated particles were finally dried under a nitrogen flow, redispersed in toluene and transferred towater by
ligand exchangewith dimercaptosuccinic acid (DMSA) [38]. The pHvalue of thefinal water-based colloidal
dispersion of the nanoparticles was adjusted to 7. This colloidal dispersionwas directlymeasured by SAXS,
DCMandACSwithout any samplemodification, although for ACS the sample was diluted ten-fold with
distilledwater.

To determine the amount of ironwithin the colloidal dispersion and hence estimate the particle
concentration, inductively coupled plasma optical emission spectrometry (ICP-OES)was carriedwith an
apparatus fromPerkin Elmer,modelOPTIME 2100DV. Thewavelengths used for iron determinationwere
238.204 and 239.562 nm. For an appropriate determination it is necessary to digest the nanoparticle dispersion
prior to analysis. An aliquot of sample (50 lm )wasmixedwith 2 ml ofHCl until complete digestionwas
obtained.

Themain structural properties of the sample were determined byTEM,DLS and finally SAXS.
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To obtain the core-size distribution, images of the particles were taken using a 200 keV JEOL-2000 FXII
TEMand the largest dimension of 500 particles wasmeasured.

The hydrodynamic size of the particles dispersed inwater wasmeasuredwith a ZETASIZERNANO-ZS
device (Malvern Instruments) using theDLSmode. Themeasurements of the 100-fold diluted dispersionwere
done at 25 C◦ with an equilibration time of 60 s. Ameasurement consisted of 24 runs, with acquisition times of
10 s. The hydrodynamic diameter, or z-average, as well as the polydispersity index PDI, was derived from the
cumulant analysis, wherein a single particle size was assumed and a single exponential fit was applied to the
autocorrelation function.

The SAXSmeasurement of the colloidal dispersion of IONPswas carried out on aKratky systemwith slit
focus, SAXSess by Anton Paar, Graz, Austria. Themeasurement was performed as an absolute intensity
measurement by alsomeasuring the scattering curves of the empty capillary andwater. Thesewere subtracted
from themeasured scattering curve of the sample during the data reduction procedure using the implemented
SAXSquant software. The resultant curvewas deconvolutedwith the beamprofile curve to correct for the slit
focus smearing.

Themagnetic properties of the particles were determined bymeasuring the isothermalmagnetization curve
of both the immobilized aswell as colloidally dispersed particles.

To immobilize the particles and hence suppress a rotation of the particles in thefield direction, a droplet of
5 lm of the colloidal dispersionwas put on cottonwool. The isothermalmagnetizationmeasurement was
recordedwith aQuantumdesign SQUIDVSM7TwithQuick Switch and Evercool at 300 K in a field range
of H 7 T0m =  .

The isothermalDCMmeasurement of the colloidal dispersionof IONPswas performed at 300 K in amagnetic
propertymeasurement system (MPMSXL,QuantumDesign,USA). Themagneticfieldwas varied in thefield
range H 0 4.9 T0m =  and the size of the consecutivefield stepwas changed logarithmically to ensure a
sufficient number ofmeasurements at lowfields. The timebetween eachfield stepwas about 3 min, providing
quasi-staticmeasurement conditions.A volumeof 30 lm of the suspensionwasmeasured a total offive timeswith
the samemeasurement conditions and thedata pointswere averaged. From thedata the diamagnetic contributions
of the empty sample holder and thewaterwere subtracted. The correctedmagneticmoment inAm2was
normalized to themass of irondetermined by ICP-OES to obtain themagnetization inAm2 kg−1

Fe .
To investigate the relaxation dynamics of the particles dispersed inwater the colloidal dispersionwas

measured using ACS. Themeasurement was performed at 300 Kutilizing two custom-built susceptometers
[13]. The frequencywas swept from10 Hz to 10 kHz and from200 Hz to 1MHz in logarithmical steps. The
amplitudes of the excitation field amounted to 567 Tm and 90 Tm , respectively, to ensure that themagnetization
responsewas in the linear regime. To suppress hydrodynamic interactions between the particles, the dispersion
was diluted ten-fold. A total volume of 150 Lm of the resulting colloidwasmeasured. To convert themeasured
signal to volume susceptibility c w˜ ( ), both systemswere calibratedwith Dy O2 3 powder samples with known

susceptibility. Since themeasurement was performed only once, for each data point a noise of 0.01 maxc¢ was
artificially added.

3. Theoretical framework

In this sectionwe present the theoretical background regarding themagnetic properties of colloidally dispersed
IONPs.On this basis, the approaches to analyze the experimental data of the SAXS,DCMandACS
measurements of the colloidal dispersion are introduced.

3.1. Background
Within this workwe assume that the IONPs are spherically shapedwith a core diameter dc (figure 1) and are
single-domain particles. Experimental studies and simulations [39–44] indicate that the atomic spins at the
surface ofmagnetic nanoparticles are usually disordered due to lack of coordination, vacancies and/or surface
anisotropy. This can be depicted by a core–shell structure of the particle with d dm c< , where dm is the diameter
of the homogeneouslymagnetized core (single-domain, figure 1). Therefore, in the followingwewill
differentiate between the total core volume V d1 6c c

3p= ( ) and themagnetic core volumeV d1 6m m
3p= ( ) , in

which the atomic spins are parallel aligned. In this case the total particlemoment m

can be represented by a

macrospinwithmagnitude M VS mm =
∣ ∣ , whereMS is thematerial specific saturationmagnetization. The bulk

values for the two iron oxidesmagnetite Fe O3 4 andmaghemite Fe O2 3g - atT 300 K= are listed in table 1, as
well as other intrinsic properties relevant for the current study [7, 9].

In the case of isothermalDCMmeasurements it can be estimated that for particles with KV k T25m B [7, 9]
thermal activation results in afluctuation of themoment (superparamagnetism). HereK is the effective
anisotropy constant and kB the Boltzmann constant. Thus, theoretically,magnetite particles with diameters
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d d 25 nmm SP< = andmaghemite particles with d d 34 nmm SP< = behave intrinsically
superparamagnetically. For these calculations it was assumed that the effective anisotropy constantsK for
magnetite andmaghemite are themagnitude of their first ordermagnetocrystalline anisotropy constants K1∣ ∣
(table 1). Consequently, an alignment of themoments of particles with d dm SP< in the direction of an
externally applied static field can occur by theNéelmechanism [45]. Themoments of thermally blocked
particles with d dm SP> dispersed in a viscousmatrix on the other hand, can only align in the field direction by a
rotation of the entire particle, the so-called Brownian rotation. In the case ofDCMmeasurements, the
magnetization behavior of onemacrospin dispersed in a purely viscousmatrix is independent of the alignment
process and can be described by the Langevin function [15]:

M H M L H
H

k T

k T

H
, coth . 1S

0

B

B

0

m
mm

mm
= = -( ) ( ) ( )

Here 4 10 V s A m0
7 1 1m p= ´ - - - is the vacuumpermeability. In the case of time-modulated fields, however,

quantitatively the response critically depends on the relaxationmechanism.
In anACSmeasurement, an alternatingmagnetic field H H texp i0w w=˜ ( ) ( )with amplitudeH0 and angular

frequencyω is applied. The response is a periodic change in themagnetization M̃ , following the driving field
with a frequency dependent time lag due to friction (M Hw c w w=˜ ( ) ˜ ( ) · ˜ ( )). For small amplitudes (i.e.

