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Abstract
Ultrasonic guided waves offer a wide range of applications in fields such as non-destructive
testing, structural health monitoring or material characterization. They can be excited in thin-
walled structures and propagate over comparably long distances. Due to their complex and
dispersive propagation behavior, numerical methods are often required in order to analyze the
guided wave modes that can be excited in a given structure and to simulate their interaction with
defects.

In the work presented in this thesis, highly efficient numerical methods have been devel-
oped that are specifically optimized for guided wave problems. The formulation is based on the
Scaled Boundary Finite Element Method (SBFEM). The SBFEM is a semi-analytical method
which evolved from the concept of Finite Elements but requires the discretization of the bound-
ary of the computational domain only. To compute dispersion curves and mode shapes of
guided waves, only the cross-section of the waveguide is discretized in the Finite Element sense,
while the direction of propagation is described analytically. The wavenumbers of guided wave
modes and the corresponding mode shapes are obtained as the eigenvalues and eigenvectors of
a frequency-dependent Hamiltonian matrix. For the discretization, higher-order spectral ele-
ments are employed, leading to very low computational costs compared to traditional Finite
Elements. Particular formulations are presented for plate structures as well as axisymmetric
waveguides, where only the through-thickness direction has to be discretized. For the cases
where the waveguide is embedded in or coupled to a quasi-infinite medium, a dashpot bound-
ary condition is proposed in order to account for the effect of waves being transmitted into the
surrounding medium. Though this approach is not exact, it leads to sufficiently accurate results
for practical applications, while the computational costs are typically reduced by several orders
of magnitude compared to other Finite Element based approaches.

As a particular application, an experimental set-up for material characterization is discussed,
where the elastic constants of the waveguide’s material are obtained from the analysis of waves
propagating through the waveguide. A novel solution procedure is proposed in this work, where
each mode of interest is traced over the required frequency range. The solutions are obtained
by means of inverse iteration.

To demonstrate the potential of the SBFEM for non-destructive testing applications, the
interaction of guided wave modes with cracks in plates is simulated in the time domain for
several examples. Particularly for the modeling of cracked structures, the SBFEM is very well
suited, since the side-faces of the crack do not require discretization and the stress-singularity
at the crack tip does not introduce additional difficulties. Hence, the computational costs can
be reduced by typically a factor 100 compared to traditional Finite Elements and the meshing
is straightforward.
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Chapter 1

Introduction

Background The work presented in this thesis is motivated in the context of non-destructive
testing (NDT) and structural health monitoring (SHM). Numerous techniques have already been
developed to assess the integrity of structures in engineering applications [1]. The most com-
mon approaches utilize, for instance, ultrasonic waves [2], radiography [3], eddy current [4],
magnetic fields [5] or infrared thermography [6]. Each of the methods reveals particular ad-
vantages and drawbacks and can only be applied effectively to a limited class of structures
and defects. While some techniques are optimized for a time-saving evaluation of large struc-
tures [7,8], others can be employed to find near-surface micro-cracks in small specimen [9,10].
In many cases, highly problem-dependent requirements, such as limited accessibility, complex
geometries, inhomogeneities or strong anisotropy effects have to be considered. Consequently,
the development and improvement of non-destructive testing techniques is still a relevant and
rapidly evolving research field.

One of the oldest and most-widely used classes of NDT methods utilizes ultrasonic waves
to detect defects in a structure or to assess its geometry or material properties [11, 12]. In
traditional ultrasonic testing, typically a short pulse is induced in the specimen, using an ultra-
sonic transducer (Figure 1.1) [2]. A significant amount of wave energy is reflected from cracks,
flaws or abrupt changes in material properties (generally speaking, from changes in the acoustic
impedance). Provided that the wave velocity in the material under consideration is given, the
reflector’s position can be estimated from the time of flight of the reflected signal. If the wave
velocity is a priori unknown, it can often be deduced from a reflection off the back wall of the
specimen.

Obviously, even for the simplest structures, the actual wave propagation is more complicated
than indicated in Figure 1.1 [13, 14]. Results of a two-dimensional Finite Element Analysis are
presented in Figure 1.2 to visualize wave propagation in a quasi-infinite solid. A pulse con-
taining few cycles is applied normal to a small area on the boundary of a solid domain (Figure
1.2a). The size of the domain is large compared to the wavelength of sound waves that are ex-
cited at the chosen frequency.1 Figure 1.2b shows a snapshot of the waves propagating through
the solid. The pulse is separated into several components, traveling at different velocity. The

1The geometry and material parameters used for the simulation are presented in Appendix A.1.
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Flaw

Incident wave Reflected wave

Transmitted wave

Transducer

Figure 1.1: Detection of a defect by means of traditional ultrasonic material testing.

majority of ultrasonic testing techniques rely on longitudinal waves, since they have the highest
wave velocity and can generally be excited with high amplitude. Then again, certain appli-
cations exist that utilize the propagation behavior of shear waves, e. g. for the non-destructive
evaluation of welds. The velocity of shear waves is roughly two times smaller for many solids.
In case of normal excitation as in the given example, shear waves are divided into two wave
packages. These wave packages penetrate the solid under an angle that depends on the ma-
terial’s elastic parameters. In addition to longitudinal and shear waves, surface or interface
waves (in the present example Rayleigh waves [15–17]) can be excited, which propagate with
a velocity slightly lower than the shear wave velocity.

(a)

shear

waves

Rayleigh

waves

longitudinal

waves

(b)

Figure 1.2: (a) Excitation of waves in a large homogeneous solid. (b) Propagation of longitudinal,
shear and Rayleigh waves.
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(a) Total displacement at the excitation

(b) Waves starting to propagate along the structure

Figure 1.3: Cross-sectional view of a homogeneous plate with an ultrasonic transducer coupled to
the upper surface. When exciting an ultrasonic pulse (a) a complex displacement field is induced
in the vicitiniy of the excitation (b).

Let us now assume that instead of a quasi-infinite media, the same ultrasonic transducer is
placed on the surface of a thin plate (i. e. the thickness is comparable to the ultrasonic wave-
lengths of longitudinal and shear waves at the given frequency), as shown in Figure 1.3a. Ob-
viously, we cannot expect longitudinal and shear waves to propagate independently through
the media. Quite the contrary, the whole thickness of the plate close to the transducer position
is subjected to stresses almost instantaneously. The superposition of vertical and horizontal
movements results in a complex displacement field depending on frequency, thickness, material
parameters and boundary conditions. As a consequence, a rather complicated and rapidly evolv-
ing disturbance starts propagating along the thin structure (Figure 1.3b). This phenomenon is
referred to as guided waves [18], due to the geometrical restrictions imposed on the wave prop-
agation. Even though the current work addresses elastic guided waves in solids, very similar
considerations can be applied to acoustic or electromagnetic waves [19]. A principal charac-
teristic of guided waves is their tendency to form certain propagating modes that can travel
along the structure. This effect can be observed in the presented simulation at some distance
from the point of excitation (Figure 1.4) and is best visible when plotting the horizontal and
vertical displacement amplitudes separately. In the given example, two propagating modes with
very different wavelengths and velocities are excited, so that after a relatively short time two
well-separated wave packages can be observed. The faster mode shows mainly horizontal dis-
placements (Figure 1.4a) while in the slower mode vertical displacements are dominant (Figure
1.4b).

In the through-thickness direction, each mode creates a characteristic field distribution (mode
shape), somewhat similar to standing waves in any other confined geometry. Along the struc-
ture this displacement field propagates as a harmonic wave with a characteristic wavenumber.
The modes are generally strongly dispersive, i. e. the mode shapes and wavenumbers (and hence
the phase and group velocities) depend on frequency. This is due to the fact that, for varying

3



CHAPTER 1. INTRODUCTION

(a) Absolute value of the horizontal displacements

(b) Absolute value of the vertical displacements

Figure 1.4: (a) Horizontal and (b) vertical displacements of the fundamental guided wave modes.
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Figure 1.5: Phase velocities of propagating modes in a homogeneous isotropic plate.

frequency, the ratio of wavelength to thickness of the structure changes (for both longitudinal
and shear waves). The number of propagating modes that can be excited in the structure, in-
creases with frequency, tending towards infinity. Figure 1.5 shows a typical dispersion diagram
for a simple plate, where the phase velocities are plotted as a function of (dimensionless2) fre-
quency. The computation of these dispersion properties and the corresponding mode shapes
plays a predominant role in this thesis.

Guided waves in homogeneous isotropic plates were described analytically back in 1917 by
Horace Lamb [20] and are nowadays commonly referred to as Lamb waves. Later elastic guided
waves in different structures, such as cylinders [21], pipes or rails [22] were analyzed theoret-
ically and experimentally. It was noticed long ago that ultrasonic guided waves can be used in
non-destructive testing [23–29] and structural health monitoring [30–32] of thin structures. As
they propagate along the structure, they can be reflected by defects in the material similarly to
traditional ultrasonic testing. The advantage of utilizing guided waves resides in the fact that

2Dimensionless parameters are defined in Section 3.7.1.
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they can propagate over comparably long distances3, while inducing stresses throughout the
whole thickness. Hence, they can be used to test a large part of the structure with a single ex-
citation, rather than scanning the complete surface with an ultrasonic transducer. Even though
the sensitivity is typically low compared to conventional ultrasonic testing, guided waves can
be an adequate tool for time efficient testing of e. g. large plate structures or pipelines.

More recently, it has been suggested to employ guided waves in material characterization
applications [33–36]. For instance, the elastic constants of a cylinder can be deduced by an-
alyzing guided wave propagation through the material. In a different approach, the density of
a fluid is determined by analyzing its effect on the wave propagation in an immersed wave-
guide [37–39].

Dispersion relations An obvious problem arising in most applications of guided waves lies
in the fact that typically complex signals have to be evaluated. Depending on frequency, a high
number of modes can be excited in a waveguide, each of them having its own characteristic
phase and group velocity. Moreover, the excitability of the modes as well as their sensitivity to
different types of defects differs greatly in a given set-up. For this reason, sophisticated analyt-
ical and/or numerical calculations are involved to plan and conduct experiments. Additionally,
advanced signal processing has to be applied in order to analyze the results. The first crucial
step is usually to obtain the dispersion curves and mode shapes of propagating modes that can
be excited within the frequency range of interest. In order to do that, wave propagation is typ-
ically modeled in an infinite waveguide with the given cross-section. This can be a difficult
and computationally expensive task, depending on geometry and material properties. For the
simplest case of Lamb waves in homogeneous isotropic plates, the wave propagation can be
described analytically by imposing adequate boundary conditions to the elastodynamic wave
equation [15]. As a result, equations for the wavenumbers of Lamb waves that can propagate
in the plate are obtained. However, to solve for the wavenumbers, sophisticated root-finding
algorithms have to be employed. The main difficulty lies in the fact that an a priori unknown
number of solutions have to be found, while standard root-finding algorithms converge to one
solution only. Similar problems occur when describing wave propagation in homogeneous axi-
symmetric structures [40].4 Many attempts have been made to model more complex structures
analytically, but the scope is fairly limited [41, 42].

A well-known approach that can be utilized to compute dispersion curves for layered plates
and axisymmetric structures is the Transfer Matrix Method [43, 44]. Later, the Global Matrix
Method [45–47] was introduced as an extension, mainly to avoid numerical problems at high
frequencies. The basic idea of these matrix methods is to describe the reflection and transmis-
sion at each interface between two layers (or a layer and a surrounding medium or vacuum).
A matrix that relates the displacement field at these interfaces is assembled. Non-trivial so-

3Since guided waves propagate within a confined space rather than being dissipated into a large volume, their
attenuation is small compared to ultrasonic waves in a quasi-infinite media.

4In this introduction, a very brief overview of the different classes of approaches is given. More detailed
discussions of the techniques available for different geometries are presented at the beginning of the corresponding
chapters.
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CHAPTER 1. INTRODUCTION

lutions are found by setting the determinant of this matrix to zero, which again leads to a
root-finding problem for the wavenumbers. Matrix methods have been employed for various
different problems [48, 49]. The commercial software disperse [50, 51], used for calculating
dispersion relations for plates and cylinders, as well as the free Matlab code PCDisp [52, 53],
used for cylindrical waveguides, make use of these matrix methods. However, the solution can
be very cumbersome for complex structures, for instance if many layers, anisotropy or material
damping have to be considered.

From today’s point of view, an obvious idea to model waveguides of complex geometry is
to employ the Finite Element Method (FEM). Early attempts to deal with this class of problems
were presented by Gladwell and Tahbildar [54]. As the Finite Element Method has been further
developed and become more popular, it has been utilized by numerous authors for the simula-
tion of guided waves (see e. g. [55–57]). Recently, it has been demonstrated how modern com-
mercial Finite Element software can be employed to obtain dispersion relations by discretizing
a representative part of the structure [58]. In contrast to that, rather specialized Finite Ele-
ment based techniques have been developed for guided wave modeling. In one approach a unit
length section of a three-dimensional waveguide is assessed [59]. This idea is often referred to
as Waveguide Finite Element (WFE) method. Somewhat similarly, models have been presented
that involve a Finite Element discretization of the waveguide’s cross-section only [60–63]. This
approach, nowadays mostly known as Semi-Analytical Finite Element (SAFE) Method has
been applied to composite plates [64, 65], anisotropic composite cylinders [66, 67], axisym-
metric damped waveguides [68], as well as rods and rails [22]. The software GUIGUW [69],
which uses a SAFE formulation is under development and free demo versions are already avail-
able. The major drawback of these Finite Element based approaches is that they generally
lead to high computational costs, particularly for high frequencies. The computational times
required by these approaches are not acceptable in many applications, for instance when the
dispersion relations have to be computed many times in the frame of an inverse analysis. A
different problem (that will be focused on in detail in Chapter 6) lies in the fact that it is very
cumbersome to model the interaction of guided waves with a surrounding media using Finite
Elements. This drawback becomes crucial in many engineering applications, for instance when
modeling buried pipes, poles embedded in soil or plates immersed in a fluid.

Time domain analysis The computation of dispersion relations and mode shapes is an es-
sential task in most applications of guided waves and the first crucial step in order to analyze
the wave propagation in the waveguide of interest. However, it often does not suffice to predict
the propagation in a realistic structure. For instance, in non-destructive testing applications we
are interested in modeling the interaction of an ultrasonic pulse with different types of defects
in the material. Furthermore, a realistic waveguide can reveal changes in geometry or material
properties along the propagation direction or it may be subjected to complex boundary con-
ditions. In order to conduct a simulation of the entire set-up, a fully numerical modeling is
required. Again, the most common approach is the Finite Element Method, as it is a very gen-
eral and flexible tool, where arbitrary geometries or materials and numerous different boundary
conditions can be described. Unfortunately, the simulation of guided waves is computationally
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extremely expensive due to the typically large dimensions of the structures, high frequencies
(leading to small time steps in the simulation) and correspondingly small wavelengths (requir-
ing very fine spatial discretization) [70]. Additionally, when modeling cracked structures, an
extremely fine discretization is needed due to the stress singularity at the crack tip. Several al-
ternative methods have been applied to the simulation of guided waves, leading to comparable
computational costs. For instance, the well-known Boundary Element Method (BEM) can be
employed [71–73]. Using this method, only the boundary of the computational domain is dis-
cretized, which reduces the dimension of the resulting matrix equations but imposes restrictions
on the properties of the domain. For instance, this method is not well-suited if the distribution
of material parameters is complex or if small cracks are introduced in the structure. Further-
more, the modeling of anisotropic materials is not trivial. Other numerical methods that can
be found in the literature include traditional Finite Differences (FD) [74] or the Elastodynamic
Finite Integration Technique (EFIT) [75, 76].

