
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uast20

Download by: [Bam Bundesanstalt fur Materialprufung] Date: 13 October 2017, At: 00:05

Aerosol Science and Technology

ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: http://www.tandfonline.com/loi/uast20

Mobility Particle Size Spectrometers: Calibration
Procedures and Measurement Uncertainties

A Wiedensohler, A Wiesner, K Weinhold, W Birmili, M Hermann, M Merkel,
T Müller, S Pfeifer, A Schmidt, T Tuch, F Velarde, P Quincey, S Seeger & A
Nowak

To cite this article: A Wiedensohler, A Wiesner, K Weinhold, W Birmili, M Hermann, M Merkel, T
Müller, S Pfeifer, A Schmidt, T Tuch, F Velarde, P Quincey, S Seeger & A Nowak (2017): Mobility
Particle Size Spectrometers: Calibration Procedures and Measurement Uncertainties, Aerosol
Science and Technology, DOI: 10.1080/02786826.2017.1387229

To link to this article:  http://dx.doi.org/10.1080/02786826.2017.1387229

© 2017 American Association for Aerosol
Research

Accepted author version posted online: 11
Oct 2017.

Submit your article to this journal 

Article views: 8

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=uast20
http://www.tandfonline.com/loi/uast20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02786826.2017.1387229
http://dx.doi.org/10.1080/02786826.2017.1387229
http://www.tandfonline.com/action/authorSubmission?journalCode=uast20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uast20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02786826.2017.1387229
http://www.tandfonline.com/doi/mlt/10.1080/02786826.2017.1387229
http://crossmark.crossref.org/dialog/?doi=10.1080/02786826.2017.1387229&domain=pdf&date_stamp=2017-10-11
http://crossmark.crossref.org/dialog/?doi=10.1080/02786826.2017.1387229&domain=pdf&date_stamp=2017-10-11


ACCEPTED MANUSCRIPT                            

1 

 

Mobility Particle Size Spectrometers: Calibration Procedures and 

Measurement Uncertainties 

Wiedensohler, A
1,*

, Wiesner, A
1
, Weinhold, K

1
, Birmili, W

1,5
, Hermann, M

1
, Merkel, M

1
, Müller, T

1
, 

Pfeifer, S
1
, Schmidt, A

1
, Tuch, T1, Velarde, F

1,6
, Quincey, P

2
, Seeger, S

3
, and Nowak, A

4
 

1
Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany 

2
Department of Chemical, Medical and Environmental Sciences, National Physical Laboratory, Hampton 

Road, Teddington, Middlesex, TW11 0LW, United Kingdom
 

3
Materials and Air Pollutants, Federal Institute for Materials Research and Testing, Unter den Eichen 87, 

12205 Berlin, Germany 
4
Aerosol and Particle Diagnostic, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 

Braunschweig, Germany 
5
German Environment Agency, Corrensplatz 1, 14195 Berlin, Germany 

6Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, 

La Paz, Bolivia 
*Corresponding author: ali@tropos.de 

Abstract 

Mobility particle size spectrometers (MPSS) belong to the essential instruments in aerosol science that 

determine the particle number size distribution (PNSD) in the submicrometer size range. Following 

calibration procedures and target uncertainties against standards and reference instruments are 

suggested for a complete MPSS quality assurance program: a) calibration of the CPC counting efficiency 

curve (within 5% for the plateau counting efficiency; within 1░nm for the 50% detection efficiency 

diameter), b) sizing calibration of the MPSS, using a certified polystyrene latex (PSL) particle size 

standard at 203░nm (within 3%), c) intercomparison of the PNSD of the MPSS (within 10% and 20% of 

the dN/dlogDP concentration for the particle size range 20 – 200░nm and 200 to 800░nm, respectively), 

and d) intercomparison of the integral PNC of the MPSS (within 10%). Furthermore, following 

measurement uncertainties have been investigated: a) PSL particle size standards in the range from 100 

-500░nm match within 1% after sizing calibration at 203░nm. b) Bipolar diffusion chargers based on the 

radioactive nuclides Kr85, Am241 and Ni63 and a new ionizer based on corona discharge follow the 

recommended bipolar charge distribution, while soft X-ray-based charges may alter faster than 

expected. c) The use of a positive high voltage supply show a 10% better performance than a negative 

one. d) The intercomparison of the integral PNC of an MPSS against the total number concentration is 

still within the target uncertainty at an ambient pressure of approximately 500░hPa. 
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1. Introduction 

Mobility particle size spectrometers (MPSS) belong to the essential instruments in aerosol science that 

determine the particle number size distribution (PNSD) of the submicrometer aerosol particle population. 

Depending on the set-up, MPSSs are able to determine a PNSD from typically a few nanometers to 

around one micrometer in particle mobility diameter. The MPSS has been widely described in the 

literature (e.g. ten Brink et al., 1983; Fissan et al., 1983; Kousaka et al., 1985; Winklmayr et al., 1991; 

Wang and Flagan, 1990; Chen et al., 1998; Wiedensohler et al., 2012), often under the name SMPS 

(Scanning Mobility Particle Sizer) or DMPS (Differential Mobility Particle Sizer). The primary product 

of an MPSS measurement is an electrical particle mobility distribution, which needs to be converted to a 

PNSD by a numerical inversion procedure (e.g. Hoppel, 1978; Pfeifer et al., 2014). 

Although these mobility particle size spectrometers (MPSSs) are designed to operate autonomously with 

minimum attention, quality assurance measures are required on a regular basis to ensure the delivery of 

reliable data. Comparisons between different MPSS instrument types and individuals have been reported 

in numerous studies (e.g. Dahmann et al., 2001; Khlystov et al., 2001; Helsper et al., 2008; Gómez-

Moreno et al., 2015). Specific recommendations for a complete system of quality assurance measures, and 

well-founded estimates of the measurement uncertainties have, however, been missing in the literature. 

This article describes and discusses a complete set of quality assurance measures for MPSS instruments 

based on bipolar diffusion charging and a condensation particle counter (CPC) as the detector. 

Quality standards for PNSD measurements may differ for different applications such as atmospheric 

studies, laboratory investigations, workplace or indoor exposure assessment as well as emission surveys. 

The atmospheric observational infrastructures WMO-GAW (World Meteorological Organization – 

Global Atmosphere Watch) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure), as 

two examples, have devised a quality assurance system that requires frequent instrumental calibrations 

(WMO-GAW report 227; Wiedensohler et al., 2012). The European Center for Aerosol Calibration 

(ECAC, http://www.actris-ecac.eu) and the World Calibration Center for Aerosol Physics (WCCAP, 

http://wmo-gaw-wcc-aerosol-physics.org) offer such calibration services within WMO-GAW and 

ACTRIS. As a rule, an MPSS passes an ECAC/ WCCAP calibration if a) the sizing uncertainty against a 

certified particle size standard of 203░nm is ±3% or better, b) the PNSD should be within 10% against 

the reference MPSS in the size range from 20--200░nm and 20% between 200 and 800░nm, and c) the 

integrated PNC agrees within 10% with the PNC measured by an independently calibrated reference 

condensation particle counter (CPC). 