1
H

k T
0 0

B
x = mm  ) the complex susceptibility c w˜ ( ) can be described by theDebye relaxation

iD D Dc w c w c w= ¢ - ˜ ( ) ( ) ( )with [16]
M

k T1 i
, with:

3
. 2D

0
0

0 S

B

c w
c
wt

c
mm

=
+

=˜ ( ) ( )

In equation (2) the time constant τ is the effective relaxation time given by n b n bt t t t t= +· ( ), with nt being
theNéel relaxation time

K d

k T
exp

6
3n 0

m
3

B

t t
p

=
⎛
⎝⎜

⎞
⎠⎟ ( )

Figure 1. Schematic illustration of the characteristic sizes of a single-core particle with diameter dc dispersed inwater. The diameter dm
represents the size of the homogeneouslymagnetized core (single-domain; parallel aligned atomic spins), s is the thickness of the
surrounding polymer layer and dh the hydrodynamic diameter.

Table 1. Intrinsic properties of Fe O3 4 and Fe O2 3g - at T 300 K= [7, 9]. Here ρ is the volumetricmass
density,wFe theweight percentage of iron,MS the saturationmagnetization,K1 thefirst order
magnetocrystalline anisotropy constant and sr the scattering length density. The scattering length
density of water is 9.5 10 nms

H O 4 22r = ´ - - .

ρ wFe MS MS K1∣ ∣ sr
kg m 1- wt% MA m 1- A m kg2

Fe
1-

kJ m 3- nm 2-

Fe O3 4 5195 0.72 0.48 128.3 13 40.6 10 4´ -

Fe O2 3g - 4860 0.70 0.40 117.6 5 38.1 10 4´ -

4

New J. Phys. 19 (2017) 073012 P Bender et al



and bt being the Brownian relaxation time:

d

k T2
. 4b

h
3

B

t
ph

= ( )

The time constant 0t in equation (3) is generally taken as 10 s9- [13]. In equation (4), η is the viscosity of the
surroundingmedium and dh the hydrodynamic diameter of the particle (figure 1). The hydrodynamic diameter
is usually larger than the core diameter dc due to a surfactant shell and additional friction contributions, such as
surface charges [46]. The effective relaxation time n b n bt t t t t= +· ( ) is dominated by the faster process and
as a result themeasurement signal of the ACS experiments are sensitive to the respective relaxation process [47].

As depicted above, the quasi-static and dynamicmagnetic properties critically depend on the structural
properties of the particles.Within this workwe determined the core size dc of the particles by TEMand SAXS,
the hydrodynamic size dh byDLS, themagneticmomentμ andmagnetic core size dmbyDCM, and the
relaxation time τ byACS. Themain objective was to correlate the various parameters.When characterizing
nanoparticle ensembles it has to be considered that the core and hydrodynamic sizes usually have a distribution
width, and thus alsomagneticmoments as well as relaxation times [48]. In the followingwe explain how the
various distributionswere determined in this study.

3.2.Data analysis
WithTEM the core-size distributionwas directly obtained bymeasuringN= 500 particles and theDLS setup
provided the detected hydrodynamic size distribution. Both techniqueswere used for the pre-characterization
of the sample.

In the case of SAXS,DCMandACS the relevant distribution p(z) of parameter z had to be extracted from the
dataD(x). For SAXSD(x) is the scattering intensity I(q), with q being the scattering vector and p z p dc=( ) ( ). In
the case ofDCM D x M H=( ) ( ) and p z p m=( ) ( ) or p z p dm=( ) ( ), whereas for ACS D x c w= ¢( ) ( ) and/or
c w( ) and p z p t=( ) ( ). The distribution p(z) describes the continuous probability density function of the
paramater z and it can bewritten

D x c p z f x z z, d . 5
0
ò=

¥
( ) ( ) ( ) ( )

Here c is a characteristic prefactor and f x z,( ) the correspondingmodel function.
To determine p(z) from the experimental data we applied two approaches in this study. (1)By a standard

least square fit of the data under the assumption of a log-normal distribution p(z). (2)By numerical inversion
without a priori assumptions regarding the line shape.

3.2.1. Log-normal fit
With respect tomagnetic nanoparticle ensembles it is often assumed that the particle size is logarithmically
distributed, resulting in log-normal distributions of themagneticmoments [10–12] and relaxation times [13].
The probability density of a log-normally distributed variable z is

p z
z

z z1

2
exp

ln

2
, 6

2

2ps s
=

-⎛
⎝⎜

⎞
⎠⎟( ) ( ¯) ( )

whereσ is the standard deviation of the log of the distribution, z̄ themedian and z z exp
2

2

á ñ = s( )¯ · themean

value. For comparison purposes between the different distributions, it is important to consider that they vary
with respect to their weighting, depending on the nature of the applied technique. In this work it has to be
differentiated between number-weighted distributions pN and volume-weighted distributions pV [49]. The
characteristic values of these distributions—such as broadness,median and arithmeticmean—are subscripted
in the following alwayswith eitherNorV to indicate whether they correspond to the number or volume-
weighted distribution, respectively. For number and volume-weighted log-normal distributions the standard
deviations are in theory identical ( V Ns s s= = ) but themedians zV¯ and zN¯ are shifted. In the case of
homogeneous spheres, e.g. z z exp 3V N

2s=¯ ¯ · ( ) [49].
In this workwe determined the number-weighted core-size distribution p dN c( ) by fitting the SAXS

intensity D x I q=( ) ( )with [50]

I q
p d F q d d

p d V d d
bkg

, d

d
. 7p s

2 0 N c c c

0 N c c c c

ò

ò
f r= D +

¥

¥( )
( ) ( )

( ) ( )
( )

Here pf is the volume fraction of particles, srD the scattering length density contrast between the particles and
the surroundingmedium (table 1) and bkg the background level due to incoherent scattering. As amodel
functionwe used the form factor F q d, c( ) of a homogeneous sphere [50]:
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F q d V,
3 sin cos

. 8

qd qd qd

qd
c c

2 2 2

2

3

2
c c c

c

=
-

⎛

⎝

⎜⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠

⎟⎟⎟
( ) ( )

( )
( ) ( )

From themagnetization dataM(H) the volume-weightedmoment distribution pV m( ) can be extracted byfitting
with [11]