The Scaled Boundary Finite Element Method As an alternative to the previously mentioned
numerical approaches, the Scaled Boundary Finite Element Method (SBFEM) has been pro-
posed by Wolf and Song in the 1990s [77–79] and evolved rapidly over the last years. This
method originated from concepts to model unbounded domains using Finite Element tech-
niques [80]. Its basic idea is to only discretize the boundary of a computational domain and
translate the resulting mesh along a scaling direction in order to describe the complete geo-
metry. This generally leads to semi-analytical equations for the physical variables (details
will be presented in Chapter 2.3). This concept has been extended to describe bounded do-
mains by scaling the discretization of the boundary with respect to a scaling center, which is
positioned somewhere in the interior of the domain. Both formulations for bounded and un-
bounded domains have been applied successfully to many problems in elastostatics [81,82] and
elastodynamics [83–85] as well as diffusion [86]. In many applications it drastically reduces
computational costs compared with the traditional Finite Element Method. Particularly, this
method is advantageous when modeling cracked structures. As has been demonstrated in nu-
merous applications [87–89], the side-faces of a simple crack do not require discretization and
the stress-singularity can be treated in an elegant way. Recently, sophisticated solution proce-
dures have been developed that are suited to employ the SBFEM for elastodynamic problems at
high frequency5 [90]. However, the current work is, to the author’s knowledge, the first attempt
to apply this method to the modeling of ultrasonic wave propagation.

The SBFEM is a promising tool for the analysis of guided waves for several reasons. First,
we are typically addressing large but highly regular structures. These geometries can be de-
scribed effectively by discretizing the boundary only. Second, in NDT and SHM applications
the interaction of ultrasonic waves with cracks is of interest. The efficient discretization of
cracks is one of the major advantages of this method. Third, in these applications, simulations
typically have to be performed many times with slightly varying geometry or material parame-

5From the perspective of numerical analysis, high frequency means that the smallest relevant wavelength is
significantly smaller than the dimension of the structure. Hence, the frequency range has to be discussed in con-
junction with the material parameters and the typical size of the structure, see Section 3.7.1.
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CHAPTER 1. INTRODUCTION

ters. This is done either for numerical studies to analyze the interaction of wave modes with
different defects, or to solve an inverse problem. The simple discretization of the geometry
and particularly a crack allows for a highly efficient re-meshing in the SBFEM, compared to
standard FEM approaches.

Outline In the following chapter, some basic concepts are presented that will be referred to
throughout the thesis. The required governing equations of elastodynamics are briefly summa-
rized in the first section. After that, some very basic Finite Element techniques are described
as far as they are essential to understand the derivation of the Scaled Boundary Finite Element
Method. A short introduction to the SBFEM is given to explain the underlying concept and
highlight the differences and commonalities with traditional Finite Elements.

Chapter 3 addresses guided waves in plate structures. An approach is developed to compute
dispersion relations and mode shapes. For additional information, the reader is also referred to
the corresponding publications [91–93] . It is based on the SBFEM but is highly specialized for
the application of guided waves and hence is derived in much detail. Only the through-thickness
direction of a plate structure has to be discretized in the Finite Element sense, while the direction
of propagation is described analytically. For the discretization, a recently developed class of
higher-order spectral elements is employed that drastically increases computational efficiency.
Additionally, a new approach to compute the group velocities of propagating modes is derived
in this work.

In Chapters 4 and 5 the computation of dispersion relations is extended to include general
three-dimensional waveguides of arbitrary cross-section (see also [94, 95]) and axisymmetric
waveguides [96–98], respectively. The extension to the three-dimensional case is generally
straightforward but involves a discretization with two-dimensional elements. This can be cum-
bersome and computationally much more expensive than in the case of plate structures. It is
discussed how two-dimensional higher-order elements can be applied effectively and how sym-
metry axes can be utilized to reduce computational costs. In addition, a novel mode-tracing
algorithm is developed in order to determine which solutions in the dispersion curves represent
the same modes. For the modeling of axisymmetric waveguides, the governing equations are
formulated in a cylindrical coordinate system. The displacement field in the circumferential
direction is decomposed by means of a Fourier series. As a result, only the through-thickness
direction of the waveguide has to be discretized, similarly to the case of plate structures.

In Chapter 6, embedded waveguides are discussed [99]. This topic is of high relevance
in many practical applications, but the modeling of embedded waveguides is extremely cum-
bersome and computationally expensive in other approaches. In this work, the effect of the
surrounding medium is approximated by a simple dashpot boundary condition that can easily
be implemented and does not require any additional degrees of freedom compared to a free
waveguide.

A novel solution procedure for particular applications is presented in Chapter 7 (see [100]).
It is based on the SBFEM formulation but uses a different technique to solve for the wavenum-
bers and mode shapes of propagating modes. In contrast to the general formulation, it is possible
to selectively trace the modes that can be excited in a given set-up. This procedure can be highly
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advantageous in terms of computational efficiency.
Chapter 8 applies the general transient elastodynamic formulation of the SBFEM to the

simulation of guided waves in plates [101–104]. In particular, the presented work focuses on
the interaction of the fundamental Lamb wave modes with cracks of different depth and opening
angle. The efficiency of the SBFEM is highlighted by comparing the results with standard Finite
Element Analysis.

Chapter 9 gives a short conclusion of the presented work and discusses possible further
developments and additional applications.
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Chapter 2

Fundamentals

2.1 Linear elastodynamics

2.1.1 Governing equations

This work focuses on wave propagation in solid media. Since the amplitudes of ultrasonic waves
that are excited in non-destructive testing applications are generally very small, we can assume
linear material behavior. For linear elastic media, the governing equation relating stresses and
strains at any point of the domain under consideration, is the generalized Hooke’s law [105]

σσσ = C : εεε (2.1)

where σσσ and εεε denote the Cauchy stress tensor and the infinitesimal strain tensor, respectively,
and C is the fourth-order stiffness tensor. For instance, in a three-dimensional Cartesian coor-
dinate system the stress and strain tensors read

σσσ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 , εεε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.2)

When modeling ultrasonic wave propagation, we are mainly interested in the resulting dis-
placement field. Denoting the three-dimensional displacement vector at a given position by
u = [ux uy uz]

T, the strain-displacement relationship is given by

εεε =
1
2
(∇u+(∇u)T) (2.3)

11



CHAPTER 2. FUNDAMENTALS

with the Nabla operator ∇. Note that ∇u denotes a dyadic product, hence the components of
the strain tensor are explicitly given by

εεε =

 ∂xux
1
2(∂yux +∂xuy)

1
2(∂zux +∂xuz)

1
2(∂xuy +∂yux) ∂yuy

1
2(∂zuy +∂yuz)

1
2(∂xuz +∂zux)

1
2(∂yuz +∂zuy) ∂zuz

 (2.4)

where ∂i denotes the partial derivative with respect to i. It follows immediately from Equation
(2.4) that the strain tensor is always symmetric, hence it consists of six independent components.
Using index notation, these components can be written as

εi j =
1
2
(∂iu j +∂ jui) (2.5)

with εi j = ε ji. Using Voigt notation for symmetric tensors [106], we can collect the six inde-
pendent components in one strain vector, rather than dealing with a second-order tensor. This
notation is generally favorable when applying numerical methods in order to avoid the use of
redundant components and higher-order tensors. We define the strain vector as

εεε = [εx εy εz γyz γxz γxy]
T (2.6)

with

εi ≡ εii (2.7a)
γi j ≡ 2εi j = ∂iu j +∂ jui (2.7b)

The components γi j are commonly referred to as engineering shear strains. With these defini-
tions, the strain-displacement relationship can compactly be written as

εεε = Lu (2.8)

Here L denotes the three-dimensional differential operator

L =

 ∂x 0 0 ∂y ∂z 0
0 ∂y 0 ∂x 0 ∂z

0 0 ∂z 0 ∂x ∂y


T

(2.9)

Analogously to Equation (2.6) we define the stress vector as

σσσ = [σx σy σz τyz τxz τxy]
T (2.10)
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2.1. LINEAR ELASTODYNAMICS

Here we simply define6

σi ≡ σii (2.11a)
τi j ≡ σi j (2.11b)

Hook’s law in vector notation reads
σσσ = Dεεε (2.12)

where D is the 6×6 elasticity matrix. For instance, in case of an isotropic material the elasticity
matrix is given by

D =
2G

(1−2ν)



1−ν ν ν
ν 1−ν ν
ν ν 1−ν

1−2ν
2

1−2ν
2

1−2ν
2


(2.13)

with the shear modulus G and Poisson’s ratio ν . If the stresses are given, the strains can be
obtained after inversion of the elasticity matrix (which is always non-singular and symmetric):

D−1σσσ = εεε (2.14)

Denoting by f̂ = [ f̂x f̂y f̂z]
T any loads acting on the solid, the equilibrium equations of elasto-

statics are given by
σ ji, j + f̂i = 0 (2.15)

or
LTσσσ+ f̂ = 0 (2.16)

Adding an inertial term leads to the equation of motion [105]

LTσσσ−ρü+ f̂ = 0 (2.17)

where u is the displacement vector, (¨) denotes the second derivative with respect to time and ρ
is the mass density. Equation (2.17) is also known as the elastodynamic wave equation. It can
be transferred into frequency domain to read

LTσσσ+ω2ρu+ f̂ = 0 (2.18)

with ω being the angular frequency.

6The variables τi j are only introduced to distinguish between normal and shear stresses according to common
practice.
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2.1.2 Plane strain and plane stress

It is often desirable to simplify the modeling of a physical process by replacing the domain of
interest by an adequate two-dimensional geometry. However, in general elastodynamics there
is no unique two-dimensional representation of the governing equations. Instead one usually
chooses between two approximations, namely the plane strain and plane stress assumption,
respectively. Assume for instance the displacement field is independent of one coordinate, say
x. This approximation is often valid if the domain of interest is of quasi-infinite dimension in
this direction. If this is the case, the strains are restricted to the yz-plane, hence the plane strain
assumption is valid. The strains are then written as7

εεε = [εy εz γyz]
T (2.19)

and the elasticity matrix in case of isotropic material behavior8 follows from Equation (2.13)
by eliminating the rows and columns corresponding to the unused degrees of freedom:

Dpl.strain =
2G

(1−2ν)

 1−ν ν
ν 1−ν

1−2ν
2

 (2.20)

The plane stress approximation on the other hand is applied when the stresses can be assumed
to have non-zero values only within a plane, e. g.

σσσ = [σy σz τyz]
T (2.21)

The strains are obtained by eliminating the unused degrees of freedom from the inverse of the
elasticity matrix D−1 (cf. Equation (2.14)). Inverting the resulting matrix again yields the
elasticity matrix in the plane stress approximation:

Dpl.stress =
2G

1−ν

 1 ν
ν 1

1−ν
2

 =


E

1−ν2
Eν

1−ν2

Eν
1−ν2

E
1−ν2

G

 (2.22)

with the Young’s modulus E = 2G(1 + ν). Note that in terms of implementation both ap-
proximations differ only by the definition of the elasticity matrix. In both cases the strains,
stresses and displacements are restricted to one plane. The difference is that when using the
plane strain/stress assumption the unused strain/stress components are neglected initially and
the resulting stresses/strains are obtained based on this simplification.

7For the sake of conciseness, the same symbols are used irrespective of the coordinate system, when the mean-
ing is obvious from the context.

8If general anisotropy has to be considered, all strain components can be coupled. In this case the plane strain
assumption often does not yield a satisfactory approximation (see Section 3.6).
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2.2. THE FINITE ELEMENT METHOD

Ω

y

z

Γ

(a)

Ωe

(b)

Figure 2.1: (a) Computational domain Ω with boundary Γ; (b) schematic discretization using
four-sided elements.

2.2 The Finite Element Method
The purpose of this and the following section is to briefly introduce the concept of the Scaled
Boundary Finite Element Method in comparison with the traditional Finite Element Method.
For conciseness, the formulation will be restricted to the simple case of two-dimensional elas-
tostatics. Only the most essential equations that are required to clarify the underlying concepts
will be presented in this chapter. For a more detailed description of the existing formulations,
the reader is referred to well-known textbooks on the FEM [107–109] as well as key publi-
cations on the SBFEM [77, 78, 90, 110] and the only textbook on this method published so
far [79]. For the particular case of ultrasonic waves in elastic waveguides, special formulations
of the SBFEM will be derived in detail in the following chapters.

Consider a two-dimensional arbitrarily shaped (but finite) domain, denoted by Ω as indi-
cated in Figure 2.1a. For now, it is assumed to consist of a homogeneous solid medium, hence
the governing equations formulated in the previous section can be applied. The idea of the
traditional FEM is to divide the computational domain Ω into a finite number of subdomains
(elements) Ωe, such that (Figure 2.1b)

Ω≈∑
e

Ωe (2.23)

Within each element, it is assumed that the (unknown) displacement field can be approxi-
mated using simple polynomial functions of given order, the so-called shape functions. In our
two-dimensional example, these polynomials are functions of both y and z and they are used
to approximate both components of the displacement vector separately. For instance, consider
a rectangular element, on which we choose to approximate the displacement field by second-
order (quadratic) polynomials in each direction.9 Generally the approximation is unique, if the
displacements are known at a sufficient number of points, depending on the order of the poly-

9This type of element is very common in traditional Finite Element analysis. However, there are numerous
other possibilities that will not be discussed here. In the SBFEM we choose four-sided (if not one-dimensional)
isoparametric higher-order spectral elements that will be introduced in the following chapters.
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nomials. Consequently it suffices to compute the solution at a given number of discrete points
rather than trying to solve for the continuous displacement field. The discrete points are referred
to as nodes.

More precisely, one shape function N̂i(y,z) is assigned to each node within an element. The
shape function corresponding to node i is defined to equal one at this node and zero at all other
nodes. Examples are presented in Figures 2.2a and 2.2b. The analytical functions for this type
of two-dimensional element are given in Table 2.1.

(a) (b)

Figure 2.2: Rectangular element and examples for quadratic shape functions corresponding to (a)
a corner node and (b) a node on the edge.

Table 2.1: Nodal coordinates ηi, ξi and corresponding shape functions for a quadratic
element in one and two dimensions [111].

2D 1D

i (ηi,ξi) Ni(η ,ξ ) ηi Ni(η)

1 (1,1) 1
4(1+η)(1+ξ )− 1

2N5− 1
2N8 −1 1

2(1−η)− 1
2(1−η2)

2 (−1,1) 1
4(1−η)(1+ξ )− 1

2N5− 1
2N6 0 (1−η2)

3 (−1,−1) 1
4(1−η)(1−ξ )− 1

2N6− 1
2N7 1 1

2(1+η)− 1
2(1−η2)

4 (1,−1) 1
4(1+η)(1−ξ )− 1

2N7− 1
2N8

5 (0,1) 1
2(1−η2)(1+ξ )

6 (−1,0) 1
2(1−η)(1−ξ 2)

7 (0,−1) 1
2(1−η2)(1−ξ )

8 (1,0) 1
2(1+η)(1−ξ 2)
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2.2. THE FINITE ELEMENT METHOD

We define the vector of nodal displacements un, which consists of all displacement compo-
nents at all nodes

un = [uy1 uz1 uy2 uz2 . . . uyn uzn]
T (2.24)

with n being the number of nodes. The displacement vector at any point inside the element is
obtained as

u(y,z) = N̂(y,z)un (2.25)

with

N̂(y,z) =

[
N̂1(y,z) 0 N̂2(y,z) 0 . . . N̂n(y,z) 0

0 N̂1(y,z) 0 N̂2(y,z) . . . 0 N̂n(y,z)

]
(2.26)

Hence, the displacement at a given point is approximated as the sum over all shape functions,
each one weighted with the displacement at the corresponding node, for instance

uy(y,z) =
n

∑
i=1

N̂i(y,z)uyi (2.27)

 y

 z

η=1

ξ=1

ξ=−1

η=−1

(a)

⇒

−1 0 1

−1

0

1

 η

 ξ
 

(b)

Figure 2.3: (a) Distorted four-sided element and (b) mapped element in local coordinate system.