The agreement of PNSDs measured by different MPSSs has been found to be best for the particle size 

range from 20░nm to 200░nm in particle mobility diameter (Wiedensohler et al., 2012). Outside this 

range, the deviations might be larger for a number of reasons: for particles < 20░nm, the fraction of 

charged particles in a given bipolar charge equilibrium is low (Wiedensohler, 1988) and the theoretical 

description of losses due to diffusion might cause elevated uncertainties. Above particle diameters of 

200░nm, the larger fractions of multiply charged particles and the effect of incorrect sizing on the steep 
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spectral slope possibly lead to an increased uncertainty. Producing a predictable bipolar charge 

distribution in the MPSS instrument is one of the prerequisites for an accurate data inversion. 

To achieve the highest accuracy with an MPSS measurement, it is also necessary to test the above 

described main technical components individually, i.e. a) the optional pre-impactor (separating large 

particles), b) the bipolar diffusion charger, c) the differential mobility analyzer (DMA), and d) the 

condensation particle counter (CPC). To evaluate the performance, the following quality assurance 

procedures (Figure 1) are proposed, based on our laboratory-based experience at the ECAC/WCCAP: 

a. calibration of the size-dependent counting efficiency curves of the reference CPC and candidate 

CPC (as part of the candidate MPSS) by a traceable chain of particle number concentration to the 

SI (Système international d'unités) using a calibrated FCAE against primary standards for 

voltage, current, time, and mass flow 

b. calibration of the sizing of the DMA set-up by employing a certified particle standard such as 

PSL 

c. intercomparison of the candidate MPSS against a reference MPSS 

d. intercomparison of the integrated PNC of the candidate MPSS against the direct PNC 

measurement of a reference CPC 

Using a pre-impactor ensures that the measured PNSD will be physically limited at the cut-off diameter. 

This improves the accuracy of the multiple charge inversion used to derive the PNSD. The use of the 

impactor might not be essential in situations where there is no significant PNC above the size range to be 

measured. In the atmosphere, for example, the number concentration of particles larger than 800░nm is 

often very low, so a pre-impactor might not be needed. However, the pre-impactor is strongly 

recommended if there is a significant source of course particles such as mineral dust or sea spray. 

Prior to their electrical mobility classification, the aerosol particle population has to undergo a bipolar 

charging process, because carrying at least one charge is a prerequisite for particles to be separated in an 

electric field. One class of bipolar diffusion chargers work on the basis of the ionization of air molecules 

by radioactive material that creates a cloud of both positive and negative ion clusters. Commonly used 

radioactive sources are Kr
85

, Am
241

, Po
210

, or Ni
63

. Ideally, the entire particle population will reach a 

bipolar charge distribution, which, for example, can be calculated based on the charging theory by Fuchs 

(1963) and assumptions on the mobility and mass of the positive and negative ion clusters. Wiedensohler 

(1988) introduced a parameterization of this bipolar charge distribution based on fitted experimental data. 

It is theoretically independent of ambient pressure at room temperature and therefore assumed valid for 

PNSD measurements performed in a tempered room. The bipolar charge equilibrium is based on the ratio 

of the mobility of positive and negative air ions, which would change in the same manner, if the pressure 

changes (Fuchs, 1963). The bipolar charge distribution is widely used in commercial and custom-

designed instrument softwares and recommended by convention as a computation basis in the standard 

ISO 15900 [2] for the entire submicrometer particle size range. There are also alternative bipolar diffusion 

chargers. The ionizer uses positive and negative ions produced by corona discharge, resulting in a bipolar 

charge distribution similar to ISO 15900, according to the manufacturer. The bipolar charging by soft X-
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rays produces a different bipolar charge distribution, which was determined and parameterized by Tigges 

et al. (2015). 

The advantage of bipolar diffusion charging is a relative independence from the PNC and the aerosol flow 

rate, as long as the equilibrium number concentration of ion pairs is sufficiently higher than the PNC as 

well as the aerosol flow is limited to few l/min. Since the typical equilibrium ion pair concentration is 

approximately 10
7
 cm

3
, the PNC should not exceed 10

6
 cm

3
. The calculated bipolar charge distribution 

may have a reduced accuracy due to 

a. the very low charging efficiency for particles smaller than 20░nm, which have a large fraction of 

uncharged particles, 

b. increasing fractions of multiply charged particles for the particle size ranges greater than 

200░nm, and 

c. the charging state of the aerosol particles before entering the charger, for example any extreme 

unipolar charging. 

Calculations cover charging states from -10 to +10 elementary charges (including zero charge), the 

fractions strongly depending the excess of air ions and on the particle size, especially if the particle 

surface area concentration is high due to a pronounced accumulation mode. 

A DMA (see e.g. Knutson and Whitby, 1975; Liu and Pui, 1974; Flagan, 1999; Stolzenburg and 

McMurry, 2008) is usually designed as a cylindrical capacitor in which charged aerosol is injected 

through an annular slit close to the outer electrode and merged with the particle-free and dried sheath air 

flow. 

A DMA separates the particles according to their electrical mobility Zp, which is a function of particle 

charge (ne*e), particle diameter Dp, the corresponding Cunningham slip correction CC and the gas 

viscosity : 

3

e C
p e

p

u C
Z n e

E D 
  

 
  

It is important to note that the Cunningham slip correction is based on empirical evidence and 

conventional values for it are given in ISO 15900 (see also Wiedensohler et al., 2012). If the geometry 

and size of the DMA and its operational parameters such as sheath flow and sample flow are known, one 

can calculate and adjust the voltage between the electrodes needed to let the fraction of charged particles 

with the target electrical mobility pass through the DMA from the entrance to the annular exit slit in the 

central rod of the capacitor. The “DMA transfer function” (Birmili et al., 1997; Collins et al., 2002; 

Hagwood et al., 1999; Knutson and Whitby, 1975; Russell et al., 1995; Stolzenburg, 1988; Zhang and 

Flagan, 1996) can be described as a triangle selecting a range of electrical mobilities with an averaged 

transfer probability of 50%. In reality, the transfer function differs slightly from a triangle and the transfer 

probability decreases with decreasing particle diameter. Particle losses within a DMA, including a non-

ideal transfer function, can however be accounted for by using the method of “equivalent length”, as 

described in Wiedensohler et al., (2012). This particle loss correction then only depends on the DMA type 
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and the aerosol flow rate. Possible malfunctions of a DMA could occur due to internal aerosol particle 

deposition, flow or electric field disturbances, arcing, or mishandling during disassembly/reassembly. 

This is especially a problem if these non-idealities lead to a broadening of the transfer function. 

Particles within a small electrical particle mobility bandwidth pass through the DMA and their number 

concentration is measured by the CPC (see e.g. Agarwal and Sem, 1980; Stolzenburg and McMurry, 

1991; Wiedensohler et al., 1997; Hermann et al., 2007; Tuch et al., 2016). Small particles with diameters 

below approximately 100░nm need magnification to a size, which can be detected optically in the CPC. 