M H M p L H, d . 9S
0

Vò m m m=
¥

( ) ( ) ( ) ( )

Todetermine the number-weightedmagnetic core diameter distribution p dN m( )wemodeled the data in this
workwith [11]:

M H M
p d d L H d d

p d d d

, d

d
. 10S

0 N m m
3

m m

0 N m m
3

m

ò

ò

m
=

¥

¥( )
( ) ( ( ))

( )
( )

From theACSmeasurements the relaxation time distribution can be extracted by fitting the ACS spectra with

p
1

1 i
d . 110

0
*òc w c t

wt
t=

+

¥
˜ ( ) ( ) ( )

In this case the prefactor 0
*c as well as theweighting of the relaxation time distribution p t( ) critically depends on

the correlation between the particlemomentsμ and τ [14]. For the simple case that they are not correlated
n M V k T30 0 S

2
m,N
2

B*c m= á ñ ( ), with n being the particle concentration, Vm N,á ñ is the number-weightedmean
magnetic core volume, and p t( ) is number-weighted. Normally, however, a correlation betweenμ and τhas to
be considered, as discussed for example in [14, 51, 52].

3.2.2. Numerical inversion
At each of the i=M data points D xi( ) the integral equation (5) can be discretized:

D x c p z f x z z, . 12i
j

N

j i j j
1

å= D
=

( ) ( ) ( ) ( )

Here j=N is the number of bins of the reconstructed histogram p(z)withwidth zD , where p(z) represents the
probability density function of the variable z so that p z 1

0ò =
¥

( ) . To extract theN-dimensional vector P(z)
with P z c p z zj j j= D( ) · ( ) the functional

P z D xA
1

2
13

2
2

s
- ( ) ( ) ( )

has to beminimized, with xs s= ( ) being themeasurement uncertainty or standard deviation at each data
point. In equation (13) A is theM×N data transfermatrix with A f x z,i j i j, = ( ).

For SAXS f x z F q d, ,i j i jc,=( ) ( ) (equation (8)) and the number-weighted core-size distribution p dN c( )was
extractedwith (equation (12)):

I q c p d F q d d bkg, . 14i
j

j i j jS
1

N

N c, c, c,å= D +
=

( ) ( ) ( ) ( )

Comparisonwith equation (7) shows that c VcS p s
2

,Nf r= D á ñ, with V p d V d dj
N

j jc,N 1 N c, c c, cá ñ = å D= ( ) ( ) being
the number-weightedmean particle volume.

ForDCM f x z L H, ,i j i jm=( ) ( ) (equation (1)) and fromM(H) the volume-weightedmoment distribution
pV m( )was extracted according to:

M H c p L H , . 15i
j

N

j i j jD
1

Vå m m m= D
=

( ) ( ) ( ) ( )

In this case cD=MS (equation (9)).
For ACS f x z w, ,i j i jD 0c t c=( ) ˜ ( ) (equation (2)) and from themeasurement the relaxation time

distribution p t( )was determined by simultaneously adjusting the real and imaginary part of the complex
volume susceptibility c w˜ ( ):

c p
i

1

1
. 16i A

j

N

j
i j

j
1

åc w t
w t

t=
+

D
=

˜ ( ) ( ) ( )

Here cA 0
*c= (equation (11)). As discussed above, the prefactor 0

*c and theweighting of the relaxation time
distribution depends on the correlation betweenμ and τ. For further details regarding this issue see [14, 51, 52].

Solving of equation (13), however, is an ill-conditioned problem. Therefore, we implemented a non-
negative constraint and additionally applied a regularized inversion. To determine the probability for a given
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regularization parameter we performed a Bayesian analysis, as introduced in [34, 35]. The computational details
can be found in the appendix.

For a detailed analysis and interpretation of the extracted distributions a pre-characterization of the sample
was necessary. A structural pre-characterization included themeasurement of the iron concentration in the
colloidal dispersion by ICP-OES aswell as the determination of the core-size distribution p dc( ) byTEMand the
hydrodynamic size distribution p dh( ) of the particles in dispersion byDLS. Additionally, we characterized the
magnetic properties of the immobilized particles to estimate the number of thermally blocked particles at 300 K.

4. Pre-characterization of the nanoparticles

With ICP-OES the iron concentration of the sample was determined to be c 4.23 mg mLFe Fe
1= - . Using the

density ofmagnetite ormaghemite (table 1), the volume fraction of particles in the colloidal dispersion could be
estimated to be 1.13 10p

Fe O 33 4f = ´ - and to be 1.24 10p
Fe O 32 3f = ´g- - , respectively.

Figure 2 shows a representative TEM image of the IONPs. The histogram (figure 2) represents the number-
weighted distribution PN of the core diameter dc andwasfittedwith the probability density p(z) (equation (6)) of
a log-normal distribution function scaled by c (P d p dcN c N c=( ) · ( )). The bestfit result was obtained for

0.10 1Ns s= = ( ) and d 18.7 3 nmc,N =¯ ( ) . The resulting arithmeticmean of the core diameter is
then d 18.8 3 nmc,Ná ñ = ( ) .

WithDLS the intensity-weighted hydrodynamic diameter or z-averagewas determined to be
d 52 2 nmh,Iá ñ = ( ) and the polydispersity index PDI 0.53 2= ( ). The z-average is significantly above
d 18.8 1 nmc,Ná ñ = ( ) , which can be primarily attributed to an increased hydrodynamic volume due to the
surfactant layer and surface charges (figure 1). Additionally, it has to be considered that withDLS the determined
hydrodynamic size is intensity-weighted and hence the signal is dominated by large particles.

Considering the quite large size of the particles it was important tomonitor the stability of the colloidal
dispersion.With a core diameter of about 19 nmand assuming a homogeneousmagnetizationwith
M 0.48 MAmS = (table 1), the dipolar energy between two neighboring particles with parallel alignedmoments
can be estimated [22] to be in the range of k T10 B . Thus, dipolar interactions could lead to particle agglomeration
and ultimately coagulation.However, themeasured z-average and PDI basically did not change over a time span
of 15months, and no sedimentationwas observed. In addition, themeasured zeta potential remained constant
over time andwas determined to be about 30 mV- . The same applied for the pH value, which remained at 7,
and hencewe can conclude that the sample remained stable over time across allmetrics.We attributed the
colloidal stability to the comparatively low volume concentration of nanoparticles, and their surrounding
surfactant layer and surface charge.

Later on, the SAXS,DCMandACSmeasurements of the colloidally dispersed IONPs are analyzed. In a
colloidal dispersion, the staticmagnetization behavior of thermally blocked and non-blocked
(superparamagnetic) particles is identical, provided the particles are individually dispersed in the viscousmatrix.
Hence, to estimate the amount of thermally blocked particles a physical rotation (Brownian rotation) of the
particles has to be suppressed. Additionally, large average distances between the particles have to be assured to
avoid dipolar interactions, which can significantly alter themagnetization behavior of such ensembles [53, 54].
For this purpose the particles were immobilized andmeasured as discussed in section 2.