In practice, the elements of a given discretization will differ in shape in order to best ap-
proximate the domain of interest. To simplify the implementation, each element is transformed
into a local coordinate system (η ,ξ ). The local coordinates are defined to equal 1 and −1 at
the element edges (Figure 2.3a). This coordinate transformation can be interpreted as map-
ping the arbitrary four-sided element on a standard square element (Figure 2.3b). Formally, the
coordinate transformation is defined by the Jacobian matrix

J =

[
∂ηy ∂ηz
∂ξ y ∂ξ z

]
(2.28)
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The shape functions can be defined in the local coordinate system (denoted by Ni(η ,ξ ) and
N(η ,ξ ), respectively), hence they are identical for all elements. The derivatives of the shape
functions with respect to the Cartesian coordinates are obtained as{

∂yNi(η ,ξ )
∂zNi(η ,ξ )

}
= J−1

{
∂ηNi(η ,ξ )
∂ξ Ni(η ,ξ )

}
(2.29)

In order to obtain a solution for the displacement field, a weak form of the governing equa-
tions is usually derived by applying either the method of weighted residuals or the potential en-
ergy principle. While both approaches lead to mathematically equivalent formulations, the po-
tential energy principle is preferred in this work since it seems more intuitive from the viewpoint
of physics. The total potential energy of the domain Ω in absence of body loads10 reads [112]

Π =

ˆ
Ω

S(εεε) dΩ−
ˆ

Γ
uT f̂ dΓ (2.30)

where S(εεε) denotes the strain-energy density, which can be defined by

σσσ =
∂S(εεε)

∂εεε
(2.31)

The second term in Equation (2.30) describes the work associated with external forces acting
on the boundary Γ.

The first variation of Equation (2.30) is given by

δΠ =

ˆ
Ω

δεεεT ∂S(εεε)
∂εεε

dΩ−
ˆ

Γ
δuT f̂ dΓ = 0 (2.32)

Using Equations (2.31) and (2.8) yields
ˆ

Ω
δ (Lu)T σσσ dΩ−

ˆ
Γ

δuT f̂ dΓ = 0 (2.33)

We can now substitute the nodal displacements to obtain
ˆ

Ω
δ (LNun)

T σσσ dΩ−
ˆ

Γ
δ (Nun)

T f̂ dΓ = 0 (2.34)

Note that each entry of un describes a displacement component at one node, which is indepen-
dent of the coordinates. Hence we can write

δun
T
(ˆ

Ω
(LN)T σσσ dΩ− fn

)
= 0 (2.35)

10Body loads are caused by forces that act on the computational domain (in contrast to surface tractions that are
applied on the boundary). Typical examples in elastodynamics are gravity or centrifugal forces. These effects will
always be neglected in this work.
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2.2. THE FINITE ELEMENT METHOD

where fn are the external nodal forces. We define the strain-displacement transformation matrix

B = LN (2.36)

which contains the spatial derivatives of the shape functions:

B =

 ∂yN1 0 . . . ∂yNn 0
0 ∂zN1 . . . 0 ∂zNn

∂zN1 ∂yN1 . . . ∂zNn ∂yNn

 (2.37)

Note that, since the shape functions are known polynomials, their derivatives can be calculated
explicitly. Substituting Equations (2.8) and (2.12) for the strains and stresses into (2.35) and
using Equation (2.36) yields

δun
T
(ˆ

Ω
BTDBun dΩ− fn

)
= 0 (2.38)

Since the virtual displacements δun are arbitrary, we obtain(ˆ
Ω

BTDB dΩ
)

un− fn = 0 (2.39)

The integral only contains known functions. We define the stiffness matrix

K =

ˆ
Ω

BTDB dΩ (2.40)

so that
Kun− fn = 0 (2.41)

In the implementation, the integration in Equation (2.40) is generally performed numerically,
using e. g. Gauss quadrature. Equation (2.41) is a linear system of equations. In order to cre-
ate a well-defined physical problem, we have to impose adequate boundary conditions, i. e.
everywhere on the boundary either the displacements (Dirichlet boundary condition) or forces
(Neumann boundary condition) will be given.11 After the boundary conditions have been en-
forced by substituting the corresponding values in the vectors un and fn, Equation (2.41) can be
solved using standard algorithms.

11Robin boundary conditions, which state a relationship between the approximated function and its normal
derivative are common in other applications of the FEM but will not be discussed here.
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ξ = 0

ξ = 1
ξ

η =−1

η = 1

y

z

Figure 2.4: Discretization using the Scaled Boundary Finite Element Method.

2.3 The Scaled Boundary Finite Element Method
When applying the concept of the Scaled Boundary Finite Element Method, only the boundary
of the computational domain is discretized. This discretization of the boundary, however, can
be performed using typical Finite Elements.12 When dealing with a two-dimensional domain, a
one-dimensional boundary is discretized, while the general three-dimensional case requires the
discretization of a two-dimensional surface.

Again, the domain depicted in Figure 2.1a is addressed, but now its boundary Γ is discretized
using line-elements. As an example, Figure 2.4 shows one possible three-noded (quadratic)
element. The adequate one-dimensional shape functions N(η), defined in the local coordinate
η are given in Table 2.1. In order to describe the full geometry, a crucial step is to perform a
special coordinate transformation for each element. As indicated in Figure 2.4, the coordinate η
is defined along the boundary and equals−1 and 1 at the extremities of the element, respectively.
This coordinate is simply the one-dimensional representation of a local coordinate system as
utilized in the traditional FEM. We now define a point at an arbitrary position within the domain.
This point will be referred to as scaling center. The second coordinate ξ is defined to equal zero
at the scaling center and one everywhere on the boundary. We can think of one element of the
SBFEM discretization as the area that is defined by the element on the boundary and the lines
connecting the scaling center with the extremities of the element.

We can describe an arbitrary point in the interior of the domain by

y(ξ ,η) = ξ N(η)yn (2.42a)
z(ξ ,η) = ξ N(η)zn (2.42b)

where yn and zn are the nodal coordinates. Hence, we obtain a point inside the domain by
scaling the boundary in the direction of the scaling center by multiplication with the coordinate
ξ . The name of the Scaled Boundary Finite Element Method is derived from this geometric
interpretation. Equations (2.42) imply that the same shape functions can be applied for every

12This is to say, the concept is not similar to well-known Boundary Element Methods, which involve a funda-
mentally different strategy to describe the interaction of points on the boundary.
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2.3. THE SCALED BOUNDARY FINITE ELEMENT METHOD

value of ξ within the domain. The same shape functions are also used to interpolate the dis-
placements u(ξ ,η) = [uy(ξ ,η) uz(ξ ,η)]T on the boundary. To describe the displacements at
an arbitrary position in the domain we write

u(ξ ,η) = N(η)un(ξ ) (2.43)

Note the fundamental difference compared to the interpolation in the Finite Element Method
(Equation (2.25)). When applying the FEM, the nodal displacements are discrete values and the
interpolation is performed using two-dimensional shape functions on each element. Contrary
in the SBFEM the nodal displacements are continuous functions of the radial coordinate ξ and
consequently the shape functions depend on one spatial coordinate only. Applying this type
of interpolation yields a semi-analytical formulation, meaning that only one spatial coordinate
is discretized in the Finite Element sense while in the second direction all equations are (at
this stage) treated analytically. It is interesting to note that the partial derivatives of the spatial
coordinates that are required to construct the Jacobian matrix, are simply given by

y,ξ = Nyn y,η = ξ N,ηyn (2.44a)

z,ξ = Nzn z,η = ξ N,ηzn (2.44b)

where comma-separated indices denote partial derivatives with respect to the given variable. A
very detailed and concise description of the coordinate transformation and the resulting formu-
lation in the general three-dimensional case can be found in [77] and will not be repeated here.
For the particular case of guided ultrasonic waves, the novel formulations will be presented in
detail in the following chapters. For now it suffices to understand that the interpolation (2.43)
can be substituted into the virtual work principle, similar to the procedure in the Finite Element
Method. Since we are dealing with semi-analytical equations, we have to treat both spatial
coordinates differently. For instance, in the stress-displacement relationship we separate the
derivatives with respect to both spatial coordinates and write

σσσ(η ,ξ ) = D(B1(η)un(ξ ),ξ +
1
ξ

B2(η)un(ξ )) (2.45)

where B1 includes the shape functions and B2 their spatial derivatives (similar to Equation
(2.37)). Explicit expressions for these matrices are given in Appendix A.2 for the sake of
completeness. After substituting the semi-analytical stress-displacement relationship into the
virtual work principle, we have to compute three matrices that include the combinations of B1
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and B2:

E0 =

ˆ
Γ

B1
TDB1|J| dη (2.46a)

E1 =

ˆ
Γ

B2
TDB1|J| dη (2.46b)

E2 =

ˆ
Γ

B2
TDB2|J| dη (2.46c)

These Equations should be compared to the definition of the stiffness matrix in the FEM, Equa-
tion (2.40). The SBFEM requires the assemblage of three matrices while the integrations have
to be performed along the boundary of the domain only. With these definitions, the potential
energy principle can be applied similarly to the Finite Element Method. The formulation for
the stresses (2.35) is substituted and the definitions of the coefficient matrices (2.46a) are used.
The explicit derivation as given in [77] is not repeated here in detail. An equation for a stiffness
matrix only including the degrees of freedom on the boundary is obtained:

(K−E1)E0
−1(K−E1

T)−E2 = 0 (2.47)

Equation (2.47) can be transferred into an algebraic Riccati equation and then solved to ob-
tain the stiffness matrix. For details again refer to [77]. The procedures to solve the Ricatti
equation have been adopted from [113] and [114]. After the stiffness matrix has been obtained,
solution strategies similar to the ones known in traditional Finite Elements can be employed.
Since only the degrees of freedom on the boundary are involved in the computation, the dimen-
sions of the resulting matrix equations are generally many times smaller and consequently the
computational costs are drastically reduced.

However, there are certain advantages and drawbacks when applying this method. An obvi-
ous restriction lies in the fact that the coordinate transformation can only be employed if there
exists a point in the interior of the domain from where the whole boundary is ’visible’ (i. e. if
the geometry is a star domain in the mathematical sense). If this is not the case, the domain has
to be divided into subdomains, each of them having its own scaling center (Figure 2.5a). The
subdomains can be assembled similar to the elements in the FEM.

When choosing the semi-analytical representation of the displacement field, it is implied
that the material is homogeneous along the ξ -direction (while arbitrary distributions of material
parameters can easily be accounted for along the discretized η-direction). This assumption can
be considered to be the underlying reason why the dimension of the discretization can be re-
duced by one. On the other hand this concept leads to restrictions regarding the applicability of
the method. If the domain contains inhomogeneities, we can again divide it into an appropriate
number of subdomains with different material parameters assigned to each of them. However,
if the distribution of material properties is very complex, so that the size of the subdomains
becomes similar to the element size of a FEM discretization, the difference in computational
efficiency of both methods will not be significant. For certain cases, approaches exist to include
a continuous variation of the elastic parameters in the ξ -direction [115, 116], but the scope is
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(a) (b)

Figure 2.5: (a) Discretization of a plate with a hole, using 4 subdomains; (b) introducing a crack
into a subdomain.

fairly limited compared to the possibilities that come with a full discretization in the FEM.
As pointed out in numerous publications on the SBFEM, one particular advantage of this

method is that it offers a very elegant way to model cracks in solid structures (see e. g. [87–89,
101, 117]). A simple surface-breaking crack can be introduced into a subdomain by leaving a
small gap between two elements on the boundary and placing the scaling center at the crack
tip (Figure 2.5b). This way the side faces of the crack do not require discretization as they
are defined along the scaling direction. More importantly, since the scaling center is placed at
the crack tip, the stress-singularity that can cause severe difficulties in the FEM, is described
accurately without the necessity of refinement or other additional treatment. This feature of
the method will be used extensively in Chapter 8, where the interaction of guided waves with
cracks in plates is modeled.

Finally it should be highlighted that the SBFEM can easily be adopted to model unbounded
(infinite) domains13 [81, 83]. This is done by scaling the boundary between ξ = 1 and ξ =
∞. When applied to unbounded media, the SBFEM satisfies the radiation condition exactly
[77]. Since the discretization of the boundary is performed using Finite Elements, bounded
and unbounded domains can easily be coupled, for example in order to model soil-structure
interaction [84, 118, 119]. Similarly, an SBFEM subdomain can easily be coupled to a domain
that is fully discretized using a traditional FEM approach [120–123].

13In fact the SBFEM originally evolved from concepts to model unbounded domains using Finite Elements (see
e. g. [80, 118]).
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Chapter 3

Derivation for plate structures

In this chapter, the basic formulation is presented that has been developed in order to compute
dispersion curves and mode shapes of guided waves in different structures [91–93]. At first the
derivation is limited to the simplest case of guided waves in homogeneous plates (Lamb waves)
[20,91], which are treated using a two-dimensional approach in the plane strain approximation.
It is discussed which restrictions are to be imposed on the material’s anisotropy in order to apply
the two-dimensional formulation. The extension to layered or functionally graded plates as
well as general anisotropy is briefly summarized afterwards. The derivations in this chapter are
presented in much detail, while in the following chapters the reader will frequently be referred
back to the equations and conclusions obtained here. Many aspects of the formulation, for
instance the virtual work principle, the discretization by means of higher-order elements or
the integration scheme can be applied similarly to the more complex structures discussed in
Chapters 4 - 6 and thus will not be repeated in every detail. Moreover, many considerations like
the properties of the coefficient matrices, the choice of solution algorithms or the computation
of the group velocities are mostly identical for all cases.

Even the simplest cases discussed in this chapter are of high relevance in practical ap-
plications. Since many years approaches are being developed to apply guided waves for the
non-destructive testing or structural health monitoring of plate structures [23, 24, 26]. For all
applications of guided waves, the knowledge of their dispersive behavior is essential. While in
many approaches dispersion leads to unwanted effects that are attempted to being minimized,
there are other techniques specifically utilizing dispersion effects to obtain information about
the specimen. For instance, dispersion curves can be measured and compared with theoretical
data to obtain the thickness variation of a plate or its material constants [124–126] as well as
anisotropy effects [127, 128]. Concurrently, techniques have been studied to remove the effect
of dispersion in structural health monitoring [129, 130] and inspection [131–133] applications.
Group velocity dispersion has been assessed using time-frequency analysis [134]. General re-
marks on the dispersion properties of Lamb waves can be found in [135].

Several different approaches have been presented to obtain the dispersion properties of plate
waves. Lamb’s solution describes wave propagation in homogeneous isotropic plates of con-
stant thickness analytically [15, 20]. However, since more complex plate structures, such as
layered composites [27, 136] and functionally graded materials [137] are becoming more rele-
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vant along the trend of lightweight structures, a general approach to obtain dispersion properties
is desirable. Early approaches include the calculation of a lumped mass matrix of a layered
structure to obtain dispersion relations of Rayleigh waves [138]. The discretization of struc-
tures with thin layers has led to eigenvalue problems to compute dispersion relations [139,140].
This so-called thin-layer method has also been applied to assess the impulse response of layered
media in the time domain [141] and for the analysis of piezo-composite layers [142]. Stiffness
methods have been used to obtain approximate dispersion equations of layered media [143] and,
more recently, for the characterization of multidirectional composites [144].

The well-known matrix methods [43–47], mentioned in the introduction, are often used to
compute dispersion curves for simple homogeneous or layered waveguides [145–148]. These
methods have been extended to anisotropic cases [149], for instance they have been applied
successfully to obtain dispersion curves for orthotropic plates [150]. More recently, a different
approach utilizing the Green’s matrix and applying Fourier transformation to derive a boundary
problem for ordinary differential equations has been used to describe oscillation in multi-layered
anisotropic composites [151]. To compute the dispersion properties of plates with continuously
varying material properties in the thickness direction, a power series technique has been em-
ployed to derive approximate analytical solutions [137]. Finite Element Method to models for
plate structures can be found in e. g. [58, 152]. Also the Boundary Element Method has been
applied successfully [153] to obtain dispersion properties. The so-called WFE and SAFE meth-
ods can be used to describe waves in complex plate structures by discretizing a short section
of the waveguide or only it’s cross-section, respectively. Particularly, a formulation has been
presented for layered plates [154], anisotropic laminated strips [155] or functionally graded
piezoelectric plates, assuming the material properties to vary linearly within each element of
the discretization [156].