In a regular butanol-based conductive cooling CPC, the aerosol flow is slightly heated and then saturated 

with butanol vapor. In a cooling section (also called the condenser), the butanol vapor becomes 

supersaturated and condenses onto the particles, forming droplets of approximately 10░µm. These 

droplets are led through a focusing nozzle and then counted individually by a laser optic. From the droplet 

counting frequency, counting interval duration, and the aerosol flow rate, the time resolved PNC can be 

calculated with a time resolution of typically 1 second. The lower detection efficiency diameter is 

determined by the Kelvin diameter of the particles, which is a function of the physical diameter and the 

chemical affinity between the particle and the butanol, and can be varied by changing the temperature 

difference between the saturator and the cooling section. The chemical affinity is dependent on the 

particles surface properties and hence the CPC detection efficiency is – especially at lower sizes – particle 

material dependent. This material dependency is however rather small if butanol is used as working fluid 

and the temperature difference between saturator and condenser is optimized to reach a specific DP50. 

Malfunctions may occur if a) the saturation process is not at optimum, b) the temperature difference is not 

stable, c) droplets are lost by impaction on the edges of the focusing nozzle, d) the particle beam is 

outside the laser focus, or e) the nominal flow rate is not reached. Manufacturers give uncertainties of up 

to 10% to the measured PNC. In reality, however, it is only a few percent if the instrument is technically 

performing well. 

2. Calibration Procedures 

The calibration procedures mentioned above have been implemented at ECAC/WCCAP for instruments 

used in atmospheric aerosol measurements, and are here described in detail. The calibration procedures 

are, however, also suitable for other applications. Calibration of an MPSS should ideally be done at a 

calibration center with international reputation, which meets the requirements of the ISO standards or 

atmospheric observational networks, especially SI-traceability, and providing one or more regularly 

maintained and calibrated reference MPSSs and CPCs. However, calibrations can be performed at 

measurement stations. These calibrations can include the PSL sizing and a reference CPC and MPSS as 

comparison instruments, which have been calibrated before in the laboratory. 

The determination of size-dependent CPC counting efficiency curves and the sizing of the DMA setup (at 

the scale of the PSL particles) are traceable calibrations, because they can be traced back to SI units. The 

sizing for particles smaller than the certified PSL particle size calibration depends on the Cunningham 

slip correction and thus on its uncertainty. The intercomparisons of PNSDs against each other, as well as 

the integrated PNC against the reference CPC are based on “black box” approaches, because the bipolar 
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charge distribution, Cunningham slip correction and diffusion loss correction used in the data inversion 

are conventions and are not traceable. While the intercomparison of the PNSDs of the candidate and the 

reference MPSSs only provides a qualitative result (the PNSD is principally not traceable), a quantitative 

performance measure is given by the intercomparison of the integrated PNC of the candidate MPSS 

against the directly measured PNC of the reference CPC. Preferably, the CPCs should have the same DP50. 

MPSS-based calibrations at the ECAC/WCCAP are usually done with atmospheric aerosols. This 

procedure has two main reasons: 

1. The atmospheric aerosol is already naturally pre-charged, but with an unknown non-equilibrium 

bipolar charge distribution. When using a bipolar diffusion charger, there is a high probability of 

obtaining a bipolar charge distribution corresponding close to the ideal equilibrium. 

2. A unipolar pre-charged laboratory-generated aerosol needs more interaction with gas ions to be 

brought into a bipolar charge equilibrium, e.g. by using a bipolar charger with a sufficient 

activity. However, if the equilibrium is not reached, the calculations of PNSDs and PNCs based 

on the multiple charge corrections will be inaccurate. This would lead to an invalid 

intercomparison. 

Results from several ECAC/WCCAP calibration workshops are shown to demonstrate the different steps 

of the calibration procedure. These results are for illustrative purposes, and the research institutions of the 

candidate instruments have been anonymized in the legends of the different figures. 

2.1 Calibration of Condensation Particle Counters 

2.1.1 Traceability of the Reference Particle Counter 

The CPC used to measure the PNC is calibrated against a reference FCAE. A FCAE consists of an 

electrically conducting and grounded cup as a guard to cover the sensing element that includes a 

conducting high efficiency aerosol filter (not necessarily conductive) to capture aerosol particles, an 

electrical connection between the sensing element and an electrometer circuit, and a flow meter. The 

capture efficiency for a FCAE is expected to be greater than 98 % for particles above 5░nm and sample 

flows above 1░l/min. The main challenge is that particles might get lost by diffusion before entering the 

cup and then are not detected. FCAEs measure very small electrical currents down to the femto Ampere 

range, or respectively, electrical charge densities as small as 10
 -15

 Coulomb/cm³ and the signal to noise 

ratio is the limiting factor. FCAEs used for calibration purposes must – according to ISO 27891:2015 – 

have a stable zero baseline, i.e. the zero-corrected absolute arithmetic mean electric current when no 

particles are present must be less than 1░fA (femto-ampere) with a standard deviation below 0.5 fA. If 

for example singly charged particles with a PNC of 1000 cm

³ are measured, the corresponding electrical 

current reading of an FCAE at 1░l/min sample flow would then be 2.67 fA with a relative uncertainty of 

at least ± 20% (according to an absolute uncertainty of at least ± 0.5 fA). A comprehensive comparison of 

FCAE measurements found about ± 5% relative deviation (deviation of the means) among eight FCAEs 

with 1░l/min sample flow. The uncertainties in this test were up to 20% (Hogström et al. 2014). Although 

uncertainties are expected to increase at smaller particle sizes and lower concentrations, the results 

provided experimental evidence that the requirements of the ISO standard can practically be met. 
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The ECAC/WCCAP reference FCAE is SI-calibrated against a femto Ampere source at the German 

national metrology institute (PTB – Physikalisch-Technische Bundesanstalt, Braunschweig) The 

reference CPC of the ECAC/WCCAP is twice per year calibrated against the reference aerosol 

electrometer using singly charged monodisperse silver particles. 

Figure 2 shows the ECAC/WCCAP CPC calibration set-up previously described in Tuch et al. (2016). 

The generation of the monodisperse calibration aerosol is briefly described in the following paragraph. 

Silver is evaporated in a N2 carrier gas flow through a tube furnace aerosol generator (Scheibel and 

Porstendörfer, 1983). In the cooling section, supersaturated silver vapor nucleates to primary particles a 

few nanometers in diameter. The nucleation process and the subsequent agglomeration of the silver 

particles are then quenched by an additional N2 flow. Afterwards, the silver particle agglomerates are 

annealed at 450░°C by passing through a second tube furnace and solidify as nearly spherical particles at 

the exit. The silver particles are then charged in a bipolar diffusion charger. Monodisperse calibration 

aerosols in the size range of 3--40░nm can then be selected by using a Nano-DMA setup. The size 

resolution in a DMA is influenced by the sheath to sample airflow ratio but also by diffusion broadening. 

At high ratios, e.g. 20:1, the transmitted particle fraction is highly monodisperse with a typical geometric 

standard deviation (GSD) well below 1.1. This ratio should be high a) to minimize the non-diffusive 

width of the transfer function and b) to minimize the contribution of diffusional broadening to the transfer 

function. Finally, the test aerosol is diluted with particle-free room air in a mixing chamber to adjust the 

PNC and to provide sufficient flow rate for all instruments. 