Figure 2.TEMmicrograph of the particles and the histogramof the core diameter dcfittedwith a log-normal distribution
( 0.10 1s = ( ), d 18.7 3 nmc,N =¯ ( ) , table 2).
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Figure 3 shows themagneticmomentsm(H) of the immobilized IONPs normalized to the saturation
momentmS of the sample, as a function of the appliedfieldH. The determined coercive fieldwas

H 1.3 mT0 cm = and the normalized remanence m m 0.06r S = . For an ensemble of particles with uniaxial
magnetic anisotropy andwith a randomorientation distribution of the anisotropy axes (isotropic Stoner–
Wohlfarth particle ensemble [55]) the expected normalized remanence would be m m 0.5r S = . The detected
remanence of the sample of just m m 0.06r S = indicates that, as expected, a significant number of particles
behave superparamagnetically atT 300 K= . The volume fraction of superparamagnetic particles within the
ensemble can be estimated to be m m1 2 0.88SP r Sf » =– · . Thismeans that a volume fraction of 0.12TBf =
is thermally blocked atT 300 K= .

Themain results of the structural andmagnetic pre-characterization of the sample are shown in table 2,
which are essential for interpreting the results of SAXS,DCMandACS in the following.

5. Analysis of distribution functions

In this sectionwe present and discuss the particle size,magneticmoment and relaxation time distributions
determined from the SAXS,DCMandACSmeasurements of the colloidal dispersion. First, we estimated the
distributions in each case by fitting the data under the usual assumption of log-normal shape. Afterwards, we
determined the discrete, apparent distributions by numerical inversionwithout a priori assumptions regarding
the line shape.We analyzed the discrete distributions further to extract the core size (SAXS), magnetic core size
(DCM) and hydrodynamic size (ACS) distributions.

5.1. Small-angle x-ray scattering (SAXS)
5.1.1. Log-normal fit
Figure 4 shows themeasured SAXS intensity I(q). The data wasfittedwith equation (7) using either the scattering
length density contrast between particle andwater 31.1 10 nms

4 2rD = ´ - - formagnetite or

28.6 10 nms
4 2rD = ´ - - formaghemite (table 1). A least squares fit resulted in 1.02 8 10p

Fe O 33 4f = ´ -( ) and

1.2 1 10p
Fe O 32 3f = ´g- -( ) , respectively. These values for pf are in good agreement with the particle

Figure 3.Normalized isothermalmagnetization curve m H mS( ) of the particles deposited on cottonwool. The inset shows the
hysteretic behavior with a normalized remanence of m m 0.06r S = .

Table 2.Main results of the structural andmagnetic pre-characterization. ICP-OES: iron concentration cFe in
the colloidal dispersion and particle concentration pf in the colloidal dispersion calculated assuming
stoichiometry ofmagnetite ormaghemite. TEM: number-weighted log-normal distribution of core size dc with
broadnessσ, median value dc,N

¯ andmean value dc,Ná ñ. DLS: intensity-weighted hydrodynamic size or
z-average dh,Iá ñand polydispersity index PDI (in the case of a log-normal distribution,PDI and broadnessσ are
related by: PDIln 1s = +( ) ). DCM: volume fraction of particles behaving superparamagnetically ( SPf ) and
thermally blocked ( TBf ) at 300 K.

ICP-OES TEM DLS DCM (immobilized)
cFe 4.23 mg mLFe

1- σ 0.10(1) PDI 0.53(2) SPf 0.88

p
Fe O3 4f 1.13 10 3´ - dc,N

¯ 18.7(3) nm dh,Iá ñ 52(2) nm TBf 0.12

p
Fe O2 3fg- 1.24 10 3´ - dc,Ná ñ 18.8(3) nm
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concentrations determined by ICP-OES (table 2). The obtained value for the backgroundwas
bkg 3.4 2 10 cm3 1= ´ - -( ) and the determined log-normal distribution p dN

SAXS
c( ) is shown infigure 5. The

broadness of p dN
SAXS

c( ) is 0.15 4s = ( ) and themedian d 21 1 nmc,N =¯ ( ) . Comparisonwith the distribution
determined by TEM (figure 5, table 2) shows that the log-normal distribution according to SAXS is broader and
shifted to larger values. It can be observed that in the low q-range offigure 4 the forward scattering of the sample
is significantly enhanced compared to thefit, which indicates the presence of larger structures, i.e. agglomerates.
To verify this we determined the discrete core-size distribution numerically.

5.1.2. Numerical inversion
Wenumerically inversed the data using the form factor of a sphere asmodel function (equation (14)) to extract
the particle size distribution p dN c( ). In doing so, the incoherent scattering background bkg can be, in principal,
implemented as afitting parameter [35], however, here the result bkg 3.4 10 cm3 1= ´ - - from the log-normal
fit was used. For the inversion the range of the histogram p dN c( )was set to be from d 1 50 nmc = – in

d 0.5 nmcD = steps (N= 99).
Figure 6 shows, for the 200α values, the determined distributions c p dS N c

a· ( ) and the inset offigure 6 the
corresponding probabilities P a( ). The average distribution c p dS N

sum
c· ( )was calculated using equation (A.9).

Reconstruction of I(q)with equation (A.6) for P z c p d dj j jS N
sum

c, c,= D( ) · ( ) resulted in very good agreement
with the experimental data over thewhole q-range (figure 4).

The prefactor c VS p s
2

cf r= D á ñ (equation (14)) can be determined to be

c c p d dj
N

j jS S 1 N
sum

c, c,= å D= ( ) 2.04 10 cm37 7= ´ - and themean volume to be

Vc,Ná ñ p d V d dj
N

j j j1 N
sum

c, c c, c,= å D= ( ) ( ) 5011 nm3= . Using the same values for the scattering length density

contrast as above ( 31.1 10 nms
Fe O 4 23 4rD = ´ - - , s

Fe O2 3rD g- 28.6 10 nm4 2= ´ - - ) the calculated volume

concentrations were 1.05 10p
Fe O 33 4f = ´ - and 1.25 10p

Fe O 32 3f = ´g- - , whichmatches well with the log-

normalfit and ICP-OES (table 2).

Figure 4. SAXS scattering intensity I(q) of the colloidal dispersion, fittedwith equation (7) (dashed line) and reconstructed datawith
c p dS N

sum
c· ( ) (figure 6), determined by numerical inversion (solid line). Inset shows the low q-range.