The formulation presented in Section 3.1 can be considered as a special case of the Scaled
Boundary Finite Element Method [91, 92]. For simple plate structures the plane strain assump-
tion is valid, so that we can employ the governing equations given in Section 2.1.2. Since the
plate is assumed to be of infinite length, it is sufficient to discretize the through-thickness di-
rection and choose the direction of propagation as the scaling direction. In terms of the general
Scaled Boundary Finite Element Method this corresponds to placing the scaling center at in-
finity. Since the through-thickness direction and the scaling direction can be chosen parallel to
the axes of a Cartesian coordinate system, the coordinate transformation becomes trivial. After
computing the coefficient matrices for this particular geometry and assuming harmonic wave
propagation along the structure, a quadratic eigenvalue problem is obtained. The eigenvalues
are related to the wavenumbers of modes that can propagate in the plate. The corresponding
mode shapes are represented by the eigenvectors. To facilitate the computation, the quadratic
eigenvalue problem is transformed into a standard eigenvalue problem. The coefficient ma-
trix of this standard eigenvalue problem is the so called Z matrix, which is known from other
applications of the SBFEM [84, 157].

Since only one eigenvalue problem has to be solved at each frequency, this approach is
extremely stable and efficient. To further reduce computational costs, a particular type of higher-
order spectral elements is employed for the discretization (Section 3.2). It is demonstrated that
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3.1. SBFEM FORMULATION FOR GUIDED WAVES IN PLATES

this type of elements drastically reduces the number of nodes that are required to obtain a given
accuracy. Some details on the eigenvalue problem, particularly the properties of the involved
matrices and available solution algorithms, are discussed in Section 3.3.

By utilizing the Hamiltonian properties of the Z matrix, it is proven in Section 3.4, that the
group velocities of propagating modes can be obtained directly by computing the eigenvalue
derivatives [92, 94, 95]. This is highly advantageous, since the computation requires only few
vector multiplications and can be performed directly at a given frequency.

In Sections 3.5 and 3.6, the proposed approach is extended to include shear-horizontal
modes and arbitrary anisotropic material behavior, respectively. Details on the implementation
of the algorithm are described in Section 3.7.

Numerical examples in Section 3.8 demonstrate the applicability of the proposed approach
to different plate structures and the extremely fast convergence of the algorithm towards analyt-
ical solutions.

3.1 SBFEM formulation for guided waves in plates

The plate of constant thickness h shown in Figure 3.1 is addressed. Without loss of gener-
ality the y-coordinate of a Cartesian coordinate system is chosen along the through-thickness
direction of the plate while the z-coordinate is parallel to the plate’s surfaces. The plate can be
assumed to be of infinite dimension in the x-direction, and is thus handled as a two-dimensional
problem in the plane strain formulation (Section 2.1.2). It covers a domain Ω of infinite length
in positive z-direction with an interface at z = 0; the domain’s boundary is denoted by Γ.

z

h

y

Ω +∞

Γ

Figure 3.1: Plate geometry for the Scaled Boundary Finite Element formulation with a discretized
interface.

The displacement vector u = u(y, z) in two dimensions is expressed as u = [uy uz]
T, where

the displacement components in y- and z-direction are denoted as uy = uy(y, z) and uz = uz(y, z),
respectively. As described in Section 2.1, the stress-displacement relationship is given as

σσσ = [σy σz τyz]
T = Dεεε = DLu (3.1)
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η

+1

−1

0
z

y Figure 3.2: One element of the discretiza-
tion, defined in the local coordinate η .

where the differential operator L in the two-dimensional case reads [106]

L =

[
∂y 0 ∂z

0 ∂z ∂y

]T

(3.2)

and D is the 3×3 elasticity matrix. Using the concept of the Scaled Boundary Finite Element
Method, only the through-thickness direction of the plate is discretized in the Finite Element
sense. An analytical solution will be employed for the z-direction. Hence, for plate structures
we only have to discretize a single straight line, using one-dimensional elements. In this par-
ticular case, the coordinate transformation becomes very simple, since the scaling direction is
identical with the positive z-axis. Each one-dimensional element is defined in its local coordi-
nate η , which in this case is parallel to the y-axis (Figure 3.2). Hence, the Jacobian determinant
can be written as

|J|=
∣∣∣∣∣ ∂ηy ∂ηz

∂ξ y ∂ξ z

∣∣∣∣∣=
∣∣∣∣∣ ∂ηy ∂ηz

∂zy ∂zz

∣∣∣∣∣=
∣∣∣∣∣ y,η 0

0 1

∣∣∣∣∣= y,η (3.3)

For one element, the coordinate transformation reads

y =
l
2
(η +1) (3.4)

where the element length (in the global coordinate system) is denoted by l. Consequently, we
obtain

|J|= y,η =
l
2

(3.5)

For simplicity, the following formulation is derived for one element. If several elements are
used for the discretization, they can be assembled following standard Finite Element procedures
[107]. In order to separate the derivatives with respect to z and η , the strain-displacement
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relationship (Equation (2.8)) is rewritten as

εεε = b1u,z +
1

y,η
b2u,η (3.6)

with

b1 =

[
0 0 1
0 1 0

]T

(3.7a)

b2 =

[
1 0 0
0 0 1

]T

(3.7b)

The discretization of the element is defined by placing a given number of nodes at the nodal
coordinates ηi. The geometry as well as the physical variables are interpolated using the cor-
responding shape functions Ni(η). For a plate of constant thickness, the geometry of the entire
plate in two dimensions can be obtained by translating the one-dimensional mesh in z-direction.
This implies that the same shape functions apply for all lines with constant z. This proce-
dure is equivalent to scaling the boundary between z = 0 and z = ∞ with respect to a scaling
center placed at −∞ in the general formulation of the SBFEM. Along the horizontal lines pass-
ing through the nodes on the vertical boundary and extending to +∞, displacement functions
u j(z) = [uy j(z) uz j(z)]T are introduced. These nodal displacements are collected in one vector:

un = [uy1(z) uz1(z) uy2(z) uz2(z) . . . uyn(z) uzn(z)]T (3.8)

where n is the number of nodes. Consequently, the displacements at a point of the geometry
can be expressed as

u(z,η) = N(η)un(z) (3.9)

Where the matrix of shape functions is assembled as

N(η) =

[
N1(η) 0 N2(η) 0 . . . Nn(η) 0

0 N1(η) 0 N2(η) . . . 0 Nn(η)

]
(3.10)

Note that, at this stage un(z) can be arbitrary functions of z, while the shape functions depend on
η only. For the sake of conciseness, the dependency on η will usually be omitted. Substituting
Equation (3.9) into (3.6) leads to

εεε = B1un,z(z)+B2un(z) (3.11)
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where the matrices

B1 = b1N (3.12a)

B2 =
1

y,η
b2N,η (3.12b)

are introduced for convenience. Substituting (3.11) into (3.1), the stress field can be written as

σσσ = D
(
B1un,z(z)+B2un(z)

)
(3.13)

With the above definitions, a semi-analytical Scaled Boundary Finite Element equation is de-
rived using the principle of virtual work. The derivation follows the formulation given in [158],
while additional terms have to be added for the dynamic problem.

A virtual displacement field δu(y,z) is applied to the structure, leading to corresponding
virtual strains

δεεε(y,z) = Lδu(y,z) (3.14)

The virtual work principle for the dynamic case (again in absence of body loads) reads

δU +δK−δW = 0 (3.15)

where U denotes the internal strain energy, K is the kinetic energy of the structure and W is the
external work caused by boundary tractions f̂(y,z) acting on the interface. The contribution of
the three terms to the virtual work will be derived in the following.

Integrating the boundary tractions over the interface of the plate, the virtual external work
yields

δW =

ˆ 1

−1
δuT f̂|J|dη (3.16)

Applying the discretization
δu(η ,z) = Nδun(z) (3.17)

results in

δW = δun
T(0)
ˆ 1

−1
NTf̂|J|dη ≡ δun

T(0)fn (3.18)

where fn are the external nodal forces on the boundary.
The virtual kinetic energy, which requires domain integration, can be written as

δK =

¨
Ω

δuT(η ,z)ρü(η ,z)dΩ =

ˆ ∞

0

ˆ 1

−1
δun

T(z)NTρNün(z)|J|dη dz (3.19)

with the mass density ρ . The mass matrix is introduced as

M0 =

ˆ 1

−1
NTρN|J|dη (3.20)
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leading to

δK =

ˆ ∞

0
δun

T(z)M0ün(z)dz (3.21)

The virtual internal strain energy is given as [158]

δU =

¨
Ω

δεεεTσσσ dΩ (3.22)

Substituting Equation (3.11) leads to

δU =

¨
Ω

[
B1δun,z(z)

]T σσσ(η ,z)|J|dΩ+

¨
Ω
[B2δun(z)]

T σσσ(η ,z)|J|dΩ (3.23)

Applying integration by parts to the first term yields

δU =

ˆ
Γ

δun
T(z)B1

Tσσσ(η ,z)|J|dΓ−
¨

Ω
δun

T(z)B1
Tσσσ,z(η ,z)|J|dΩ

+

¨
Ω

δun
T(z)B2

Tσσσ(η ,z)|J|dΩ (3.24)

For a free plate (surrounded by vacuum), the stresses at the upper and lower surface vanish.14

Hence, the first term is reduced to an integration over the interface, leading to

δU =

ˆ 1

−1
δun

T(0)B1
Tσσσ(η ,0)|J|dη−

ˆ 1

−1

ˆ ∞

0
δun

T(z)B1
Tσσσ,z(η ,z)|J|dz dη

+

ˆ 1

−1

ˆ ∞

0
δun

T(z)B2
Tσσσ(η ,z)|J|dz dη (3.25)

The first term includes the internal nodal forces on the interface, defined as [78]

qn(0) =
ˆ 1

−1
B1

Tσσσ(η ,z)|J|dη (3.26)

Using Equation (3.26) and substituting Equation (3.13) for the stress field, the strain energy is
rewritten as

δU =−
1ˆ

−1

∞̂

0

δun
T(z)

(
B1

TDB1un,zz(z)+B1
TDB2un,z(z)−B2

TDB1un,z(z)

−B2
TDB2un(z)

)
|J|dz dη +δun

T(0)qn(0) (3.27)

14Embedded waveguides, where this assumption is not valid, are discussed in Chapter 6.
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Equation (3.27) can be rewritten using the SBFEM coefficient matrices [78]

E0 =

ˆ 1

−1
B1

TDB1|J|dη (3.28a)

E1 =

ˆ 1

−1
B2

TDB1|J|dη (3.28b)

E2 =

ˆ 1

−1
B2

TDB2|J|dη (3.28c)

yielding

δU =−
∞̂

0

δun
T(z)

(
E0un,zz(z)+(E1

T−E1)un,z(z)−E2un(z)
)

dz+δun
T(0)qn(0) (3.29)

Note that

E1
T =

ˆ 1

−1
B1

TDB2|J|dη (3.30)

is valid because D is always symmetric.
Substituting the derived expressions (3.18), (3.21) and (3.29) into the virtual work statement

(Equation (3.15)) leads to

−
∞̂

0

δun
T(z)

(
E0un,zz(z)+(E1

T−E1)un,z(z)−E2un(z)−M0ün(z)
)

dz

+δun
T(0)qn(0)−δun

T(0)fn = 0 (3.31)

In order to satisfy (3.31) for arbitrary virtual displacement fields, the following two conditions
have to be fulfilled simultaneously

δun
T(0)qn(0)−δun

T(0)fn = 0 (3.32a)

E0un,zz(z)+
(
E1

T−E1
)
un,z(z)−E2un(z)−M0ün(z) = 0 (3.32b)

Equation (3.32a) implies equilibrium of forces at the interface. This equation will not be used
explicitly in absence of external boundary tractions. Equation (3.32b) is the Scaled Boundary
Finite Element equation in displacements on the cross-section. Note that (3.32a) and (3.32b) are
semi-analytical equations for the displacements, since the y-direction of the plate is discretized
in the Finite Element sense, while the nodal displacements un(z) can (until now) be arbitrary
analytical functions of z.

Depending on the application, different solution procedures have been proposed to solve for
the displacement functions un(z). In the current application, where we aim to describe guided
waves propagating along the structure towards infinity, we can postulate the solutions to be of
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the form
un(z) = eλ z−iωt ûn (3.33)

with the angular frequency ω , time t and imaginary unit i. ûn is the vector of complex displace-
ment amplitudes and λ is defined as

λ = ik (3.34)

where k is the wavenumber in the z-direction of one particular mode. The ansatz (3.33) is valid
for structures that are homogeneous in z-direction when assuming linear material behavior.
After substituting (3.33) into (3.32b) we obtain(

λ 2E0 +λ
(
E1

T−E1
)
−E2 +ω2M0

)
ûn = 0 (3.35)

For a given frequency ω , Equation (3.35) states a polynomial eigenvalue problem of second or-
der for the eigenvalues λ and eigenvectors ûn, which can be solved numerically using standard
procedures. If the plate’s interface is discretized with n nodes, the number of degrees of freedom
is g = 2n and the coefficient matrices have the dimension 2n× 2n. For a quadratic eigenvalue
problem the number of solutions is 4n. If λ is an eigenvalue, −λ is an eigenvalue as well, rep-
resenting waves propagating in positive and negative z-direction, respectively. The eigenvalues
are either real or pairs of complex conjugates. Eigenvalues with negative and positive real parts
correspond to evanescent waves decaying as z tends towards +∞ and −∞, respectively.

For the computation of dispersion curves, only pairs of purely imaginary eigenvalues (real
wavenumbers) are of interest as they represent the finite number of propagating wave modes.
The number of evanescent modes with complex wavenumber that are obtained depends on the
discretization. For increasing number of nodes the number of evanescent modes tends towards
infinity. Purely real eigenvalues belong to non-oscillating modes which decay exponentially
in positive or negative z-direction, respectively. Generally, the complex spectrum could be
used to analyze the dynamic response of the structure in terms of structural dynamics, as in
other applications of the SBFEM [90]. The eigenvectors ûn that consist of the displacement
amplitudes at all nodes of the discretization can be interpreted as the mode shapes.

The dispersion curves are obtained by solving Equation (3.35) for a given set of frequencies.
For each frequency, the wavenumbers of all propagating modes are determined. The phase
velocity cp of a mode with wavenumber k is defined as

cp =
ω
k

(3.36)

Note that the dispersion relations can also be computed by defining a set of wavenumbers and
obtaining the corresponding frequencies from Equation (3.35). This approach reduces Equation
(3.35) to a standard eigenvalue problem for ω2. However, in practical applications it is usually
more feasible to define a set of frequencies as the range of wavenumbers will not be known a
priori.
To ease the implementation and improve efficiency, Equation (3.35) is transferred into a stan-
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dard eigenvalue problem for the wavenumbers by defining the following vectors

qn(z) = E0un,z(z)+E1
Tun(z) (3.37a)

ϕϕϕ(z) =
{

un(z)
qn(z)

}
(3.37b)

where qn(z) can be identified as the internal nodal forces [82]. Substituting (3.37) into (3.32b)
leads to a first order ordinary differential equation for ϕϕϕ(z)

ϕϕϕ,z(z) =−Zϕϕϕ(z) (3.38)

with the new coefficient matrix

Z =

[
E0
−1E1

T −E0
−1

ω2M0−E2 +E1E0
−1E1

T −E1E0
−1

]
(3.39)

Since the same wavenumbers will apply for the nodal forces and displacements, the solution for
ϕϕϕ(z) can again be postulated as

ϕϕϕ(z) = eλ zψψψ (3.40)

where ψψψ contains the amplitudes of both displacements and nodal forces

ψψψ =

{
ûn

q̂n

}
(3.41)

Hence, the standard eigenvalue problem follows after substitution of (3.40) into (3.38) as

−Zψψψ = λψψψ (3.42)

Similar solution techniques are employed in the original formulation of the SBFEM, where the
dynamic stiffness matrix is also required [77]. Since then the matrix Z has often been used in
numerous applications of the SBFEM [82, 84, 101, 157, 159].