The linearity calibration is done with 40░nm monodisperse particles as shown in Figure 3. A 1:1 slope 

demonstrates an asymptotic counting efficiency of 100% (also called plateau efficiency). We use a 

particle size of 40░nm, because the CPC TSI model 3772 operates at the plateau counting efficiency. 

2.1.2 Calibration of Candidate Condensation Particle Counters 

A successful CPC calibration in terms of the CPC counting efficiency curve and the DP50 is a prerequisite 

for evaluating the performance of an MPSS. The following steps have to be considered, taking a regular 

CPC TSI model 3772 as an example: 

1. Initial status check without any maintenance to obtain the status of the candidate CPC. 

a. Measuring the exact CPC aerosol flow rate, which is allowed to deviate up to 3% from 

the nominal 1░l/min. The exact flow rate should be used in the calculation of the 

counting efficiency 

b. Checking the CPC counting efficiency curve. If necessary, the candidate instrument will 

then go through maintenance 

2. Maintenance of the candidate CPC: 

a. Cleaning of the saturator wick or, alternatively, replacing it with a new one (this can be 

done by the user on a regular schedule) 

b. Cleaning of the aerosol nozzle that focuses the droplet flow into the optics (this can be 

done by the user on a regular schedule) 
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c. Cleaning of the critical orifice that ensures a constant aerosol flow rate (this can be done 

by the user on a regular schedule) 

d. Cleaning the optics, if necessary (this can be only done by an experienced person) 

e. Measuring the actual flow rate again 

3. Final calibration after maintenance of the candidate CPC 

For the CPC calibration of the detection efficiency curve, the particle number concentration of the 

monodisperse silver particles should be in the range of 1000 to 5000░cm
3

 to avoid coincidence in the 

measuring volume of the CPC optics, and to reach a sufficient number concentration for the aerosol 

electrometer measurement. At WCCAP/ECAC, we use an electrometer flow rate of 4░l/min, decreasing 

the lower detection limit to approximately 200░cm
3 

for acceptable accuracy and signal to noise ratio of 

the current. Monodisperse particles are generated in the range 5 to 40░nm and the counting efficiency is 

calculated, taking into account: 

a) the measured aerosol flow rate 

b) the number of particle counts at the digital CPC pulse out 

c) the counting time 

d) the PNC derived from the electrometer 

To evaluate the calibration results, following targets are considered. 

a) The plateau efficiency should not deviate more than 5% from the reference CPC (manufacturers 

normally indicate an uncertainty up to 10%). 

b) The lower counting efficiency diameter of the CPC 3772 for silver particles normally ranges from 

7 to 9░nm as shown in Tuch et al. (2016) (the manufacturer gives the value of 10░nm). 

The performance of a CPC can be evaluated by using a best fit to a function that describes the steep part 

of the detection efficiency curve. As an example, Figure 4 shows the CPC counting efficiency curves of 

an initial and final calibration. The theoretical fit function from Stolzenburg and McMurry (1991) is also 

given in the figure and was used for data interpretation. The fit parameters are the plateau efficiency A 

[dimensionless], the lower detection limit B [nm] and DP50, C [nm]; the particle diameter is denoted by x. 

In this example, the CPC was cleaned after the initial check. Note that the counting efficiency curve and 

the lower detection efficiency diameter of the reference CPC are determined during the calibration 

workshops in parallel. 

2.1.3 Uncertainty in CPC efficiency calibration 

For the determination of the CPC detection efficiency, a detailed methodology is described in ISO 

27891:2015. The main difference to the setup in Figure 2 is that the monodisperse test aerosol is split into 

only two equivalent partial flows and the PNC is measured in parallel by only one candidate CPC and a 

reference FCAE. While methodology and outcome are in principle the same in both cases, the ISO 

standard has an elaborated concept for the estimation of uncertainties in the determination of the 

candidate CPC’s detection efficiency. Due to the complexity of the experimental setup and the calibration 

procedure itself, straightforward error propagation is not feasible and the combined relative standard 
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uncertainty in the detection efficiency is the result of several type A (repetition and statistical treatment) 

and type B (other means) uncertainty components. The following uncertainty components are considered: 

a. FCAE detection efficiency: The corresponding type B uncertainty is usually evaluated by a 

national metrology institute on a regular basis. Values are expected to be below 1%. 

b. FCAE and CPC flow rates and their uncertainties are evaluated case-by-case by repeated 

comparison to a calibrated SI-traceable mass flowmeter. Uncertainties are most likely below 2 %. 

c. Uncertainty in multiple charge correction: Depending on the test aerosol generation and the size 

of the particles, the FCAE raw data have to be corrected for multiply charged particles before 

conversion into PNC. A case by case evaluation is unavoidable and can be determined semi-

empirically in the plateau region. The uncertainty is in all probability few % depending on the 

selected monodisperse diameter. 

d. Splitter bias: A case-by-case evaluation quantifies a possible misbalance of the PNCs in the 

partial flows by repeated measurements. The bias factor should be within the 0.95 to 1.05 

interval. The relative uncertainty is usually very small (below 1%). 

e. Repeatability of the efficiency determination: This component is evaluated case-by-case through 

short-term repetitions. Values below 1% are expected. 

f. Uncertainty contribution from test particle size uncertainty: This component has an effect in the 

steep region where the CPC detection efficiency is significantly size dependent. It is the product 

of the relative size uncertainty and the slope of the efficiency curve, which itself is the target of 

the calibration. The uncertainty of the DMA-selected particle size results from the calibration 

with certified monodisperse test particle standard or a DMA calibrated according to ISO 

15900:2009, trusting the Cunningham correction factor. The width of the monodisperse particle 

size bin is then dependent on the aerosol flow to sheath flow rate and the diffusion broadening. 

According to these estimations, the combined relative standard uncertainty in the detection efficiency of 

CPCs seems to be below 10% in most cases. 

2.2 Calibration of Mobility Particle Size Spectrometers 

A complete calibration of a candidate MPSS is complex and requires the following steps: 

a) Set-up of the candidate MPSS to the configuration as it is usually operated at the observatory or 

laboratory 

b) Set-up of the reference MPSS and CPC parallel to the candidate MPSS 

c) Initial intercomparison run of the candidate MPSS and the reference MPSS and the reference 

CPC for the total particle number concentration for at least 8 hours to obtain statistically relevant 

results 

d) Evaluation of the results of the intercomparison of the PNSDs and the intercomparison of PNCs 

e) Calibration of the candidate CPC of the MPSS against the reference aerosol electrometer or 

reference CPC as described above 

f) Calibration of the sizing of the candidate MPSS with certified particle PSL size standards with a 

high size resolution 
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g) If necessary, solving technical problems of the candidate MPSS, which cause deviations from the 

reference instruments that are larger than the target uncertainty values 

h) Final intercomparison run of the candidate MPSS and the reference MPSS against the reference 

CPC for the total particle number concentration for at least 8 hours. Intercomparison of the 

PNSDs (candidate MPSS vs reference MPSS) and PNC (integrated candidate MPSS vs reference 

CPC) 

i) Confirmation of a successful or a non-successful calibration in terms of a detailed report 

The ECAC/WCCAP reference MPSS was described in Wiedensohler et al. (2012). ECAC/WCCAP 

currently provides five such reference instruments for calibrations. Their main components are a bipolar 

diffusion charger, using a Kr
85

 370 MBq radioactive source, a Hauke-type DMA (Winklmayr et al., 1991) 

with a 28░cm long electrode, and a CPC model TSI 3772. The measured PNSD covers the range from 10 

to 800░nm in mobility diameter. No pre-impactor is used during the calibration experiments, since the 

concentration of particles larger than 800░nm is negligible in ambient air at ECAC/WCCAP, which 

represents an urban background aerosol population. 