Figure 5.Number-weighted log-normal distribution of the core diameter dc determined by TEM (figure 2) and by fitting the SAXS
data (dashed line, figure 4). Solid line: number-weighted log-normal distribution p dN

core
c( ) of the simulated core–shell particles from

figure 7.
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The comparison between the probability density p dN
sum

c( ) and the log-normal distribution p dN
SAXS

c( )
(figure 7) shows that themain peak (peak 2) is at the same position as p dN

SAXS
c( ), but that p dN

SAXS
c( ) is slightly

broader. Also, by numerical inversion some additional features are observed (peak 1, peak 3, peak 4, peak 5). The
shoulder of p dN

sum
c( ) at small dc (peak 1) indicates the presence of a fraction of smaller particles not observed in

TEM. Peak 3 on the other hand can be attributed to a fewnm thick polymer layer on the particles (figure 1). This
means that the extracted distribution p dN

sum
c( ) does not represent the real core-size distribution of the IONPs.

The reason for this is that the data was inversed using the form factor of a homogeneous sphere, neglecting the
surrounding polymer (DMSA) layer. To verify this, peaks 2 and 3 of the determined distribution p dN

sum
c( )were

further analyzedwith the goal of extracting the real core-size distribution of the individual particles.
To get a deeper physical understanding of the results, we investigatedwhat a core–shellmodel [50] predicts

regarding the extracted size distribution. For this purpose we simulated the scattering intensity I qsim( ) of an
ensemble of IONPs surrounded by a surfactant layer with the core–shellmodel [50], assuming a log-normal
distribution of the core sizes. The free parameters in the core–shellmodel were (i) the shell (surfactant) thickness
s (figure 1), (ii) the scattering length density s

shellr of the shell and (iii) the broadnessσ andmedian value dc,N
¯ of

the number-weighted core-size distribution. Afterwards, I qsim( )was numerically inversed the sameway as the
experimental data and the free parameters adjusted until good agreement between the extracted distribution and
peaks 2 and 3 of p dN

sum
c( )was obtained (figure 7). This approach is comparable to a core–shellmodelfit of the

reciprocal scattering data I(q), which is the standard approach to analyzing the structural properties of
nanoparticles surrounded by a surfactant layer [56]. The difference, however, is that we can analyze separately
the scattering behavior of the individual particles, which is achieved by focusing on the adjustment of peaks 2
and 3. By contrast, a fit of I(q)would include all scattering contributions (peaks 1–5).

The best agreement between p dN
sum

c( ) and the distribution of the simulated ensemble shown infigure 7was
found for: (i) a thickness of s 2 nm= of the surfactant layer (figure 1), (ii) a scattering length density of the

Figure 6.Gray lines: 200 discrete core-size distributions c p dS N c
a· ( ) determined by numerical inversion of I(q) (figure 4). Inset:

corresponding evidence values P a( ). Black line: weighted average c p dS N
sum

c· ( ).

Figure 7.The number-weighted log-normal distribution of the core diameter dc determined by fitting the SAXS data under the
assumption of a log-normal distribution (dashed line,figure 5). The discrete distribution p dN

sum
c( ) determined by numerical inversion

(full line, figure 6). Circles: distribution determined for simulated core–shell particles with a 2 nm thick shell and the core diameter
distribution p dN

core
c( ) displayed infigure 5. Gray area: volume-weighted distribution p d p d dV

sum
c N

sum
c c

3µ( ) ( ) · .
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surfactant s
shellr with 0.38s

shell
s
corer r= · and (iii) a log-normal core-size distributionwith 0.14s = ,

d 18.8 nmc,N =¯ and hence d 19.0 nmc,Ná ñ = . This distribution p dN
core

c( ) is plotted infigure 5 and, as can be
seen, is in accordance with the core-size distribution determined byTEM (table 2), just slightly broader. In the
followingwewill regard the distribution p dN

core
c( ) as the real core-size distribution of the individual IONPs

according to SAXS.
Furthermore, numerical inversion offers the opportunity of observing and hence characterizing larger

structures present in the dispersion by analyzing the peaks in the large dc-range (peaks 4 and 5 infigure 7).We
surmise that these larger structures are particle agglomerates.With sizes in the range 37–47 nm the agglomerates
apparently consist of only a few particles ( 2 8~ – ).

The number of agglomerates appears to be insignificant compared to the number of individual particles. But
transforming the number-weighted distribution p dN

sum
c( ) to a volume-weighted distribution

p d p d dV
sum

c N
sum

c c
3µ( ) ( ) · (figure 7, gray area) shows that a significant volume fraction of the particles seems to

be agglomerated. This volume fraction aggf can be estimated by integrating over the peaks at 40 and 45 nm in

figure 7 (peaks 4 and 5) to 0.08aggf » . Consequently, the volume fraction of individually dispersed particles

amounts to 0.92ip
SAXSf = according to SAXS.

In summary, via the analysis of the discrete size distribution p dN
sum

c( )we estimated the real core-size
distribution of the individual particles (not agglomerated) to be the log-normal distribution p dN

core
c( ), with

0.14s = , d 18.8 nmc,N =¯ and thus d 19.0 nmc,Ná ñ = . Additionally, we evaluated the volume fraction of

individual particles to be about 0.92ip
SAXSf = . The central results are summarized in table 3 and compared in the

followingwith the results obtained from the analysis of theDCMandACSdata.

5.2. Isothermalmagnetization (DCM)
5.2.1. Log-normal fit
Infigure 8 the complete isothermalmagnetizationmeasurement in the field range H 4.9 T0m =  is shown. The

magnetization at H 4.9 T0m = is 126.1 A m kg2
Fe

1- , which is close to the saturationmagnetization of bulk

magnetite M 128.3 A m kgS
Fe O 2

Fe
13 4 = - (table 1). That themagnetization curve is not completely saturated, even

at 4.9 T, can be attributed to a paramagnetic-like contribution of uncorrelated surface spins [39, 57]. To correct
themagnetization curve from all linear contributions in the high field range, the last three data points werefitted
linearly to obtain A m kg Tp

2
Fe

1 1c - -( ) and Hp 0c m is subtracted.We used the corrected data set for the log-
normalfit and the numerical inversion.

We obtained the bestfit result of the initialmagnetization branch ( H 0 4.9 T0m =  ) using equation (10)
for a log-normal distribution of themagnetic core sizes with 0.37 2s = ( ), d 12.2 5 nmm,N =¯ ( ) and hence
d 13.1 5 nmm,Ná ñ = ( ) . The comparison of the extractedmagnetic core-size distributionwith the core-size
distributions determined by TEM (table 2) or SAXS (table 3) shows significant differences. Additionally, large,
systematic deviations between the experimental data and the fit are observed (figures 8 and 9). Two possible
contributing factors to the deviations are (i) the unknownmagnetization behavior of the surface spins and (ii)
particle agglomerates. From these discrepancies it can be concluded that the isothermalmagnetization behavior
of the colloidal particle ensemble cannot bemodeled ad hoc by a single log-normal distribution, which has also
been observed for other systems [57, 58]. To verify this, we determined the apparentmoment distribution of the
particles by numerical inversion.