3.2 Discretization using high-order spectral elements
As mentioned before in Section 2.2, quadratic elements are most commonly utilized in tradi-
tional Finite Element approaches. A one-dimensional quadratic element is defined by three
nodes and the shape functions are second-order polynomials. More recently, certain classes
of higher-order elements have gained more attention, as they can lead to significantly higher
accuracy for the same number of nodes. Hence, to obtain a given accuracy, the number of
nodes (and thus the computational costs) can be reduced. In this work, one type of higher-order
elements [160] has been implemented as they have shown excellent convergence properties in
different applications of the SBFEM [82, 84, 87, 101]. The performance of the chosen type of
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3.2. DISCRETIZATION USING HIGH-ORDER SPECTRAL ELEMENTS

elements is also influenced by the numerical integration scheme that is employed for the compu-
tation of the coefficient matrices (Equations (3.20) and (3.28)). An elegant solution is to choose
the shape functions and the integration scheme such that the nodes coincide with the integration
points. This concept is generally referred to as spectral elements [161–165].

3.2.1 Shape functions

For plate structures, only one-dimensional elements and shape functions are required. The
shape functions can be constructed using the Lagrange interpolation polynomials [166]. An
element of order p contains p+1 nodes. The position of node i in the local coordinate system
is denoted by ηi and the corresponding shape function is obtained as

Ni(η) =
p+1

∏
k=1,k 6=i

η−ηk

ηi−ηk
(3.43)

Note that - analogously to Finite Elements - the shape function Ni equals one at node ηi and
zero at all other nodes. Using Equation (3.43), the shape functions can generally be defined
for arbitrary number and position of nodes. However, the nodal positions have to be chosen
carefully in order to obtain stable and converging results, especially if the element order is
large. Details can be found in [160]. For instance, equidistant nodes lead to the condition
number of the coefficient matrix E0 increasing rapidly with the element order. Consequently,
large numerical errors are introduced by the inversion of E0 in Equation (3.39). This is due to
the fact that the shape functions become very large close to the extremities of the element as the
element order increases. As an example, the shape function of the central node of an element
of order 10 is illustrated in Figure 3.3a.

shape function

nodes

(a) (b)

Figure 3.3: Shape function N6 (—) of the central node of an element of order 10 if the nodes (•)
are (a) equidistant and (b) positioned at the Gaussian-Lobatto-Legendre points.

As demonstrated in [160], highly accurate and stable results can be obtained by placing two
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nodes at the extremities of the elements

η1 =−1 (3.44a)
ηp+1 = 1 (3.44b)

and the inner p− 1 nodes at the Gauss-Lobatto-Legendre points (Figure 3.3b). These points
satisfy the condition

d
dη

Pp(ηi) = 0 for i = 2 . . . p (3.45)

where Pp denotes the Legendre polynomial of order p [167]. Using these nodal coordinates, the
maximum of each shape function is one (at the corresponding node). Hence, large values are
avoided and the condition numbers of the coefficient matrices are drastically reduced compared
to evenly spaced nodes. Additionally, based on these nodal coordinates, the concept of spectral
elements can be applied, as there exists a numerical quadrature scheme that utilizes the same
positions for the integration.

3.2.2 Numerical integration

The numerical integration scheme that uses the coordinates ηi as defined in (3.44) and (3.45)
as integration points, is the Gaussian-Lobatto-Legendre quadrature [168, 169]. Analogously
to traditional Gaussian quadrature, the integral is replaced by a sum. The function to be in-
tegrated is evaluated at the integration points ηi and multiplied by a corresponding weight wi.
Consequently, the coefficient matrices and the mass matrix are obtained as

E0 =
p+1

∑
α=1

wαNT(ηα)b1
TDb1N(ηα)|J| (3.46a)

E1 =
p+1

∑
α=1

wαNT
,η(ηα)b2

TDb1N(ηα)|J| (3.46b)

E2 =
p+1

∑
α=1

wαNT
,η(ηα)b2

TDb2N,η(ηα)|J| (3.46c)

M0 =
p+1

∑
α=1

wαρNT(ηα)N(ηα)|J| (3.46d)

Since the integration points coincide with the element nodes, and each shape function equals
zero at all but one nodes, many entries of the coefficient matrices vanish [84]. Note that the
derivatives N,η generally have non-zero values at all nodes. More specifically, we obtain the
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following expressions for the 2×2 submatrices, relating nodes i and j

E0i j = δi jwib1
TDb1|J| (3.47a)

E1i j = w jNT
i,η(η j)b2

TDb1|J| (3.47b)

E2i j =
p+1

∑
α=1

wαNT
i,η(ηα)b2

TDb2NT
j,η(ηα)|J| (3.47c)

M0i j = δi jwiρI2|J| (3.47d)

with the weights w, the Kronecker delta δi j and the 2× 2 identity matrix I2. Hence, when
using spectral elements the summation is only required to compute the submatrices of E2. The
mass matrix M0 is always diagonal. E0 is generally block-diagonal if arbitrary anisotropic
material behavior is assumed. On the other hand, if the material can be considered as isotropic
or orthotropic, i. e. the elasticity matrix is given as

D =

 D11 D12 0
D12 D22 0

0 0 D33

 (3.48)

the coefficient matrix E0 is diagonal as well. In that case we obtain

b1
TDb1 =

[
0 0 1
0 1 0

] D11 D12 0
D12 D22 0

0 0 D33


 0 0

0 1
1 0

=

[
D33 0

0 D22

]
(3.49)

and the blocks on the diagonal can be simplified as

E0i j = δi jwi|J|
[

D33 0
0 D22

]
(3.50)

Consequently, the matrices M0 and E0 can then be stored as vectors. More importantly, the in-
version of E0, which is required for the computation of the Z-matrix (Equation (3.39)), becomes
trivial, increasing numerical stability and efficiency of the computation.

The Gaussian-Lobatto-Legendre quadrature is exact for polynomials up to order 2p−1
[170]. The coefficient matrices E1 and E2 that require integration of polynomials of order
2p− 1 and 2p− 2, are fully integrated. E0 and M0 are of order 2p and consequently will be
under-integrated by one order [84].

3.2.3 Element order

The through-thickness direction of the plate has to be discretized with a given number of ele-
ments. The numerical studies in Section 3.8 show examples of how to choose the number and
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order of elements. The discretization that leads to converged results depends on the complex-
ity of the modes which are of interest. The complexity and number of modes tend to increase
with frequency, hence, a finer discretization is required for higher frequencies. Furthermore,
the number of required nodes depends on the chosen type and order of elements. As shown in
the numerical examples, the use of higher-order elements lead to more accurate results for the
same number of nodes compared to elements of low order.

3.2.4 Plates with varying material parameters
One advantage of the proposed method lies in the fact that it can easily be applied to structures
with varying material parameters in the thickness direction. These can be composites consist-
ing of several layers of different materials as well as functionally graded materials, where the
elastic constants vary continuously along the thickness. The material parameters only affect the
coefficient matrices, which can easily be modified. For a layered structure, this can be achieved
by discretizing each layer with one element as indicated in Figure 3.4.

In the case of functionally graded materials, the elasticity matrix and density become func-
tions of y. Since the integrations in the y-direction are performed numerically, this can be taken
into account by simply assigning different values for D and ρ to each node, according to its
y-coordinates. Hence, the material parameters can be arbitrary functions of y, regardless of the
chosen discretization. The parameters can vary within one element as long as the number of
nodes is high enough to represent the change in material properties sufficiently.

z

h

y

+∞
material 1

material 2

material 3

material 4

Figure 3.4: Discretization of a layered structure.
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Table 3.1: Properties of the coefficient matrices.

symmetry diagonal definiteness

M0 symmetric yes positive definite
E0 symmetric (block-)diagonal positive definite
E1 non-symmetric no indefinite
E2 symmetric no positive semidefinite

E1
T−E1 skew-symmetric no positive semidefinite

3.3 Properties of the eigenvalue problem

3.3.1 Properties of the coefficient matrices

For later reference, some basic properties of the coefficient matrices are briefly summarized in
Table 3.1. It has been mentioned before that, when using spectral elements, the matrix M0 is
always diagonal and E0 is diagonal in case of isotropic or orthotropic material behavior and
block-diagonal otherwise. Moreover, both matrices are positive definite,15 i. e. all eigenvalues
are positive (when M0 and E0 are diagonal, this is a trivial property, as all entries on the diagonal
are positive, cf. Equations (3.47a) and (3.47d).

The matrix E2 is also symmetric, as can be seen directly from Equation (3.47c). It is positive
semidefinite since some of the eigenvalues of E2 are always zero. Consequently, E2 is always
singular. Physically, these singularities represent rigid-body motions, corresponding to transla-
tions of the complete structure along one of the coordinate axes without deformation [77, 171].

The matrix E1 is non-symmetric and indefinite. Typically, it is (close to) singular, depending
on the chosen discretization. However, the matrix E1

T−E1 that represents the linear term of
the quadratic eigenvalue problem is often non-singular (depending on the application), skew-
symmetric and hence positive semidefinite16.

3.3.2 Hamiltonian structure

The matrix Z that is assembled in order to derive a standard eigenvalue problem, reveals a
Hamiltonian structure [172], i. e.

(J2gZ)T = J2gZ (3.51)

15A real symmetric matrix is positive definite/positive semidefinite if it has only positive/non-negative eigen-
values. More generally, a real quadratic (not necessarily symmetric) matrix A is positive (semi)definite if its
symmetric part 1/2(AT +A) is positive (semi)definite.

16For a skew-symmetric matrix, the symmetric part and the corresponding eigenvalues vanish. Hence, a skew-
symmetric matrix is always positive semidefinite.

39



CHAPTER 3. DERIVATION FOR PLATE STRUCTURES

with

J2g =

[
0 Ig

−Ig 0

]
(3.52)

where Ig denotes the g×g unitary matrix. Note that J2g is skew-symmetric:

JT
2g =−J2g (3.53)

The validity of Equation (3.51) can be shown by substituting

J2gZ =

[
ω2M0−E2 +E1E0

−1E1
T −E1E0

−1

−E0
−1E1

T E0
−1

]
(3.54)

and

(J2gZ)T =

[
ω2M0

T−E2
T +(E1E0

−1E1
T)T −(E0

−1E1
T)T

−(E1E0
−1)T (E0

−1)T

]
(3.55)

As the coefficient matrices M0,E0,E2 are symmetric, Equation (3.51) follows immediately
from (3.54) and (3.55).

3.3.3 Algorithms

The eigenvalue problem (3.42) can be solved using well-established algorithms. When using
high-order spectral elements, the number of nodes required to discretize a plate or an axisym-
metric structure will be small. Typically, the dimension of the matrix Z will be of order 100.
Standard eigenvalue solvers like the QZ algorithm [173], which is one of the algorithms that
are incorporated in the LAPACK [174] library (Linear Algebra Package, accessible in Matlab
through the function eig) lead to very accurate and rapidly converging results for this prob-
lem. This algorithm will be used for the majority of numerical examples presented in this work.
If the dimension of the eigenvalue problem becomes large, e.g. when discretizing a complex
three-dimensional waveguide, it can be worthwhile to employ an algorithm that is optimized
for solving large eigenvalue problems. The well-known ARPACK (ARnoldi PACKage) [175]
incorporates an Arnoldi method that makes use of the fact that Z is a sparse matrix to reduce
computational costs (function eigs in Matlab). It is most efficient, if only a small number of
particular eigenvalues of a large sparse matrix have to be computed.

Besides these standard algorithms there exist specific approaches that utilize the Hamilto-
nian properties of a matrix to improve efficiency [176–179]. Even-IRA, an implementation of an
implicitely-restarted Krylov subspace method, developed by Mehrmann et al. [180], has been
tested in this work for computing the eigenvalues and eigenvectors of the Z matrix. This imple-
mentation, similar to the Matlab function eigs, is optimized for large sparse matrices. If this
is the case, the Even-IRA algorithm can significantly reduce computational costs compared to
eigs. Moreover, this algorithm is structure-preserving, i. e. the real part of the purely imagi-
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nary solutions actually vanishes, while a small real part can be obtained when using standard
algorithms due to numerical errors.

Independently of these available algorithms, a novel solution procedure for the computation
of dispersion curves is presented in Section 7. By tracing the modes and restricting the solutions
to eigenvalues that are of interest in the given set-up, computational times can be significantly
reduced, if the number of desired solutions is small.

3.4 Group velocity

In many practical applications of guided waves, the group velocities of the propagating wave
modes are particularly of interest. For a propagating mode with real wavenumber k̃(ω) (imagi-
nary eigenvalue λ̃ ), the group velocity is defined as

cg =
∂ω
∂ k̃

= i
∂ω
∂ λ̃

(3.56)

In different approaches, group velocities are calculated as the gradients from two adjacent points
in the dispersion curve ω(k) [58, 181, 182]. In the proposed method the group velocities of the
modes of interest can be obtained directly as the eigenvalue derivatives. Hence, they can be
computed accurately at a given frequency and the results do not depend on the chosen frequency
increment.

Let λ be an eigenvalue of −Z with the corresponding eigenvector ψψψ:

Zψψψ+λψψψ = 0 (3.57)

Since Z is a Hamiltonian matrix, −λ is an eigenvalue as well [183]. The corresponding eigen-
vector is denoted by ΦΦΦ:

ZΦΦΦ−λΦΦΦ = 0 (3.58)

ΦΦΦ =

{
û-

n
q̂-

n

}
(3.59)

Pre-multiplying Equation (3.58) with J2g and taking the transpose results in

ΦΦΦT(J2gZ)T−λΦΦΦTJT
2g = 0 (3.60)

which is rewritten using Equations (3.51) and (3.53) as

ΦΦΦTJ2gZ+λΦΦΦTJ2g = 0 (3.61)

Differentiating Equation (3.57) with respect to ω leads to

∂
∂ω

(Zψψψ+λψψψ) = Zψψψ′+λψψψ′+Z′ψψψ+λ ′ψψψ = 0 (3.62)
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After pre-multiplying with ΦΦΦTJ2g we obtain

ΦΦΦTJ2gZψψψ′+λΦΦΦTJ2gψψψ′+ΦΦΦTJ2gZ′ψψψ+λ ′ΦΦΦTJ2gψψψ = 0 (3.63)

Using Equation (3.61), the first and second term vanish:

ΦΦΦTJ2gZ′ψψψ+λ ′ΦΦΦTJ2gψψψ = 0 (3.64)

The first term of Equation (3.64) can be simplified by using

J2gZ′ =

[
2ωM0 0

0 0

]
(3.65)

and substituting the displacements and nodal forces

ΦΦΦTJ2gZ′ψψψ = 2ω(û-
n)

TM0ûn (3.66)

The second term in Equation (3.64) can be written

λ ′ΦΦΦTJ2gψψψ = λ ′
{

(û-
n)

T, (q̂-
n)

T
}[ 0 Ig

−Ig 0

]{
ûn

q̂n

}
= λ ′((û-

n)
Tq̂n− (q̂-

n)
Tûn) (3.67)

Substituting Equations (3.66) and (3.67) into (3.64) results in

1
λ ′

=
(q̂-

n)
Tûn− (û-

n)
Tq̂n

2ω(û-
n)

TM0ûn
(3.68)

Equation (3.68) is valid for all eigenvalues of the Z matrix. The group velocity on the other hand
is only well defined for propagating modes with real wavenumber (purely imaginary eigenvalue
λ̃ ). For those modes, if ψψψ is an eigenvector corresponding to λ̃ , then the eigenvector corre-
sponding to −λ̃ is its complex conjugate:

ΦΦΦ = ψ̄ψψ (3.69)

and for the group velocity we obtain

cg =
i

λ̃ ′
= i

û∗nq̂n− q̂∗nûn
2ωû∗nM0ûn

(3.70)

where ()∗ denotes the conjugate transpose and the same symbols for the eigenvectors as before
are used for simplicity. Since the eigenvectors ûn and q̂n are known after the solution of the
eigenvalue problem and M0 is a diagonal matrix, only few vector multiplications are required
to obtain the group velocities.
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3.5 Shear-horizontal modes

The two-dimensional formulation presented in this chapter allows for the modeling of Lamb-
type modes.17 A different type of guided waves in plates - usually referred to as shear-horizontal
modes - has been neglected until now. In case of isotropic material behavior, these modes cause
displacements in x-direction only (out-of-plane motion). In many practical applications, shear-
horizontal modes are not of interest as their excitability is not significant in most experimental
set-ups. However, if these modes are relevant, they can be obtained using a three-dimensional
formulation. Still, only the through-thickness direction of the plate is discretized, but now three
degrees of freedom are assigned to each node (Figure 3.5).

y

η

Γ2z

Γ1

x
⇒ ∞

⇒ ∞∞ ⇐

Figure 3.5: Discretization of a plate (a) and cylinder (b) in the SBFEM.