In the next sections, the different calibration steps are explained in detail, showing examples of results. 

2.2.1 Sizing Calibration and Adjustment 

At the ECAC/WCCAP, PSL (polystyrene latex) particles (spheres) with a certified diameter of 203░nm 

are used for the sizing calibration. The reasons are: 

a) The number concentration of 203░nm PSL particles is still sufficiently high in a dilute 

suspension (one “drop” of PSL particle solution (1% by volume) in 150░ml purified water) to 

measure a statistically relevant number concentration peak. 

b) The layer of residual material from the aqueous solution on the PSL particles after drying is not 

significant for PSL particles larger then 100░nm. 

We consider the test at a single PSL size (203░nm) as sufficient. Experimental tests that justify this 

decision are supplied later in Sect. 3.1.1. The sizing calibration contains the following steps: 

a) The initial calibration is done with PSL particles of 203░nm nominal size. The initial calibration 

is successful, if the geometric mean diameter of the main peak recorded by the candidate MPSS 

operated as normal, is within 3% of the certified PSL particle size (197 to 209░nm). 

b) The initial calibration is not successful, if the measured peak diameter deviates more than 3% 

from the nominal PSL particle size. According to our experience, in this case the best practice is 

to adjust the sheath air so that the correct size classification is achieved. The most likely cause of 

the error is that the sheath airflow rate has changed with time due to a shift of the flow meter. An 

adjustment of the “effective length” in the calculation of the DMA-voltage is not considered 

suitable, since the geometry of the DMA is rather accurate and well known. However, if the 

deviation is higher than 10%, other causes of the error should be considered. 

c) In the final calibration, it is again checked whether the main peak is within 3% of the nominal 

PSL particle size of 203░nm. 
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For the sizing calibration, we scan the particle size range from 100 to 400░nm with a high size resolution 

(up and down scans are typically approximately 4░min each) to be able to quantify the peak diameter. 

The up and down scan have to overlap correctly, otherwise the delay time is wrong for of an MPSS in 

scanning mode operation. 

Figure 5 shows an example of the PSL particle calibration of a candidate MPSS. The curves show four 

maxima, which are: 

a) the main peak at the nominal PSL particle size of 203░nm for singly charged particles 

b) the first peak to the left of the nominal diameter (at 131░nm) represents doubly charged particles 

of 203░nm 

c) the second peak to the left of the nominal diameter (at 103░nm) represents triply charged 

particles of 203░nm 

d) the low, broad peak to the right of the nominal diameter represents doublets or triplets 

(agglomeration of two or three PSL particles) 

The red curve is the initial PSL calibration, while the black curve shows the final sizing calibration after a 

successful adjustment of the sheath flow rate. 

Because the majority of commercial and custom-designed MPSSs are operated in scanning mode, we 

suggest to measure the electrical particle mobility distribution with a high size resolution to obtain more 

than 20 data points for the main PSL peak. The evaluation of the peak diameter can then be done by 

fitting a normal function through the data points (see also Figure 5 solid line). This assures a high 

precision of the sizing calibration. 

2.2.2. Intercomparison of Particle Number Concentrations and Size Distributions 

During the intercomparison of the candidate MPSS against the reference MPSS and reference CPC, the 

instruments are connected to a common manifold, sampling ambient aerosol. To obtain a sufficient 

counting statistic, the initial and final intercomparison runs are done for at least 8 hours, respectively. To 

avoid misinterpretations, periods with a clear nucleation mode are excluded from the analysis. The 

particle number size distributions have been calculated using the bipolar charge distribution given in 

ISO15900, based on the parameterization in Wiedensohler (1988). 

For a successful intercomparison, the PNSD of the candidate MPSS needs to diverge no more than +/-

10% against the reference MPSS over the size range 20 to 200░nm. An example PNSD intercomparison 

is shown in Figure 6. The candidate MPSS is represented by the red curve and the reference instrument by 

the black curve. 

In a second step of a successful calibration, the PNC of the reference CPC is intercompared against the 

integrated PNC of the reference and candidate MPSS as shown in the scatter plots of Figure 7░a and 

Figure 7b. The slope is close to one in both cases and is thus within the target range from 0.9 to 1.1. 

2.2.3 Example of a Scheduled ECAC/WCCAP MPSS Intercomparison Workshop 

In this section, we illustrate how MPSSs of atmospheric observatories generally perform during a 

scheduled ECAC/WCCAP MPSS intercomparison workshop. As mentioned above, it is important to 

schedule regular calibrations of MPSSs to assure a high data quality with known uncertainties. 
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Figure 8░a and Figure 8b show the PNSDs of all candidate MPSSs against the reference MPSS (black 

line) of the initial and final calibration run (each approximately 8 hours in total), respectively. For this 

workshop, it can be concluded that the candidate MPSSs performed generally rather well during the initial 

calibration run (Figure 8░a). Only one MPSS was outside the target uncertainty range of +/-10% (dashed 

lines) compared to the reference MPSS. After several maintenance steps, all candidate MPSSs were 

clearly within the target uncertainty range during the final calibration run (Figure 8b). These results 

demonstrate that MPSSs generally perform well, if the users are well trained to operate the instruments. 

However, it was also demonstrated that regular intercomparisons help to identify technical problems and 

to improve performance, even if an instrument has already been operated at a skillful level. 

3. Measurement Uncertainties 

3.1 Sizing Accuracy 

3.1.1. Sizing Accuracy for Other PSL Particle Size Standards 

For validation purposes, we also performed additional sizing accuracy tests to confirm that a calibration 

with 200░nm PSL particles is sufficient. After the calibration with 200░nm PSL particles, we determined 

the sizing accuracy also for PSL particles with nominal diameters of 125, 350, and 500░nm without any 

further adjustment of the DMA sheath airflow rate. Figure 9░a-d show the geometric mean diameters of 

the main peaks by fitting a lognormal function through the data points. The retrieved geometric mean 

diameters match the certified PSL particle sizes within 1%. 

3.1.2. Impact of the Target Sizing Uncertainty 

For a successful intercomparison, the PNSD of the candidate MPSS needs to be within the 10% target 

uncertainty of the dN/dlogDP concentration against the reference MPSS. An example intercomparison of 

the PNSD is shown in Figure 10░a. The candidate is represented by the red curve and the reference by 

the black curve. Both MPSS have been calibrated with a 203░nm PSL particle size standard. The peak 

diameter of the candidate PNSD was shifted towards a larger particle size by approximately 3%, which 

would be still within the target uncertainty. This shift leads however to a disagreement above 200░nm of 

the dN/dlogDP concentration of more than 10% caused by the steep slope of the atmospheric PNSD. As 

shown in Figure 10b, the candidate MPSS would be again within the 10% target uncertainty range of the 

reference instrument above 200░nm if the PNSD was moved 4% in diameter towards smaller particle 

sizes. This result implies that an increased uncertainty of +/-20% from 200 to 800░nm should be accepted 

for the calibration, using the atmospheric aerosol. 