Table 3.Main results of the SAXS,DCMandACS data analysis of the colloidal dispersion
by numerical inversion. SAXS: number-weighted log-normal distribution p dN

core
c( ) of

core size dc with broadnessσ, median value dc,N
¯ andmean value dc,Ná ñ as well as the

volume fraction of individual particles ip
SAXSf . DCM: volume-weightedmeanmoment

ip,Vmá ñ, number-weightedmeanmagnetic core diameter dm,Ná ñ and volume fraction of

individual particles ip
DCMf . ACS: number-weighted log-normal distribution of

hydrodynamic diameter dh with broadnessσ, median value dh,N
¯ andmean value dh,Ná ñ

aswell as effective anisotropy constantK.

SAXS (colloid) DCM (colloid) ACS (colloid)
σ 0.14 ip,Vmá ñ 1.91 10 A m18 2´ - σ 0.38

dc,N
¯ 18.8 nm dm,Ná ñ 18.0 nm dh,N

¯ 30 nm

dc,Ná ñ 19.0 nm ip
DCMf 0.92 dh,Ná ñ 32.2 nm

ip
SAXSf 0.92 K 9 kJ m 3-
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5.2.2. Numerical inversion
We inversed the datawith equation (15) to extract pV m( ). The range of the extractedmoment distributionwas

set to be 10 10 Am21 14 2- -– , divided intoN= 141 bins (20 points per decade)with a logarithmic spacing jmD .

Figure 10 shows the 200 determined distributions c pD V m mDa· ( ) , the corresponding probabilities P a( ) and the
mean distribution c pD V

sum m mD· ( ) . Reconstruction ofM(H)with P c pD V
summ m m= D( ) · ( ) results in very good

Figure 8. Isothermalmagnetization curve of the colloidal dispersion and data corrected from linear contributions in the highfield
range. Dashed line: fit of corrected data under the assumption of a log-normal distribution of themagnetic core diameter dm
(equation (10)). Inset: residuals of the log-normalfit.

Figure 9. Isothermalmagnetization curve and fit fromfigure 8 in logarithmic field scale. Solid line: M(H) reconstructedwith
c pD V

sum m mD· ( ) (figure 10). Dotted line: M H*( ) reconstructed using only themain peak of c pD V
sum m mD· ( ) . Inset: residuals of the

log-normal fit and numerical inversion.

Figure 10.Gray lines: 200 discretemoment distributions c pD V m mDa· ( ) determined by numerical inversion ofM(H) (figure 9). Inset:
corresponding evidence values P a( ). Black line: weighted average c pD V

sum m mD· ( ) .
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agreementwith the experimental data (figure 9). As shown infigure 9, the residuals are nearly zero over the
wholefield range, indicating the high quality of the fit by numerical inversion. Therefore, the extractedmoment
distribution c pD V

sum m mD· ( ) seems to be a very good representation of the real intrinsicmoment distribution.
Over thewholeμ-range several peaks in c pD V

sum m mD· ( ) can be observed. In the followingwe assume that

themain peak at 10 Am18 2~ - corresponds to themagnetic cores of the individually dispersed nanoparticles,
whosemagnetization behavior can bemodeled over thewholefield range, each by a single Langevin function.
The other peaks describemagnetization contributions that lead to deviations from the simple Langevin-type
behavior, e.g. the uncorrelated surface spins or agglomerates [59, 60].

Themain peak infigure 10 starts at the index j= 54 and ends at j= 78. The volume-weightedmeanmoment
of the individual cores is determined from themain peak to 1.91 10 Amip,V

18 2má ñ = ´ - . The reconstruction of
themagnetization curvewith only the contributions of themain peak results in the curve
M H c p L H ,j j i j jD 54

78
V
sum* m m m= å D=( ) ( ) ( ) , also shown infigure 9. At 4.9 T this curve reaches a value of

M 4.9 T 99.8 Am kg2
Fe

1* = -( ) and is basically completely saturated.With this information the contribution of
themagnetic cores of the individual particles to the totalmagnetization of the sample can be estimated to be

M M4.9 T 0.78imc S
Fe O3 4*f = =( ) . Assuming a homogeneousmagnetization, thismeans that themagnetic

cores of the individual particles (non-agglomerated/non-interacting) constitute a volume fraction of
0.78imcf = of the total sample (iron oxide). This is below the volume fraction 0.92ip

SAXSf = of individually

dispersed particles according to SAXS (table 3). The discrepancy between 0.78imcf = and 0.92ip
SAXSf = can be

attributed to the reducedmagnetic core volume compared to the total particle core volume due to the surface
layer with uncorrelated spins. This can be shown by transforming themain peak of the extractedmoment
distribution to a number-weightedmagnetic core-size distribution p dN

core
m( ).

To determine p dN
core

m( )we transformed themain peak of the discretemoment distribution as follows. First

themoments jm were converted to d M6j jm, S
1 3m p= ( ( )) with M 0.48 MA mS

1= - (table 1) and the discrete

values c p c p d dj j j jD V
sum

D V
sum

m, m,m mD = D( ) ( ) were divided by c M 128.3 A m kgD S
2

Fe
1= = - . In the next step

the values p d djV
sum

m, mj
D( ) were divided by the corresponding volumeV jm, and by theweight d jm,D . Finally, the

histogramwas normalized so that p d dd 1
0 N

core
m mò =

¥
( ) . Infigure 11 the resulting distribution p dN

core
m( ) is

plotted.
Compared to the core-size distribution p dN

core
c( ) determined by SAXS (table 3), themagnetic core-size

distribution is shifted to lower values. The number-weightedmean value of themagnetic core size is
d p d d d 18.0 nmj

N
j j jm,N 1 N

core
m, m, m,á ñ = å D == ( ) . This is 1 nmbelow themean value of the core size according to

SAXS ( d 19.0 nmc,Ná ñ = ). As illustrated infigure 1, this indicates (on average) a shell thickness of uncorrelated
surface spins of 0.5 nm. Accordingly, very good agreement between the core size andmagnetic core-size
distribution is foundwhen p dN

core
c( ) is shifted by 1 nm (d d 1 nmm c= - ).

With this information the volume fraction mcf of the total particle volume, which is homogeneously
magnetized, can be estimated to be on average d d 0.85mc m,N

3
c,N

3f = á ñ á ñ = . Hence, according to theDCM
measurement the volume fraction of individual particles within the ensemble is

0.78 0.85 0.92ip
DCM

imc mcf f f= = = . This is in very good agreementwith the results fromSAXS, where the

volume fraction of the individual particles was also determined to be 0.92ip
SAXSf = (table 3). Accordingly, the

volume fraction of agglomerated particles can be estimated to be 0.08agg
DCMf = .