For the sake of conciseness, the same symbols as in the two-dimensional formulation are
used when possible. The three-dimensional displacement vector reads u = [ux,uy,uz]

T and the
stress-displacement relationship for the general three-dimensional case reads (see Section 2.1.1)

σσσ(x,y,z,ω) = [σx σy σz τyz τxz τxy]
T = DLu(z,x,y,ω) (3.71)

with the three-dimensional differential operator (repeated for easy reference)

L =

 ∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0


T

(3.72)

D is the 6× 6 elasticity matrix. As the displacement field is assumed to be constant in x-
direction, the partial derivatives ∂x vanish. Consequently, the discretized stress-displacement

17Strictly speaking, Lamb’s solution refers to guided waves in homogeneous isotropic plates. More generally,
the term Lamb modes or Lamb-type modes is nowadays frequently used to describe guided waves in arbitrary plate
structures, as long as the two-dimensional formulation is valid (cf. Section 3.6).
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relationship (3.13) is still valid if we substitute the matrices

b1 =

 0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0


T

(3.73)

b2 =

 0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


T

(3.74)

as well as the three-dimensional shape functions

N(η) =

 N1(η) 0 0 N2(η) 0 0 . . . Nn(η) 0 0
0 N1(η) 0 0 N2(η) 0 . . . 0 Nn(η) 0
0 0 N1(η) 0 0 N2(η) . . . 0 0 Nn(η)


(3.75)

The virtual work principle can be employed analogously to the two-dimensional case. More
precisely, the virtual displacement field can now be a function of x and z:

δU =−
∞̂

0

∞̂

−∞

δun
T(x,z)

(
E0un,zz(x,z)+(E1

T−E1)un,z(x,z)−E2un(x,z)
)

dx dz

+

∞̂

−∞

δun
T(x,0)qn(x,0)dx (3.76)

δK =

∞̂

0

∞̂

−∞

δun
T(x,z)M0ün(x,z)dx dz (3.77)

δW =

∞̂

−∞

δun
T(x,0)fn(x,0)dx (3.78)

However, substituting these equations into the virtual work principle (3.15) leads to the eigen-
value problem to be of the same form as for the two-dimensional case.
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3.6 Anisotropy
The current approach is not restricted to isotropic materials. Generally, anisotropic material
behavior of a homogeneous layer can be modeled simply by modifying the elasticity matrix
D. For an isotropic material, the elasticity matrix is defined by two independent constants for
instance the Poisson’s ratio ν and shear modulus G as given in Equation (2.13). Contrary, in the
most general form of anisotropy, the elasticity matrix can be defined by up to 21 independent
constants. In that case it is fully populated:

D =



D11 D12 D13 D14 D15 D16

D22 D23 D24 D25 D26

D33 D34 D35 D36

sym. D44 D45 D46

D55 D56

D66


(3.79)

Note that the elasticity matrix is always symmetric. This general elasticity matrix can be em-
ployed in the three-dimensional formulation as presented in Section 3.5. On the other hand,
care has to be taken when applying the two-dimensional formulation. If the elasticity matrix
is fully populated, the displacement components in x-direction are not independent of the other
directions, as has been implied by the two-dimensional plane strain assumption. Consequently,
one cannot distinguish between Lamb-type and shear-horizontal modes. All propagating modes
cause displacement fields in all three directions. Generally speaking, the plane strain assump-
tion is valid, if the three-dimensional elasticity matrix is of the form

D =



D11 D12 D13 D14 0 0
D22 D23 D24 0 0

D33 D34 0 0
sym. D44 0 0

D55 D56

D66


(3.80)

If this is the case, the Lamb-type modes are decoupled from the shear-horizontal modes and the
elasticity matrix corresponding to the two-dimensional formulation is given by

D =


D11 D12 D13 D14

D22 D23 D24

sym. D33 D34

D44

 (3.81)
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3.7 Details on the implementation

3.7.1 Non-dimensionalization
To improve numerical stability and comparability with different approaches, dimensionless
quantities (denoted with a bar) are used throughout the calculation:

E0 = Gh Ē0 (3.82a)
E1 = G Ē1 (3.82b)
E2 = G/h Ē2 (3.82c)

M0 = ρh M̄0 (3.82d)
z = h z̄ (3.82e)

Substituting these expressions into the Scaled Boundary Finite Element equation (3.32b) and
introducing the dimensionless frequency

a =
ωh
cs

(3.83)

with the shear wave velocity

cs =

√
G
ρ

(3.84)

leads to a dimensionless equation of the same form as the original SBFEM equation

Ē0un,z̄z̄(z̄)+
(
Ē1

T− Ē1
)
un,z̄(z̄)+(−Ē2 +a2M̄0)un(z̄) = 0 (3.85)

Consequently, the solution of the eigenvalue problem leads to dimensionless wavenumbers

k̄ = h k (3.86)

If only one material is present, its parameters can be chosen to be G = 1 GPa; h = 1 mm; ρ =
1mg mm−3 in the computation. The dimensioned results for a particular geometry and material
can then be retrieved using Equations (3.83) and (3.86). If several materials are considered in
the same structure, their parameters can be defined relative to the first.

3.7.2 Parallelization
The wavenumbers are obtained from an eigenvalue problem, which can be solved very accu-
rately and efficiently, even if the solutions are very close to each other. Hence, no mode-tracing
is required for the calculation in contrast to analytical approaches, where mode-tracing is em-
ployed to improve convergence and stability of the solution [47]. After the solutions for all
frequencies have been computed, mode-tracing can still be used to sort the solutions belonging
to the same mode. However, as the solutions can be obtained independently from each other, the
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computations can be efficiently parallelized by simultaneously solving the eigenvalue problem
for different frequencies. In the current implementation, the parallelization is realized using a
parfor loop in Matlab. This has been tested to reduce the computational time by about a factor
2.5 on a quadcore processor for the examples presented in Section 3.8.

3.8 Numerical examples
In this section, several numerical examples are analyzed and compared with various approaches
presented in the literature. A homogeneous plate is considered first, as the results can directly be
compared with analytical calculations. Thereafter, layered composites and functionally graded
materials are analyzed and compared with the results obtained by other authors using different
approaches.

3.8.1 Homogeneous plate
For a homogeneous isotropic plate, the wavenumbers of Lamb wave modes can be obtained
as roots of analytical equations [15].18 They are separated into two sets of solutions with the
displacement fields being symmetric or antisymmetric with respect to the mid-plane of the plate.
These sets of modes are commonly referred to as [S0, S1,...] and [A0, A1,...], respectively.

Figure 3.6 compares the analytical solution with the results obtained using the SBFEM for
a Poisson’s ratio of 0.3. Note that since dimensionless parameters are used, a homogeneous
isotropic material is sufficiently characterized by its Poisson’s ratio. For the analytical solu-
tion, the dimensionless frequency increment is about 0.01, and the group velocities have been
obtained as the gradient between two adjacent solutions. Contrary in the SBFEM, the group
velocities have been computed at each frequency step using the approach presented in Section
3.4.

The results show excellent agreement. The through-thickness direction of the plate has
been discretized by a single 15-noded element. The accuracy of the solution depends on the
complexity of the considered mode. If very high frequencies are of interest, a finer discretization
should be used. The determination of the number of elements needed for the computation can
easily be included in the algorithm by performing a convergence test at the highest frequency
of interest.

18Note that even though these equations can be derived analytically, their solution is non-trivial and requires so-
phisticated numerical root-finding algorithms. The main difficulty lies in the fact that an (a priori unknown) number
of solutions has to be found, while standard root-finding algorithms converge to one solution only. Additionally,
for a given frequency two solutions can be arbitrarily close to each other.
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(b) group velocity

Figure 3.6: Non-dimensional dispersion curves for a homogeneous plate with a Poisson’s ratio of
0.3, obtained using the Scaled Boundary Finite Element Method (◦) and compared to analytical
results (–).
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To compare the accuracy of the proposed method for different discretizations, the computed
phase velocities are explicitly given for a dimensionless frequency of a= 6 and a= 16 in Tables
3.2a and 3.2b, respectively. From the analytical equations, the wavenumbers have been obtained
using the function fminbnd in Matlab with a termination tolerance of 10−14. The error of the
analytical solutions can hence be neglected for the comparison with the numerical examples.
For the SBFEM discretization, a single element has been used, containing 7, 10 and 15 nodes,
respectively. At the lower frequency, a good agreement with the analytical solution can be ob-
tained even for the 7-noded element (Table 3.2a). The maximum error is approximately 0.6 %,
while for the 15-noded element the maximum error is about 10−8. For the higher frequency, the
7-noded element is satisfactory only for the lower modes, while the highest mode is not found.
However, the use of one 15-noded element still gives very accurate results, with a maximum
error of about 2 ·10−5 occurring for the highest mode.

Table 3.2: Dimensionless phase velocities of all propagating modes for the homo-
geneous plate at dimensionless frequencies a= 6 and a= 16 obtained with elements
of different order.

(a) a = 6

Mode 7 nodes 10 nodes 15 nodes analytical

A0 0.892377083 0.892368186 0.892368185 0.892368187
S0 1.048492444 1.048488054 1.048488054 1.048488043
A1 1.905612410 1.905598063 1.905598062 1.905598073
S1 2.084448496 2.084397050 2.084397049 2.084397062

(b) a = 16

Mode 7 nodes 10 nodes 15 nodes analytical

A0 0.929820689 0.926634360 0.926592992 0.926592986
S0 0.935214851 0.928301089 0.928287063 0.928287069
A1 1.053514717 1.053401432 1.053400757 1.053400762
S1 1.236567473 1.221083407 1.221086534 1.221086528
A2 1.644355175 1.581265790 1.579071811 1.579071814
S2 1.882025284 1.835059824 1.834351957 1.834351935
S3 2.308292781 2.157421619 2.152748746 2.152748660
A3 2.665274120 2.320209648 2.312747860 2.312747619
A4 4.979333889 6.230861230 6.230711438
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CHAPTER 3. DERIVATION FOR PLATE STRUCTURES

To demonstrate the effect of higher-order elements, the convergence of the results for the
highest propagating mode at a dimensionless frequency of 20 is plotted in Figure 3.7. Elements
containing 2, 3, 8 and 15 nodes have been used. The computed phase velocity is shown as a
function of the total number of nodes, since the computational time is approximately the same
for the same number of nodes.19 It can be seen that the efficiency of the computation can highly
be improved by utilizing higher-order elements.
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Figure 3.7: Convergence of the
results for the highest propagating
mode at a dimensionless frequency
of 20 in the homogeneous plate.

The mode shapes of the propagating Lamb waves are represented by the eigenvectors (Equa-
tion (3.42)). Though the amplitudes ûn are generally complex values, either the real or imag-
inary part of each component for a particular mode equals zero as the particle movement is
elliptical. In a homogeneous plate, each mode is either symmetric or antisymmetric with re-
spect to the midplane of the plate. As an example, the y-components of the displacements of
the four modes (two symmetric modes S0, S1 and two antisymmetric modes A0, A1) present at
a dimensionless frequency of 6 are shown in Figure 3.8. Again, the results are compared to ana-
lytical solutions [15]. Only the values at nodal points are shown for the SBFEM solutions. The
displacements at any other position can be obtained by interpolating the nodal values using the
applied shape functions (cf. Equation (3.9)). The SBFEM solutions are in excellent agreement
with the analytical solution.

19The dimension of the coefficient matrices increases with the total number of nodes, irrespective of the type of
elements. The computational costs for solving the eigenvalue problem is roughly of order n3. In comparison, the
differences in computational costs spend on the discretization and the computation of the coefficient matrices are
negligible.
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Figure 3.8: Displacement ampli-
tudes in y-direction of the four
propagating modes at a dimension-
less frequency of 6 in the homoge-
neous plate.

3.8.2 Layered composite
The extension of the proposed method to plates consisting of multiple layers is straightforward.
The easiest way is to discretize every layer of the interface separately, with one or more ele-
ments, and assign the material parameters accordingly. If several elements are used for this
purpose, the order of each element can be reduced. For instance, in the case of five layers, a dis-
cretization with five 6-noded-elements still leads to very accurate results for the first ten modes.
If a very high number of layers is considered, even 2 or 3 nodes per element can be sufficient.
Complicated structures, with up to 100 layers, have been tested to show good convergence
without introducing numerical problems in the solution. To verify the results for multi-layered
plates, the commercial software disperse [50,51] is used for comparison. This program utilizes
the global matrix method [47], where the wavenumbers are obtained as the roots of the char-
acteristic equation of a matrix describing the wave propagation in the given geometry. As an
example, a plate consisting of 3 layers of brass and 2 layers of titanium is analyzed. Discretiz-
ing the interface with five 6-noded elements has shown to be sufficient, leading to excellent
agreement with the solution obtained by disperse. Results for Lamb-type modes as well as SH
modes are presented in Figure 3.9a and 3.9b, respectively. As only 26 nodes have to be used
for the discretization, the computation is very efficient. The total computational time to obtain
the dispersion curves using the SBFEM is about 0.3 s (Desktop PC with Intel i7 CPU and 4 GB
RAM). In disperse the computational time cannot be obtained exactly, but for this example it is
roughly about 30 s on the same computer.
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(a) Lamb-type modes
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Figure 3.9: Dispersion curves for a composite consisting of 3 layers of brass and 2 layers of
titanium obtained using the Scaled Boundary Finite Element Method (◦) and the software disperse
(–) [51].

52 BAM-Dissertationsreihe



3.8. NUMERICAL EXAMPLES

3.8.3 Functionally graded material

In many applications, it is more realistic to assume the material parameters to vary continuously
along the thickness, rather than approximating the distribution by discrete layers. This can be
desirable for a more accurate description of complex composites or if the bonding character-
istics between two layers become important. Another example is a plate of two components,
where the volume fractions of the materials vary continuously from one surface to the other.
Such examples have been studied in [137] using a power series technique, and these results are
used here for comparison. An example is chosen where the density, as well as the two Lamé
parameters λ and G, all follow the same through-thickness distribution of the form

ρ(y) = ρ1 f1(y/h)+ρ2 f2(y/h) (3.87a)
λ (y) = λ1 f1(y/h)+λ2 f2(y/h) (3.87b)
G(y) = G1 f1(y/h)+G2 f2(y/h) (3.87c)

where the volume fractions f1 and f2 of the materials are

f1(y/h) = 1− (y/h)b (3.88a)

f2(y/h) = (y/h)b (3.88b)

with a non-negative integer b. The material parameters are [137]

ρ1 = 7190 kg m−3; λ1 = 74.2 GPa; G1 = 102.5 GPa
ρ2 = 3900 kg m−3; λ2 = 138 GPa; G2 = 118.11 GPa

The Poisson’s ratio, which is used in the SBFEM formulation instead of the first Lamé parame-
ter, can be calculated using [105]

ν(y) =
λ (y)

2(λ (y)+G(y))
(3.89)

leading to

ν(y) =
(λ1−λ2) f1(y/h)+λ2

2((λ1−λ2 +G1−G2) f1(y/h)+λ2 +G2)
(3.90)

The distribution of the shear modulus and Poisson’s ratio is pictured in Figure 3.10 for the
case b = 10. Dispersion curves for this example are shown in Figure 3.11. The phase velocity
is plotted as a function of the dimensionless wave number k̄ = kh as in the original work. As
in the homogeneous example, only one 15-noded element has been used for the discretization,
and again the results obtained by the two different methods are in very good agreement. As the
variation of material parameters only affects the the coefficient matrices as shown in Section
3.2.4, the increase of computational cost is negligible compared to the homogeneous case.
To illustrate the convergence of the present technique, the dimensionless phase velocities of all
modes at a dimensionless frequency of 20 are explicitly given in Table 3.3a. The computations
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Figure 3.11: Dispersion curves for a functionally graded material obtained using the Scaled
Boundary Finite Element Method (◦) and compared with the results obtained by [137] (–).

are performed using one, two and three 15-noded elements, respectively. Again, the algorithm
shows very fast convergence. The results for one and two elements differ by about 0.1 % for
the highest mode. Adding a third element results in a change in the highest mode’s phase
velocity of only about 10−10. For comparison, the convergence characteristics have also been
assessed using 2-noded elements. In this case the material properties, as well as displacements,
vary linearly within each element. This assumption has been made by other authors when
investigating functionally graded materials [156, 184, 185]. Results are shown in Table 3.3b,
where the number of elements is increased by a factor of four in each step of refinement. It
can be seen that the convergence is very poor compared to higher-order elements. For the last
step of refinement the change in phase velocity for the highest mode is still about 2.5 %. The
values approach the results obtained with the 15-noded elements, but when 320 linear elements
are used, the phase velocity of the highest mode still differs by about 0.2 % from the converged
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Figure 3.12: Convergence of the results for the highest mode at a dimensionless frequency of 20
in the functionally graded material.

results, while the computational time is increased by approximately a factor 200 in comparison
with one 15-noded element. 3-noded (quadratic) elements (Table 3.3c) lead to significantly
better convergence than linear elements, but still about 80 elements have to be used to obtain an
accuracy comparable with two 15-noded elements.