3.2. Different Bipolar Diffusion Chargers 

3.2.1 Radioactive Nuclides 

The bipolar diffusion charger must create the expected particle charge distribution for the PNSD to be 

correct. We applied bipolar diffusion chargers with different radioactive nuclides (Kr
85

 370 MBq, Am
241

 

74 MBq, and Ni
63 

95 MBq) source to test whether the PNSDs showed deviations greater than 10%, 

compared to the same MPSS using a second Kr
85

 (370 MBq) as a reference, for an ambient air sample. 

In our laboratory set-up, we used a reference MPSS and a reference CPC. PNSD scans with ambient air 

were done with a time resolution of 5 minutes. After each scan, the MPSS and CPC inlet aerosol flows 
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were switched between the reference and the candidate bipolar diffusion charger. The total run time was 

at least 8 hours for each pair of bipolar diffusion chargers. For the calculation of the PNSD, we used the 

following settings within the inversion routine: 

a) the bipolar charge distribution described in Wiedensohler (1988) and ISO 15900 for bipolar 

diffusion chargers using radioactive nuclides 

b) the method of equivalent length as described in Wiedensohler et al. (2012) to correct for internal 

losses by diffusion 

The results of all runs are shown in Figure 11(Kr
85

 – Kr
85

), Figure 12 (Kr
85

 – Am
241

), Figure 13 (Kr
85

 – 

Ni
63

). For the atmospheric aerosol sample used, there are no deviations greater than the target value of 

10%, between either the integrated PNCs or the size distributions. The radioactive chargers (Kr
85

 370 

MBq, Am
241

 74 MBq, and Ni
63

 95 MBq are thus equally suited to be used in an MPSS. 

3.2.2. Soft X-Ray 

First, we used a brand-new soft X-ray bipolar charger (TSI model 3088). The measurements shown in 

Figure 14 originate from an ECAC workshop in which a new TSI MPSS was calibrated. The bipolar 

charge equilibrium of Tigges et al. (2015) was used for the soft X-ray charger in the inversion routine. As 

shown in Figure 14░a, the PNSD of the candidate (soft-X-ray) is within the +/-10% target uncertainty 

compared to the PNSD of the reference MPSS (Kr
85

). The integrated PNC of the candidate and reference 

MPSS are plotted against the PNC of the reference CPC in Figure 14b. Both comparisons, candidate (red 

dots) and reference MPSS (black dots) are clearly within the +/-10% target uncertainty. The comparison 

of an MPSS, using a brand-new soft X-ray bipolar charger, against a Kr
85

 bipolar diffusion charger was 

excellent. 

Soft X-ray bipolar diffusion chargers seem thus to be a good choice, however, there might 

be also a limitation to their use due to possible altering effects. Unfortunately, a long-term 

investigation has yet to be done, studying effects, which might cause a creeping degradation 

of the performance. The manufacturer claims a guaranteed lifetime of approximately 8500 

working hours. In a second step, we used a soft X-ray bipolar charger (model TSI 3087) 

with an operational time below 8500 working hours and with an “OK” status. Here, we 

employed the two reference MPSSs (#1 & #2), which were both operated with Kr85 bipolar 

diffusion charger in the first step. In the second step, #2 was operated with the used soft X-

ray bipolar diffusion charger. Unfortunately, at this time, no reference CPC was available 

to determine the total PNC directly, so we could only compare the results of both MPSSs 

against each other. Figure 15░a shows the comparison of the PNSD of both MPSSs (Soft X-

ray in red and Kr
85

 in black). The PNSD determined with the X-ray bipolar diffusion 

charger is clearly outside of the +/-10% target uncertainty. While the comparison of the 

integrated PNC between the two MPSSs operated with Kr
85

 bipolar diffusion chargers is 

excellent (Figure 15b, black dots), the PNC of the MPSS operated with the X-ray bipolar 

diffusion charger is overestimated by 24% (red dots). The reason of this behavior is not 
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clear. It might be that internal pollution causes a poor performance. We suggest therefore 

performing yearly calibrations of soft X-ray bipolar diffusion chargers. Additionally, a 

larger laboratory study should be done, investigating several soft X-ray bipolar diffusion 

chargers and their performance in terms of their age. 

3.2.3. Electrical Ionizer 

To complete the analysis of different bipolar chargers, also the MSP electrical ionizer (model 1090) was 

tested (also denoted as TSI model 1090). This bipolar charger generates positive and negative ions by 

corona discharge. In this investigation, we used also a brand-new TSI version. As in the previous 

experiment (3.2.2), we used the two reference MPSSs (#1 & #2), #1 was operated with Kr
85

 bipolar 

diffusion charger and #2 with the electrical ionizer. Unfortunately, at this time, no reference CPC was 

available to determine the total PNC directly, so we could only compare the results of both MPSSs 

against each other. Figure 16░a shows the comparison of the PNSDs of both MPSSs (electrical ionizer in 

red and Kr85 in black). The PNSD determined with the electrical ionizer is within the +/-10% target 

uncertainty. The comparison of the integrated PNC of the two MPSSs, one operated with the Kr
85

 bipolar 

diffusion charger and the other with the electrical ionizer, (Figure 16b, red dots) are within the +/‐ 10% 

target uncertainty, meaning that a new ionizer produces a bipolar charge equilibrium such as a Kr
85

 

bipolar diffusion charger. Again, no long-term study on possible altering effects was performed so far. 

We suggest thus to observe the performance of the electrical ionizer by frequent calibrations. 

3.3. Positive and Negative DMA Voltage 

We also investigated the influence of a positive versus a negative DMA voltage in the MPSS, with respect 

to the uncertainty of the given negative and positive charge distribution (Wiedensohler, 1988). For the 

laboratory set-up, we used two reference MPSSs (#1 & #2). For the first eight-hour run, positive voltage 

power supplies were employed in both MPSSs (Figure 17). As shown in Figure 17b, the integrated PNC of 

the reference MPSS #2 was 5% higher compared to MPSS #1. This “system correction factor” of 1.05 

between the two reference MPSS is needed to correct the data of the second eight-hour run. MPSS #1 

and MPSS#2 used a positive and a negative high voltage power supply, respectively. The results of this 

intercomparison run is shown in Figure 18. The PNSD of MPSS #2 was divided by the “system correction 

factor” of 1.05. The deviation between the PNSDs caused by using opposite polarity voltage is 10%. One 

can conclude that an MPSS using a negative voltage power supply underestimates the PNSD by 

approximately 10% compared to an MPSS using a positive voltage, if the same data processing is 

performed. This deviation is probably caused by uncertainties in the empirical data behind the 

approximation coefficients to calculate the bipolar charge distribution (Wiedensohler, 1988). This 

deviation, however, is still within the target uncertainty of MPSS measurements. 

Note: A positive DMA voltage is the default configuration in the reference MPSS and is used in all other 

tests and during normal operation. 