Figure 11.Number-weightedmagnetic core diameter distribution p dN
core

m( ) (dotted line) determined by transforming themain peak
of themoment distribution c pD V

sum m mD· ( ) (figure 10) and the number-weighted core diameter distribution p dN
core

c( ) fromfigure 5
(solid line). Dashed line: p dN

core
c( ) shifted by 1 nm.
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With theDCMmeasurement of the immobilized particles the volume fraction of thermally blocked particles
was determined to be 0.12TBf = (table 2). The quite good agreement between agg

DCMf and TBf could indicate

thatmost of the agglomerated particles are thermally blocked, due to dipolar interactions. As shown in [60], a
blocking of themacrospins in agglomerates of normally superparamagnetic particles can result in increased
effectivemoments of the agglomerates, compared to the individual particles. This could also explain the
observed peak in the highmoment range (10 10 Am17 18 2- -– ) in the extractedmoment distribution (figure 10).
Accordingly, the agglomerates can significantly contribute to theACS spectra of the colloidal dispersion, as
shown in the following.

The peaks in the lowmoment range on the other hand correlate to non-linearmagnetization processes in the
highfield range.We surmise that they can be either attributed to dipolar interactionswithin the agglomerates
[59] or to uncorrelated surface spins.

5.3. Frequency dependent AC susceptibility (ACS)
5.3.1. Log-normal fit
Figure 12 shows the real and imaginary part of themeasured volume susceptibility c w˜ ( ). In the imaginary part a
pronounced peak at 10 rad s5~ / is observed, which correlates to a characteristic relaxation time of 10 s5t = - .
In the case of Brownian relaxation (equation (4), 1 mPa s 1h = - for water), a relaxation time of 10 sB

5t = -

corresponds to a hydrodynamic size of d 30 nmH » , which is below the z-averagemeasured byDLS
( d 52 nmh,Iá ñ = , table 2). But withDLSwe determined the intensity-weightedmean of the hydrodynamic
diameter, and the expected volume- or number-weightedmeanswould, in theory, be significantly smaller. Thus
we surmise that the peak at 10 rad s5~ / ismostly a result of Brownian relaxation processes.

Tofitmeasurements of polydisperse nanoparticle ensembles, however, normallyNéel contributions also
have to be considered, which is done for example in the generalizedDebyemodel [14, 51, 52]. Qualitatively, this
model is comparable to the superposition of two log-normal functions p a p a p11 2t t t= + -( ) · ( ) ( ) · ( ) in
equation (11) in the case thatNéel and Brownian contributions do not overlap. Fitting c¢ and c under the
assumption of a bimodal distribution of relaxation times resulted in the high frequency part ( 10 Hz4w > ) in
good agreement with the data (figure 12). From the extracted relaxation time distributions structural parameters
such as the hydrodynamic size or themagnetic core size can be determined [14, 51, 52]. However, as can be seen
infigure 12, in the low frequency range significant deviations between data andfit are observed, which indicates
the presence of slow relaxation processes. It is safe to assume that these can be attributed to the contributions
fromparticle agglomerates. To extract the complete spectra of relaxation timeswe numerically inversed the
experimental data using equation (16) as amodel function.

5.3.2. Numerical inversion
To adjust the experimental data shown infigure 12 over thewholeω range, the range of the extracted relaxation
time distribution had to be set to10 10 s10 0-- . The histogramwas divided intoN= 181 bins (20 points per
decade)with a logarithmic spacing jtD . Figure 13 shows the 200 determined distributions c pA t tDa· ( ) , the
corresponding probabilities P a( ) and the average distribution c pA

sum t tD· ( ) . Due to themissing information
in the very high and low frequency range (no data points in the ACS spectra) the solutions for the extracted
relaxation time distribution in the very low and high time range are not reliable [61, 62]. The time ranges with

Figure 12.Real and imaginary part of the complex volume susceptibility of the colloidal dispersionmeasured byACS.Dashed lines: fit
of c w¢( ) and c w( )with equation (11) under the assumption of a bimodal distribution p t( ) (superposition of two log-normal
distribution). Solid line: reconstructed data set for the discrete relaxation time distribution c pA

sum t tD· ( ) determined by numerical
inversion (figure 13).
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unreliable information can be roughly estimated to be 10 s7t < - and 10 s2t > - , as indicated infigure 13 by
the gray areas.

In the region 10 10 s7 2t = - -– with reliable solutions, two peaks can be identified. Themain peak at 10 s5~ -

and a smaller peak (shoulder) at 3 10 s7~ ´ - . Asmentioned before, themain peak seems to correspond to the
Brownian relaxation of the individually dispersed and thermally blocked particles, whereas the smaller peak can
be attributed to small particles, which respond byNéel relaxation. The remaining very small relaxation times can
be probably attributed to intra-well relaxation processes [63, 64] (transversal relaxation). Additionally,
contributions in the very large relaxation time range are observed (10 10 s3 1- -– ). Asmentioned before, it is safe
to assume that these slow processes correspond to the relaxation dynamics of the agglomerated particles, as
discussed for example in [14].

Hence, by numeric inversionwe could isolate the different contributions and subsequently analyze them
separately. First, we estimated the hydrodynamic diameter distribution of the particles from themain peak of
psum t tD( ) . Considering that now the individually dispersed particles could be analyzed separately, we could
assume a log-normal shape for the hydrodynamic size distribution.

For this purpose, we calculated the Brownian relaxation time distribution P bt( )with equation (4) for a given
log-normal distribution of the hydrodynamic diameter dh until visually good agreementwas found between
P b bt tD( ) and themain peak. The distribution P b bt tD( ) shown infigure 14was obtained for a number-
weighted log-normal distribution of dhwith 0.38s = , d 30 nmh,N =¯ and thus d 32 nmh,Ná ñ = . As already
mentioned at the beginning of this section, this is significantly below the z-averagemeasured byDLS
( d 52 nmh,Iá ñ = , table 2), which can bemainly attributed to the fact that byDLS the intensity-weightedmean is
determined.

To analyze if the second peak at 3 10 s7~ ´ - could be in fact attributed toNéel relaxation, we calculated the
expected distribution P n nt tD( ) with equation (3) using themagnetic core diameter distribution determined by

Figure 13.Gray lines: 200 discrete relaxation time distributions c pA t tDa· ( ) determined by the simultaneous numerical inversion
of c w¢( ) and c w( ) (figure 12). Ranges of unreliable solutions are indicated by gray areas. Inset: corresponding evidence values P a( ).
Solid line: weighted average c pA

sum t tD· ( ) .

Figure 14. Solid line: average relaxation time distribution psum t tD( ) fromfigure 13.Dark gray area: distribution of Brownian
relaxation times P b bt tD( ) calculatedwith equation (4) for a number-weighted log-normal distribution of the hydrodynamic
diameter dh with 0.42s = and d 35.5 nmh,N =¯ . Light gray area: Néel relaxation times P n nt tD( ) calculatedwith equation (3) for the
magnetic core diameter distribution p dN

sum
m( ) from figure 11 (red line). The points of both distributions P b bt tD( ) and P n nt tD( )

are logarithmically spaced andweighted accordingly.