The convergence is visualized in Figure 3.12 in the same way as for the homogeneous plate
(Figure 3.7). All errors are roughly two times larger than compared to the homogeneous case.
This is due to the fact that not only the displacements, but also the material parameters are
approximated by the shape functions. Since the material parameters are described by a polyno-
mial of order 10, a discretization with linear or quadratic elements yields a poor representation
of the physical problem. Consequently, the use of higher-order elements is highly advantageous,
especially for the case of functionally graded materials.

This example shows the ability of the proposed method to solve problems with arbitrary
through-thickness distributions of material parameters very efficiently, and without any essential
modifications of the algorithm.
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Chapter 4

Extension to arbitrary cross-sections

While the formulation presented in the previous chapter is restricted to plate structures, the
modeling of waveguides with more complex cross-section becomes relevant in some applica-
tions. Examples include waves in bars [186], square pipes [58] or rails [187]. Cylinders will
not be focused on in this chapter since they will be covered by the axisymmetric formulation
in Chapter 5. For complex cross-sections, the Global Matrix Method cannot be applied. Very
few analytical solutions have been presented in the literature e. g. for a triangular bar [41] and
anisotropic waveguides with sector-shaped cross-section [42].

On the other hand, the extension of the Finite Element Method to arbitrary cross-sections
is straightforward [188, 189]. It has been demonstrated by various authors, how standard Fi-
nite Element software can be employed to extract dispersion properties. In order to do that, a
representative section of the waveguide is discretized with Finite Elements [56]. Applications
include pipes that have a complex cross-section [58] or are filled with a fluid [57]. In a similar
way, helical waveguides [190,191] and waveguides with periodic microstructure [55] have been
analyzed. However, these approaches are in general computationally expensive.

Other Finite Element based approaches, like the WFE or SAFE method can be applied to
waveguides with complex cross-section in a similar way [59, 62, 192]. Recent applications in-
clude the modeling of composite shells [193], wooden bars [186], rods and rails [22, 187] and
square rods [194]. More complex geometries are discussed in [195] and modified formula-
tions for pre-stressed materials are presented in [196, 197]. Also fluid filled elastic waveguides
have been addressed [181], where the governing equations describing the elastic and acoustic
behavior have to be coupled. Numerical issues of the SAFE method are discussed in [198].

In this chapter, the SBFEM formulation is extended to describe waveguides with arbitrary
cross-section (see also [94, 95]). The main difficulty lies in the effective discretization of the
two-dimensional cross-section and the corresponding coordinate transformations (Section 4.1).
However, in many aspects we can refer to well-known Finite Element procedures. Again,
higher-order spectral elements are utilized for the discretization, as described in Section 4.2.
The two-dimensional analog of the elements used in the previous chapter can be constructed
in a straightforward way. Obviously, the computational costs are typically much larger in the
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three-dimensional case.20 Some examples are presented on discretizing a complex cross-section
in an effective and consistent way. In most practical applications, the cross-section will reveal
one or more symmetry axes. It is discussed, how the symmetry can be utilized in order to reduce
the mesh. This can be a crucial step in limiting computational costs to an acceptable value.

As in the previous chapter, dispersion curves are computed by solving an eigenvalue prob-
lem at each frequency of interest. Hence, the solutions at different frequency steps are obtained
independently of each other. This is advantageous in terms of stability and efficiency and allows
for parallelization of the algorithm in a trivial way. On the other hand, it can be desired to know
which solutions belong to the same mode. This is particularly true in the three-dimensional
case, where the mode shapes can become complicated. In Section 4.3, a fast mode-tracing al-
gorithm has been developed to sort the solutions according to the modes they represent [94].
Though the mode-tracing algorithm is presented in the context of general three-dimensional
waveguides, it can be applied analogously in the two-dimensional and axisymmetric case.

Numerical examples are presented in Section 4.4 and validated with different approaches.

4.1 SBFEM formulation for guided waves in three-
dimensional waveguides

To describe a waveguide with arbitrary cross-section, the three-dimensional governing equa-
tions (3.71) and (3.72) still apply. Contrary to the case of shear-horizontal modes in a plate,
the derivatives with respect to the Cartesian coordinate x do not vanish. Hence the strain-
displacement relationship is written as

εεε = b1u,z +b2u,y +b3u,x (4.1)

with

b1 =

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0


T

(4.2a)

b2 =

 0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1


T

(4.2b)

b3 =

 1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


T

(4.2c)

20Assume we required n nodes to discretize a plate in the plane strain assumption, leading to computational
costs of order (2n)3 = 8n3. A corresponding square rod (same thickness, material and frequency) would have to
be discretized using n2 nodes, leading to computational costs of order (3n2)3 = 27n6.
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4.1. THREE-DIMENSIONAL WAVEGUIDES

Note that b1 and b2 are the same as before (Section 3.5), they are repeated here for clarity. The
matrix b3 is introduced at this point to account for the derivatives in the x-direction.

z
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Figure 4.1: Discretization of an arbitrary 3d waveguide with four-sided elements.

A three-dimensional waveguide with arbitrary cross-section is addressed (Figure 4.1). The
cross-section is discretized using two-dimensional Finite Elements. Again, the following steps
are derived for one element of the Finite Element discretization. Now, each element is defined in
a two-dimensional local coordinate system η , ζ . This procedure is analogous to the discretiza-
tion of a two-dimensional problem in the traditional Finite Element Method (cf. Section 2.2).
To rewrite Equation (4.1) in the local coordinate system, the coordinate transformation [81, 82]{

∂η

∂ζ

}
= J

{
∂x

∂y

}
(4.3)

is required, with the Jacobian matrix

J =

[
x,η y,η
x,ζ y,ζ

]
(4.4)

Inverting Equation (4.3) leads to{
∂x

∂y

}
=

1
|J|

[
y,ζ −y,η
−x,ζ x,η

]{
∂η

∂ζ

}
(4.5)

where |J| is the absolute value of the Jacobian determinant. Substituting the above expressions
for the partial derivatives into the strain-displacement relationship yields

εεε = b1u,z +
1
|J|(y,ζ b3− x,ζ b2)u,η +

1
|J|(−y,ηb3 + x,ηb2)u,ζ (4.6)
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The displacements are interpolated using two-dimensional shape functions

u(z,η ,ζ ) = N(η ,ζ )un(z) (4.7)

Equation (4.7) is formally similar to the interpolation in the general two-dimensional FEM
(Equation (2.25)), but now, the nodal displacements are functions of z. The discretized strain-
displacement relationship is formulated similar to the case of plate structures

εεε(z,η ,ζ ) = B1un,z(z)+B2un(z) (4.8)

by defining

B1 = b1N (4.9a)

B2 =
1
|J|(y,ζ b3− x,ζ b2)N,η +

1
|J|(−y,ηb3 + x,ηb2)N,ζ (4.9b)

It should be noted that the definition of B1 is identical to the cases described in the previ-
ous chapter (despite the fact that the shape functions are now two-dimensional polynomials).
With these definitions, the application of the virtual work principle is analogous to the two-
dimensional case and will not be repeated in detail. The resulting SBFEM equation (3.32b) as
well as the eigenvalue problem (3.42) are formally identical to the two-dimensional case. In
three dimensions, numerical integration over a two-dimensional element has to be performed to
obtain the mass matrix M0 as well as the SBFEM coefficient matrices E0, E1, E2:

M0 =

ˆ 1

−1

ˆ 1

−1
NTρN|J|dηdζ (4.10a)

E0 =

ˆ 1

−1

ˆ 1

−1
B1

TDB1|J|dηdζ (4.10b)

E1 =

ˆ 1

−1

ˆ 1

−1
B2

TDB1|J|dηdζ (4.10c)

E2 =

ˆ 1

−1

ˆ 1

−1
B2

TDB2|J|dηdζ (4.10d)

In summary, the difference between the formulations for plates and waveguides with arbitrary
cross-section become apparent only in the construction of the coefficient matrices. The dis-
cretization and the according coordinate transformations become more cumbersome in the gen-
eral case. However, the techniques to discretize two-dimensional domains can be adopted from
well-known Finite Element concepts.
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4.2. DISCRETIZATION OF THREE-DIMENSIONAL WAVEGUIDES

4.2 Discretization of three-dimensional waveguides

4.2.1 Two-dimensional higher-order elements
For the discretization of the cross-section, the two-dimensional counterpart of the one-dimen-
sional higher-order elements as described in Section 3.2 are utilized. Along each of the local
coordinates (η , ζ ), the nodal positions are defined analogously to a one-dimensional element
[82] (cf. Equation (3.45)):

d
dη

Pp(ηi) = 0 i = 2...p (4.11)

d
dζ

Pp(ζi) = 0 i = 2...p (4.12)

The corresponding one-dimensional shape functions are obtained as

Ni(η) =
p+1

∏
j=1, j 6=i

η−η j

ηi−η j
i = 1...p+1 (4.13)

Ni(ζ ) =
p+1

∏
j=1, j 6=i

ζ −ζ j

ζi−ζ j
i = 1...p+1 (4.14)

The shape function corresponding to the qth node of a two-dimensional element can be written
as a product of two one-dimensional shape functions

Nq(η ,ζ ) = Nr(η)Ns(ζ ) q = 1...(p+1)2 (4.15)

where r and s denote the local number of the node in the η and ζ -direction, respectively, and q
is defined as

q = (s−1)(p+1)+ r (4.16)

An example of a two-dimensional shape function of order 6 is depicted in Figure 4.2. Note
that, as in the one-dimensional case, each shape function equals one at one node and zero at
all other nodes. Again, the Gaussian-Lobatto-Legendre quadrature is employed to perform
the numerical integration. The properties of the resulting coefficient matrices as described in
Section 3.3 are still valid. The elements do not have to be defined by straight edges. Curved
elements can be described in arbitrary coordinate systems. In many cases, curved elements
can best be represented by a small number of higher-order elements. Examples for different
discretizations are presented in Section 4.4.
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Figure 4.2: Two-dimensional shape function of order 6.

4.2.2 Symmetry

In many practical applications, the geometry of the considered waveguide is symmetric with
respect to one or more symmetry axes. Additionally, the material is often either isotropic or
the axes of anisotropy coincide with the geometrically symmetrical axes. In those cases the
mesh can be reduced to decrease computational costs. Figure 4.3a shows an example for the
discretization of the cross-section of a waveguide. The cross-section reveals four symmetry
axes, labeled with L0, L45, L90 and L135. Higher-order spectral elements of order five have been
used (36 nodes per element). In this example, 8 elements are required to discretize the whole
cross-section. A finer discretization can then be achieved by increasing the element order. How-
ever, due to the symmetry axes, it is sufficient to model a quarter of the geometry as depicted
in Figure 4.3b. The displacement field of the modes can only be symmetric or antisymmetric
with respect to the symmetry axes L0 and L90. Hence, the complete set of solutions can be
obtained by applying all four combinations of symmetric and antisymmetric boundary condi-
tions [107] along the symmetry axes in turn and solving the eigenvalue problem for each type of
boundary conditions separately. To apply a symmetric/antisymmetric boundary condition, the
displacement components normal to/within the plane of symmetry are set to zero. The bound-
ary conditions can be enforced by eliminating the corresponding degrees of freedom from the
coefficient matrices.

Following the suggestion in [58], the modes are denoted as ’SS’, ’AA’, ’SA’ and ’AS’,
respectively, according to the combination of symmetric and antisymmetric boundary condition
applied along L0 and L90. In the present example, the additional symmetry axis L45 leads to
the set of modes ’SA’ and ’AS’ being identical. Consequently, the eigenvalue problem only has
to be solved three times with different boundary conditions. The computational costs for the
solution of an eigenvalue problem are roughly of order n3. Computing the solution for a quarter
of the mesh thrice with different boundary conditions thus reduces the costs approximately by
a factor 43/3≈ 21.
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Figure 4.3: The discretization of a two-dimensional cross-section (a) can be reduced by applying
boundary conditions along the symmetry axes L0 and L90 (b). For the SS and AA modes, the
mesh can be further reduces by utilizing the symmetry axis L45 (c).

For computing the ’SS’ and ’AA’ modes, where the same boundary conditions are applied
on both axes, the mesh can be further reduced to only one element as shown in Figure 4.3c. For
each of the two cases, the problem has to be solved with both symmetric and antisymmetric
boundary conditions along the L45 axis to obtain all modes.21 This further reduction can be de-
sired, if a high number of modes have to be computed or the calculations have to be performed
many times with different material parameters or frequencies. For many applications, the reduc-
tion of the mesh to a quarter of the cross-section will result in reasonably short computational
times.

To apply the boundary conditions along the L45 axis, the according degrees of freedom have
to be rotated. This can be done by introducing a rotation matrix R

ûn = Rûr (4.17)
21In summary, to compute all modes in this example, we have to solve the eigenvalue problem once for 1/4 of

the mesh (SA modes) and 4 times for 1/8 of the mesh (SS and AA modes).
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The transformation defined by R only affects the degrees of freedom along the L45 axis. In the
modified displacement vector ûr these degrees of freedom are rotated to be parallel and per-
pendicular to the L45 direction, respectively. Specifically, if [u jx,u jy,u jz] are the displacement
components of one node on the symmetry axis, the transformation reads

u1x

u1y

u1z
...

u jx

u jy

u jz
...



=



1
1

1
. . .

1
cos(−π

4 ) −sin(−π
4 )

sin(−π
4 ) cos(−π

4 )
. . .





u1x

u1y

u1z
...

u jx

u jyr

u jzr
...