3.4. Unipolarly Pre-Charged Aerosol 
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The uncertainty in the PNSD that occurs using a unipolar pre-charged aerosol, as can be the case for 

laboratory-generated aerosol, depends on the performance of the bipolar diffusion charger. To test the 

performance of a reference MPSS with a Kr
85

 bipolar charger with 370 MBq, a nebulizer-generated 

ammonium sulfate aerosol is used, having an approximate geometric diameter of 100░nm and a 

geometric standard deviation of 2.0. We compared integrated PNCs up to 30,000░cm
3

 against a 

reference CPC. The upper PNC was chosen to minimize errors due coincidence in the CPC (TSI model 

3772). For this specific particle number size distributions (geometric mean diameter, geometric standard 

deviation and number concentration range), the specific bipolar diffusion charger was able to bring the 

unipolar pre-charged aerosol into the expected bipolar charge equilibrium (Wiedensohler, 1988) as shown 

in Figure 19. The deviation of 3% is within the target uncertainty range. For different particle number size 

distributions e.g. with a larger geometric mean diameter, this results might not be valid. 

3.5. Particle Number Size Distribution Measurements at Low Pressure 

Atmospheric PNSD measurements are also performed at high altitude sites or onboard of aircrafts with 

low MPSS operating pressures. However, there is no proof that the commonly used bipolar charge 

distribution (Wiedensohler, 1988) is also valid within an acceptable uncertainty range for reduced 

pressures. In a first approximation, the bipolar charge equilibrium depends on the ratio of the mobility of 

negative and positive air ions. This ratio should remain constant for moderate pressure changes, meaning 

that the uncertainties of the given bipolar charge distribution and of the PNSD should not significantly 

increase. Because laboratory PNSD measurements at low pressure might risk unknown uncertainties, we 

used data from the atmospheric observatory at Chacaltaya, Bolivia, instead. The station is located at an 

altitude of 5240░m a.s.l. with an average ambient pressure of 540░hPa. PNSD and total PNC 

measurements are performed by an MPSS and a TSI CPC model 3772, respectively. In Figure 20, all 

valid PNSD and PNC data from the entire year 2014 are used to determine the uncertainty between the 

directly measured and integrated PNC. Only nighttime data from 12.00 p.m. to 06.00░a.m. have been 

used in order to exclude the influence of new particle formation during daytime. Although the 

measurements have not been taken under laboratory conditions, the slope is close to one and the data 

uncertainty is generally within the target of +/-10% with an acceptable R
2
 of 0.93. 

4. Conclusions 

To assure high quality of PNSDs measured by an MPSS, we recommend regular calibrations as done at 

ECAC/WCCAP for instruments from atmospheric observatories. The quality of the MPSS measurement 

strongly depends on the performance of the individual components and their interaction within the entire 

system. Consequently, regular quality assurance measures are needed to check the performance of an 

MPSS. However, only some parameters such as the particle size can be directly traced back to the SI, 

using a certified PSL particle size standard, preferably within the size range 100 – 350░nm. The sizing of 

particles generally relies on knowledge of the Cunningham slip correction factor, whose values are agreed 

by convention and are not traceable. For particle number concentration (PNC) measurements, an SI-

traceable aerosol electrometer can be employed to calibrate a condensation particle counter, which then 

can be used as a reference instrument. The determination of the PNSD is based on the commonly used 
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equations for the bipolar charge equilibrium as described in ISO 15900, which is agreed by convention, 

and not traceable. 

An MPSS calibration institution should have ideally one or several reference MPSSs and CPCs, which 

should undergo frequent calibrations (useful would be yearly). We propose the following procedures for a 

complete MPSS quality assurance program: 

a) Calibration of the candidate CPC counting efficiency curve against a reference CPC or FCAE as 

described in ISO 27891 

b) Sizing calibration of the candidate MPSS, using a certified polystyrene latex (PSL) particle size 

standard 

c) Intercomparison of the PNSD of the candidate MPSS against a reference MPSS 

d) Intercomparison of the integral PNC of the candidate MPSS against a calibrated reference CPC 

All these procedures can either be traced back to SI units or related to conventions. 

Based on the calibration of MPSSs at the European Center for Aerosol Calibration or the World 

Calibration Center for Aerosol Physics (ECAC/WCCAP; http://actris-ecac.eu/reports.html), we propose 

the following target uncertainty ranges for a candidate MPSS to pass the calibration successfully: 

a) The PNC of the candidate CPC is within ±5% of that of the reference CPC in the size range of the 

plateau counting efficiency and the DP50 is within 1░nm to the nominal one. 

b) The Particle sizing is within ±3% compared to the certified PSL particle size standard 

c) The particle number size distribution of the candidate MPSS is within ±10% of that of the 

reference MPSS across the particle size range 20--200░nm (and within ±20% in the size range 

from 200 to 800░nm) 

d) The PNC derived from the PNSD of the candidate MPSS is within ±10% of that of the reference 

CPC. 

Based on calibration, field, and laboratory studies, we can further conclude: 

a) Although specific unipolarly charged laboratory aerosols could be brought into the bipolar charge 

equilibrium under certain conditions, the best intercomparison results for PNC derived from 

MPSSs and CPCs might be achieved, when ambient air is used as calibration aerosol. This can be 

explained by the fact that the ambient aerosol tends to be already in a state close to the bipolar 

charge equilibrium. 

b) An adjustment of the flow rate of the sheath air is useful to match the certified PSL particle size 

standard, even if the deviation is less than 3%. This will reduce deviations in terms of dN/dlogDP 

concentration in particle size range larger than 200░nm. 

c) The choice of a bipolar diffusion charger based on the radioactive nuclide (Kr
85

, Ni
63

, Am
241

) 

does not principally influence the performance of an MPSS for atmospheric measurements. 

Important is here that the actual activity of the radioactive sources is still sufficient. We did not 

include a bipolar diffusion charger based on Po210 in our investigation, since the half-life is only 

138 days. 
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d) A brand-new soft X-ray charger performed well, according to the specific bipolar charge 

equilibrium. However, a device with working hours even below the recommended lifetime 

showed a significant degradation in its performance. An investigation of the long-term 

performance has to be done in future. 

e) A brand-new bipolar diffusion charger based on corona discharge (called ionizer) performed well 

in preliminary tests. In addition, no studies have been done so far to quantify a possible 

degradation due to long-term altering of the corona discharger. 

f) A positive power supply is recommended to use, if a choice can be made between positive and 

negative DMA voltage in an MPSS (i.e. measuring negatively charged particles). A 10% better 

agreement of the integral PNC with a reference CPC was achieved. Additionally, the fraction of 

negatively charged particles is generally greater than the one of positively charges particles, 

leading to better counting statistics in the measurements. 

g) A PNSD can be confidently derived under conditions of low atmospheric pressure, such as found 

at high-altitude atmospheric observatories. Experimental results from the high-altitude station 

Chacaltaya, Bolivia (5240░m a.s.l.) confirm that the target uncertainty of ±10% in terms of PNC 

still can be met at atmospheric pressures as low as 500░hPa. 
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Figure 1: Traceability of MPSS measurements to a set of certified standards and conventions. To facilitate 

the time-efficient calibration of candidate instruments, intermediate standards (so-called 

“reference instruments”) are used at the calibration center. 
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Figure 2: CPC calibration set up used at ECAC/WCCAP. 