15

New J. Phys. 19 (2017) 073012 P Bender et al



DCM (figure 11). The distribution P n nt tD( ) shown infigure 14was obtainedwhen the anisotropy constant was
set to K 9 kJ m 3= - , which is inbetween themagnetocrystalline anisotropy constant of bulkmagnetite and
maghemite (table 1). The quite good agreement with psum t tD( ) seems to verify that this peak corresponds to
theNéel relaxation of small particles.With K 9 kJ m 3= - the estimated effective anisotropy constant is in good
agreementwith other studies, whereKwas derived fromACSmeasurements and found to be in the range of
K 10 kJ m 3= - for similar iron oxide nanoparticles [14, 65]. However, it has to be taken into account that in the
case of cubic anisotropy the expected value for the effective anisotropy constant relevant for equation (3)would
be K1 12 1( )∣ ∣ [66] and hencemuch lower than K 9 kJ m 3= - . A possible explanation for this discrepancy is
that the effective anisotropy constant of the IONPs is dominated by surface anisotropy, as theorized in [67].

6. Final remarks

Prior to an application ofmagnetic nanoparticles, for example in biomedicine, themain physical properties of
the ensembles (structural as well asmagnetic)must be evaluated, ideally in a standardizedway [5, 6]. Amongst
other properties, of outmost importance is knowledge on the characteristic particle sizes, such as core,magnetic
and hydrodynamic size. The usual approach to determining the relevant size distributions frommeasurements
(scattering,magnetization, susceptibility) is to assume a priori a log-normal shape and fit the data accordingly
[10–14]. However, subtle details relevant for the application ofmagnetic nanoparticles can bemissed, as we have
revealed in our results described above. Our numerical inversion procedure, derived from amethod used for the
analysis of small-angle scattering data [34, 35], is afiner approach to revealing the distribution functions. This
method does not imply a complication in deriving the relevant physical parameters compared to classicalmodel
fits but in fact our aim is to reach an easily applicable numerical approach. For this purpose the appliedmodel
functions are intended to be kept as simple as possible.

In this studywe initially extracted the particle size distribution of an ensemble of iron oxide nanoparticles by
numerical inversion fromSAXS data of the colloidal particle dispersion. Thenwe determined themoment
distribution of the particle ensemble from the isothermalmagnetization (DCM)measurement and its relaxation
time distribution from theACSmeasurement of the colloidal dispersion, using the same numerical approach. As
model functionswe simply used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and
theDebyemodel (ACS). Infigures 6, 10 and 13 the extracted size,moment and relaxation time distributions are
shown. In all three cases the distributions deviate from the commonly expected log-normal shape.

These deviations arewell interpreted as stemming partly fromparticle agglomerates (SAXS,DCM,ACS). It
also appears, unambiguously, that uncorrelated surface spinsmodify the expectedmagnetization behavior
(DCM). Such surface spins are a common finding inmagnetic nanoparticles as described, e.g., in [39–44].
Finally, a good description of the relaxation time spectramay be connected to the presence of intra-well
relaxation processes [63, 64]. Accordingly, the distributions determined by numerical inversion exhibit
characteristic peaks, whichwe attributed to these contributions. However, we additionally observed peaks in the
discrete distributions, whichwe could distinctly ascribe to the individually dispersed and non-interacting
particles. Ultimately, evaluation of these peaks allowed us to estimate their core,magnetic core and
hydrodynamic sizes aswell as relevant ensemble parameters, summarized in table. 3.

According to these results themean core size of the particles was 19 nmand themeanmagnetic core size
18 nm. This indicated the presence of a 0.5 nm thick surface layer of uncorrelated surface spins. Furthermore,
from an analysis of the as determined size andmoment distributions we calculated the volume fraction of
agglomerated particles to be 0.08. From the extracted relaxation time distributionwe estimated the
hydrodynamic size distribution of the particles to have amean value of 32.2 nm. Additionally, we could evaluate
the effective anisotropy constant to be 9 kJ m 3- , which is in good agreement with other studies whereKwas
derived fromACSmeasurements [14, 65].

Taking all these comments together it can be concluded that the analysis of the discrete distribution
functions extracted by numerical inversion enables a detailed analysis of the structural andmagnetic properties
of the particle ensemble. This is fundamental for technical application and related standardization criteria.
Naturally, the inversionmethod cannot eliminate the errors caused by an inadequacy of the appliedmodel
functions, which need to be carefully chosen. Themain strength of the numerical inversionmethod is then the
possible separation of contributions of themodel-like contributions of the individually dispersed particles from
the totalmeasurement signal. The numerical approach to determining such distribution functionswithout
a priori assumptions regarding the line shape is universally applicable, as we have shown in this study bymeans
of scattering,magnetization andACS data. The code for the numerical inversion of the SAXS,DCMandACS
data used for this studywaswritten in Python and is available from the authors.
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Appendix: numerical inversion

Solving equation (13) is in general an ill-conditioned problem, in particular due tomeasurement uncertainties.
This can give rise to large, unphysical oscillations in the extracted distribution. To overcome this problem two
approaches were combined. First, a non-negative constraint [68]was implemented as done in [26, 28] to ensure
positive values P z 0j >( ) in the extracted distributions. Additionally, a Tikhonov regularizationwas applied to
force smooth distributions. In this case, instead of equation (13) the functional [69]

P z D x P zA L
1

2
A.1

2
2 2

s
a- +   ( ) ( ) ( ) ( )

isminimized, here additionally with the constraint P z 0( ) . TheN×Nmatrix L is a regularizationmatrix
which is generally chosen to force smooth solutions, weighted by the regularization parameterα. To additionally
force the extracted distribution to approach zero at the start and end points the following non-singular
approximation of the discrete second-order derivative operatorwas used:
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For numerical computation equation (A.1) is not suited and the least square solution of
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was determined for P z 0( ) , with 0N ,1being a zero vector of lengthN.
Tofind the optimal value for the regularization parameterα the a posteriori probability or evidence P a( )

according to [35]was determined:
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The 2c in equation (A.4) is defined in the usualmanner, i.e.
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with D xrec i( ) being the reconstructed data points:
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In equation (A.4) the functional S is

S S S P zLwith: A.7
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2å= =
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and H is theHessian of the Tikhonov functional (equation (A.1)):

H A A L
1

2 . A.8T
2

2

s
a= + ( )

The approachwas then as follows. First, the distribution P(z)was determined for differentα values—in the
following labeled as P za ( )—by finding the least square solution of equation (A.3). Afterwards the a posteriori
probability P a( )was calculatedwith equation (A.4) for the determined distribution P za ( ). This was done in all
cases for 200 values ofα, withα varying logarithmically spaced over several orders ofmagnitude. Finally the 200
distributions P za ( )were summed up, weighted by the probability P a( ) to calculate
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