  

D
ow

nl
oa

de
d 

by
 [

B
am

 B
un

de
sa

ns
ta

lt 
fu

r 
M

at
er

ia
lp

ru
fu

ng
] 

at
 0

0:
05

 1
3 

O
ct

ob
er

 2
01

7 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 23 

 

Figure 3: Calibration of the ECAC/WCCAP reference CPC model 3772 (coincidence-corrected) against 

the reference aerosol electrometer model TSI model 3068B. Data is plotted at a time resolution of 

1 second. 
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Figure 4: Example of CPC counting efficiency curves of the initial and final calibration after 

maintenance. The upper two figures show the initial (a) and final (b) calibration of a case when 

DP50 was not within the target range of 7 to 9░nm, while the lower two figures show an example 

when the target plateau efficiency was not reached during the initial calibration (c) but was 

reached after maintenance and successful adjustment (d). (a counting efficiency of 1 corresponds 

to 100%) 

  

D
ow

nl
oa

de
d 

by
 [

B
am

 B
un

de
sa

ns
ta

lt 
fu

r 
M

at
er

ia
lp

ru
fu

ng
] 

at
 0

0:
05

 1
3 

O
ct

ob
er

 2
01

7 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 28 

 

Figure 5: Calibrations of the sizing of the MPSS DMA using PSL particles with a nominal diameter of 

203░nm. The example shows the initial and final PSL calibration of a candidate MPSS. The red 

curve is the initial PSL calibration, while the black curve shows the final sizing calibration after a 

successful adjustment of the sheath flow rate. 
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Figure 6: Successful intercomparison of the PNSD of the candidate (red curve) against the reference 

MPSS (black curve). The PNSD of the candidate MPSS is within 10% against the reference over 

a wide size range. The comparison was done for periods when no nucleation mode have been 

present. 
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Figure 7: Intercomparisons of the reference CPC PNC against the integrated PNC of the reference and 

candidate MPSS as shown Figure 7░a and Figure 7b, respectively. The slope and R2 are close to 

one in both cases. The PNC have been determined for the same period as the PNSD measurement. 
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Figure 8: Example of a calibration of PNSDs of candidate MPSSs against the reference, before (a) and 

after (b) the adjustment. The black line represents the reference MPSS, while the dashed lines 

cover the target +/-10% uncertainty range. 
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Figure 9: Calibration of the sizing of the DMA using PSL particles. a) Calibration and adjustment with a 

nominal diameter of 200░nm (certified mean peak 203+-5░nm) b-d) Calibration with nominal 

diameters of 125, 350 and 500░nm (certified mean peaks: 125 +-3░nm, 350 +-6░nm and 498 +-

9░nm) 
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Figure 10: Intercomparison of the PNSD of the candidate (red curve) against the reference MPSS (black 

curve). The PNSD of the candidate MPSS is within 10% against the reference over the size range 

from 20 to 200░nm and up to 20% above 200░nm (a). A slight shift of 4% in diameter of the 

candidate MPSS brings the uncertainty in PNSD back to the target uncertainty of 10% above 

200░nm (b). 
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Figure 11: Intercomparison of two Kr85 (370 MBq) bipolar diffusion chargers. The PNSD of the 

candidate is within the +/-10% target uncertainty compared to the reference MPSS (a). The 

integrated PNC of the candidate and reference MPSS are within +/-10% uncertainty range against 

the reference CPC (b). Time resolution of the data is 10░min. 
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Figure 12: Intercomparison of a Kr85 (370 MBq) and a Am241 (74 MBq) bipolar diffusion charger. The 

PNSD of the candidate is within the +/-10% target uncertainty compared to the reference MPSS 

(a). The integrated PNC of the candidate and reference MPSS are within +/-10% uncertainty 

range against the reference CPC (b). Time resolution of the data is 10░min. 
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Figure 13: Intercomparison of a Kr85 (370 MBq) and a Ni63 (95 MBq) bipolar diffusion charger. The 

PNSD of the candidate is within the +/-10% target uncertainty compared to the reference MPSS 

(a). The integrated PNC of the candidate and reference MPSS are within +/-10% uncertainty 

range against the reference CPC (b). Time resolution of the data is 10░min. 
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Figure 14: Intercomparison of a Kr85 (370 MBq) and brand-new soft X-ray bipolar diffusion charger 

(model TSI 3088). The PNSD of the candidate are within the +/-10% target uncertainty compared 

to the reference MPSS (a). The integrated PNC of the candidate and reference MPSS are plotted 

against the PNC of the reference CPC. Both comparisons, candidate (red dots) and reference 

MPSS (black dots) are clearly within the +/-10% target uncertainty. The time resolution of the 

data is 5░min. 
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Figure 15: Intercomparison of a Kr85 (370 MBq) and a used soft X-ray bipolar diffusion charger (model 

TSI 3087). The PNSD of the candidate (soft X-ray in red) compared to the reference MPSS (Kr85 

in black) is clearly outside of the +/-10% target uncertainty (a). Scatterplots of the integrated PNC 

of the two experiment are shown in b). While the comparison of the integrated PNC between the 

MPSS operated with Kr85 bipolar diffusion chargers is excellent (black dots), the PNC of the 

MPSS operated with the X-ray bipolar diffusion charger is overdetermined by 24% (red dots). 

Time resolution of the data is 5░min. 
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Figure 16: Intercomparison of a Kr85 (370 MBq) and electrical ionizer. The PNSD of the candidate 

MPSS (electrical ionizer in red) compared to the reference MPSS (Kr85 in black) is within the +/-

10% target uncertainty over a wide range (a). The comparison of the integrated PNC of the two 

MPSSs, one operated with the Kr85 bipolar diffusion charger and the other with the electrical 

ionizer, (Figure 16b, red dots) are within the +/‐ 10% target uncertainty (b). Time resolution of 

the data is 5░min. 
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Figure 17: Intercomparison of two reference MPSSs (#1 & #2) using positive voltage power supplies. The 

integrated PNC of MPSS #2 is factor of 1.05 higher compared to reference MPSS #1. 
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Figure 18: Intercomparison of two reference MPSSs (#1 & #2) using a positive and negative voltage 

power supply, respectively. The integrated PNC of MPSS #2 is corrected by a system correction 

factor of 1.05 (see Figure 17). The PNSD of MPSS #1 using a positive voltage power supply is 

10% higher compared to MPSS #2 using a negative voltage power supply (left plot). 
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Figure 19: Intercomparison between the integrated PNCs and the directly measured number concentration 

of the reference CPC, using a laboratory-generated unipolarly pre-charged ammonium sulfate 

aerosol. The deviation of 3% is within the target uncertainty for PNCs. 
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Figure 20: Scatterplot of the CPC-measured vs. the integrated PNC of ambient measurement at the 

Chacaltaya observatory, Bolivia, at a pressure of 540░hPa. The intercomparison shows a slope of 

close to one and the data are generally within the target uncertainty of +/-10% with a R2 of 0.93. 

For this analysis, daily averages have been used. 
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