(4.18)

with u jyr and u jzr being the displacement components parallel and perpendicular to the symme-
try axis, respectively. The quadratic eigenvalue problem (Equation (3.35)) can then be written
as (

λ 2E0 +λ
(
E1

T−E1
)
−E2 +ω2M0

)
Rûr = 0 (4.19)

In order to maintain the symmetry properties of the coefficient matrices, we multiply Equation
(4.19) by RT to assemble the matrix Z in the same form as before:(

λ 2RTE0R+λRT(E1
T−E1

)
R−RTE2R+ω2RTM0R

)
ûr = 0 (4.20)

The matrix Zr can then be defined similarly to Equation (3.39):

Zr =

[
E−1

0r ET
1r −E−1

0r
ω2M0r−E2r +E1rE−1

0r ET
1r −E1rE−1

0r

]
(4.21)

with
M0r = RTM0R, E0r = RTE0R, E1r = RTE1R, E2r = RTE2R (4.22)

4.3 Mode-tracing

In the proposed approach, the dispersion curves for a given geometry are obtained by solving
the eigenvalue problem (3.42) multiple times for a given set of frequencies. As a result, the
wavenumbers of all modes are obtained as the eigenvalues, and the phase velocities cp of the
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propagating modes can be computed by applying

cp =
ω
k

(4.23)

At every frequency step, the group velocities of the propagating modes can be obtained using
the eigenvectors (Equation (3.70)). The resulting wavenumbers at each frequency are usually
simply sorted by their magnitudes. It is generally desirable to group the results that represent
the same mode. It has been shown by other authors using the SAFE method that this can
be achieved by comparing the eigenvectors obtained at different frequencies [195]. The most
common technique is to use the angle θij between two normalized eigenvectors ψψψi and ψψψj to
determine whether they represent the same mode. One particular function of the angle is often
referred to as modal assurance criterion (MAC) in the literature [199–201]:

MAC = cos2 ϕij = (ψψψT
i ψψψj)

2 (4.24)

The use of the angle ϕij offers a simple and often reliable way to sort the modes obtained
from the solution of the eigenvalue problem. However, this approach can fail if a high number
of modes is considered or the mode shape of a mode changes rapidly within one frequency
increment. In those cases a small angle ϕij does not guarantee the eigenvectors i and j belonging
to the same mode. Moreover, for this approach to be utilized, all eigenvectors have to be stored
until the modes are sorted, which is not always desirable. Furthermore, due to the high number
of dot products to be computed, this approach is computationally relatively expensive.

In this work a different approach is developed, which is generally very fast and does not
require to store the eigenvectors. It is based on tracing the wavenumbers as well as the group
velocities using a Taylor series or Padé expansion. The procedure is somewhat similar to the
mode-tracing in the Global Matrix Method, where linear or quadratic extrapolation is used to
facilitate the computation of roots [47, 202]. Contrary, in the approach presented here, mode-
tracing is employed to sort the modes after the computation of the full set of solutions is com-
pleted. The value of each wavenumber at a given frequency is approximated based on the
wavenumbers at previous frequency steps. The resulting guess is compared with the wavenum-
bers that have been obtained from the solution of the eigenvalue problem. The wavenumber
being closest to the approximated guess is assumed to represent the same mode. To avoid errors
in regions where wavenumbers of two modes are very close, the group velocities are traced as
well. The approximations can be calculated with high accuracy since the group velocities are
computed as eigenvalue derivatives as described in Section 3.4.

The dispersion curve of one mode in the k-ω-plane is addressed (Figure 4.4). Assuming
the wavenumbers k(ω) have been computed at the frequencies ω0...ω3 and the wavenumbers
k0, k1 k2 have already been sorted. An approximate value kT for the wavenumber k3 can then be
obtained using a taylor series. The general form of a third-order taylor approximation reads

kT(ω3) = γ0 + γ1∆ω + γ2∆ω2 + γ3∆ω3 (4.25)
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ω0 ω1 ω2 ω3

k0

k1

k2
k3
kT

Figure 4.4: To trace a mode, a guess kT for the wavenumber k3 is computed, based on the
wavenumbers k0, k1, k2.

with

γ0 = k(ω2) (4.26a)
γ1 = k′(ω2) (4.26b)

γ2 =
1
2

k′′(ω2) (4.26c)

γ3 =
1
6

k′′′(ω2) (4.26d)

For simplicity, the frequency increment ∆ω =ω3−ω2 is assumed to be constant at all frequency
steps. If the group velocities cg0...cg3 have been calculated as eigenvalue derivatives (Equation
(3.70)), the first order derivative of the wavenumber can be obtained very accurately:

k′(ω2) =
1

cg2
(4.27)

The second and third order derivatives are approximated using the previous solutions as

k′′(ω2)≈
k′(ω2)− k′(ω1)

∆ω
=

1
∆ω

(
1

cg2
− 1

cg1
) (4.28)

and
k′′′(ω2)≈

1
∆ω2 (

1
cg2
− 2

cg1
+

1
cg0

) (4.29)

Analogously, higher-order terms can be included in the Taylor approximation. The approxi-
mation of the derivatives, however, becomes less accurate with increasing order. Typically the
inclusion of the third-order term significantly increases the accuracy of the guessed wavenum-
ber while the term of fourth order does not lead to further improvement. Obviously these results
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depend on the chosen frequency increment.

Instead of a Taylor series, the Padé expansion [203,204] can be used. It will be demonstrated
in Section 4.4 that this is generally more accurate. The Padé expansion of order [1/2] is of the
form

kP =
α0 +α1∆ω

1+β1∆ω +β2∆ω2 (4.30)

The coefficients α0,α1,β1,β2 can be obtained from the Taylor coefficients as [204]

β2 =
γ2

2 − γ3γ1

γ2
1 − γ2γ0

(4.31a)

β1 =−
γ2 + γ0β2

γ1
(4.31b)

α0 = γ0 (4.31c)
α1 = γ1 + γ0β1 (4.31d)

Using the Padé expansion, very accurate guesses can be obtained from the previous wavenum-
bers. The accuracy of the approximation always depends on the chosen frequency increment.
For each mode, the guess kP for the wavenumber is computed and compared with the m solu-
tions k j ( j = 1...m) at the subsequent frequency step. The solution that minimizes the deviation

∆k =

∣∣∣∣kP− k j

kP

∣∣∣∣ (4.32)

is assumed to represent the same mode as the previous wavenumbers under consideration. How-
ever, as modes can cross, the wavenumbers of two modes at one particular frequency can be-
come arbitrarily close. Hence, it may happen that at some frequencies in the dispersion curves
two modes are confused. To avoid this type of error, the group velocities are traced as well,
using a linear approximation

cgT(ω3) = γ0g + γ1g∆ω = 2cg2− cg1 (4.33)

with

γ0g = cg2 (4.34a)

γ1g =
cg2− cg1

∆ω
(4.34b)

or a Padé expansion of order [0/1]

cgP(ω3) =
α0g

1+β1g∆ω
=

c2
g2

2cg2− cg1
(4.35)
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with

α0g = γ0g (4.36a)

β1g =−
γ1g

γ0g
(4.36b)

A deviation from the guessed group velocity is defined similarly to Equation (4.32)

∆cg =

∣∣∣∣cgP− cg j

cgP

∣∣∣∣ (4.37)

To identify a mode, the solution is selected which minimizes the total deviation

∆ = ∆2
k +∆2

cg
(4.38)

Usually the wavenumbers and group velocities of two modes are not similar simultaneously, so
that this procedure gives very reliable results even if a high number of modes has to be traced.
If an additional mode appears at its cut-off frequency, the according wavenumbers and group
velocities will not be assigned to any of the guessed values, so that the new mode can easily be
identified. Obviously, the order of the approximation in Equations (4.30) and (4.35) has to be
reduced for that particular mode for the following two frequency steps, as not enough previous
data points are available to evaluate a third order approximation. Since usually not more than
two new modes will appear within one frequency step and a higher-order approximation can be
applied for the other existing modes, this approach is still very robust. In some cases it may
also happen that a mode disappears within one frequency step. These branches represent modes
having negative group velocity [205–207]. The easiest way to treat those modes is to sort out
all solutions with negative group velocity and trace these branches separately. This is another
advantage of computing the group velocities directly for each solution.

4.4 Numerical examples

4.4.1 Isotropic circular rod

Dispersion relations are computed for a homogeneous isotropic rod with a radius of 1 mm.
This example is chosen to validate the three-dimensional approach. In terms of computational
efficiency, it is highly advantageous to utilize to axisymmetric formulation presented in the
following chapter.

The material parameters of aluminum are chosen

shear modulus: G = 25GPa
density: ρ = 2700kgm−3

Poisson’s ratio: ν = 0.35
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Making use of the waveguide’s symmetry, only a quarter of the cross-section has been dis-
cretized. Three higher-order elements are required as shown in Figure 4.5. Elements of high
order are particularly advantageous to discretize the curvature of the rod, which is not well rep-
resented by traditional linear or quadratic elements. To define the mesh, the positions of the
nodes A, B and C in Figure 4.5 are chosen at the midpoints of the outer edges of the geometry.
The node D is defined such that all adjacent angles are equal to 120◦. The order of the ele-
ments can be chosen according to the maximum frequency of interest, while the shape of the
elements remain constant. Details on the discretization in two dimensions for the SBFEM using
higher-order elements can be found in [82].

120°

120°

120°
x [mm]

y 
[m

m
]

Figure 4.5: Quarter of the cross-section of a circular rod, discretized by three elements of order 4.

Dispersion relations are presented in Figure 4.6. Results have been compared with the
software PCDisp [52, 53], which is based on the Pochhammer-Chree theory to describe cir-
cular waveguides analytically. The propagating modes are then obtained as the roots of the
Pochhammer-Chree equation, using the bisection method. The results are in excellent agree-
ment for the given frequency range, if at least an element order of four is used for the SBFEM
discretization. The group velocities in Figure 4.6b have been computed as described in Section
3.4. The total CPU time required to obtain the dispersion relations presented here is about 7 s on
a desktop PC (Dell Optiplex 780, Intel Core Quad CPU Q8400 @2.66 GHz with 4GB RAM). If
the symmetry of the waveguide is ignored and the whole cross-section is discretized instead, it
takes about 20 times longer to obtain the same solution. For this comparison, Matlab’s function
eig has been used to solve the eigenvalue problem.

After solving for the wavenumbers and calculating the group velocities at each frequency,
the modes have been traced using the approach presented in Section 4.3. Figure 4.7 shows
examples for the tracing of some selected modes, using some of the wavenumbers shown in
Figure 4.6. For each mode, a Taylor series as well as a Padé expansion have been applied,
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based on the solutions obtained at three frequency steps. The resulting approximations can then
be compared with the wavenumber solutions at the following frequency steps. As can be seen
by comparison in Figure 4.7, the Padé expansion results in a more accurate approximation than
the Taylor series. Consequently, the Padé expansion is used to trace the modes.
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(b) Group velocity

Figure 4.6: Dispersion of the propagating modes in a circular rod, obtained with the SBFEM (–)
and compared with PCDisp [52, 53] (◦).
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Figure 4.7: Tracing of some selected modes using a Taylor series (- -) and the Padé expansion
(—). The wavenumbers (◦) have been obtained from the solution of the eigenvalue problem.

4.4.2 Square pipe

As a second example, wave propagation in an isotropic square pipe is analyzed. The dispersion
relations are compared with results presented in the literature. In the work by Sorohan et al. [58],
dispersion relations have been computed using standard Finite Element software, which requires
a three-dimensional mesh of a representative part of the waveguide. Using the SBFEM, only a
quarter of the cross-section has to be discretized. For this example, it is sufficient to use two
elements of order 7, as shown in Figure 4.8. This discretization leads to highly accurate results
for the considered frequency range. The total width of the pipe is 100 mm and the wall thickness
is 10 mm. The material parameters are

Young’s modulus: E = 210GPa
density: ρ = 7850kgm−3

Poisson’s ratio: ν = 0.29

The phase velocities of the first propagating modes are presented in Figure 4.9. As in [58],
only the SS modes have been computed by applying symmetric boundary conditions on both
symmetry axes. Only the first eight modes have been presented in [58], while several addi-
tional modes occur in the frequency range under consideration. Again, the results are in good
agreement. After the eigenvectors have been computed, the wave propagation can be visualized
at arbitrary times by computing the displacements using Equation (3.33). The displacement
field is interpolated between the nodes, using the known values of the shape functions at the
desired positions. As an example, three modes that can be excited at a frequency of 10 kHz
are visualized in Figure 4.10. A snapshot of the deformation is presented for a section of the
waveguide. The colors represent normalized absolute displacements. Three solutions have been
chosen in order to illustrate the behavior of SS-, AA- and SA-modes, respectively. Particularly,
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the top-view clarifies the symmetric and antisymmetric behavior of the displacement field with
respect to the geometric symmetry axes. The SS-mode is the first mode (smallest phase velo-
city) at a frequency of 10 kHz in Figure 4.9, the dispersion curves for AA- and SA-modes are
not presented here.
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Figure 4.8: Cross-section of a square pipe, discretized with two elements of order 7.
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Figure 4.9: Phase velocity dispersion of the SS modes in the square tube, obtained with the
SBFEM (–) and compared with [58] (◦).

72 BAM-Dissertationsreihe



4.4. NUMERICAL EXAMPLES

(a) SS (b) AA (c) SA

0 1
Figure 4.10: Examples of mode shapes in the square pipe at a frequency of 10 kHz. Colours
represent the absolute values of the displacements.
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Chapter 5

Axisymmetric waveguides

Besides plates, the most common structures that are assessed in guided wave applications
are cylindrical pipes and rods. Obviously, these geometries can be treated using the three-
dimensional formulation presented in the previous chapter [94]. Even though the proposed
solution procedure in conjunction with the discretization by means of higher-order spectral ele-
ments allows for a comparably efficient solution, the computational costs can become large,
particularly for high frequencies. An example, where very high frequencies are of interest and
the computational times become critical, will be described in detail in Chapter 7.

It is a well-known fact that due to the axisymmetry, the mathematical formulation of waves
in cylinders can be greatly simplified. After analytical approaches for the calculation of dis-
persion properties in isotropic homogeneous cylinders have been described by Pochhammer
[208] and Chree [40], specific formulations have been derived for isotropic composite cylinders
and rods [209, 210] as well as orthotropic cylinders [211] and layered orthotropic compos-
ite shells [212, 213]. Many examples for isotropic pipes can be found in [214], while some
applications considering different anisotropic material behavior are given in [215]. The orthog-
onality of modes in circular cylinders is discussed in [216]. More recently, a semi-analytical
model that is based on the Pochhammer-Chree theory has been described for axially symmetric
modes [217]. Also, an advanced analytical formulation has been presented for pre-stressed and
initially twisted bi-material cylinders [196, 218]. The matrix methods [43, 45, 47], previously
mentioned in the context of plate structures, can be applied to axisymmetric structures as well,
with similar advantages and drawbacks.

An early Finite Element technique for cylinders is described in [54]. Later a different nu-
merical approach that is also based on the weak form of the governing differential equations but
uses a power series to approximate the displacement field was introduced [219]. Finite Element
models for anisotropic shells and rods [220] as well as pipes exposed to a loading [221, 222]
have been presented more recently. Examples using the SAFE method can be found in the
literature as well, including for instance damped and undamped cylinders [68, 223], stiffened
or pre-stressed pipes [197, 224] or piezoelectric cylinders [225]. Alternatively, for anisotropic
cylinders a polynomial approach has been developed [226, 227].

In this chapter, an axisymmetric formulation of the SBFEM approach is derived (Section
5.1, see [96–98]). In order to do that, the governing equations are formulated in a cylindrical

75



CHAPTER 5. AXISYMMETRIC WAVEGUIDES

coordinate system. The radial direction is discretized, while a Fourier series is employed in the
circumferential direction. Similar to the case of plate structures, only a straight line has to be
discretized. Employing the virtual work principle similarly to the cases described in Chapters 3
and 4, leads to an eigenvalue problem for each term of the Fourier expansion. The solutions rep-
resent sets of modes with the corresponding circumferential order. If a complex Fourier series is
utilized to describe the displacement field in circumferential direction, the resulting eigenvalue
problem is generally complex, leading to higher computational costs than for the case of plate
structures. Alternatively, a purely real formulation is derived in Section 5.2 by separating the
displacement field into its symmetric and antisymmetric parts. While the implementation of
the real formulation is more cumbersome, the solution can be computationally more efficient,
depending on the material’s anisotropy. For simple anisotropic material behavior, longitudinal
and torsional modes can be computed separately to further reduce computational costs (Section
5.3).

The case of full cylinders has to be treated more carefully due to the singularity of the
governing equations at r = 0 in a cylindrical coordinate system. It is discussed in Section
5.4, how the singularity can be avoided by changing the numerical integration scheme for this
particular case.

Several numerical examples, including isotropic and anisotropic materials as well as layered
pipes and rods are presented in Section 5.5 and compared with results obtained with different
software and examples that can be found in the literature.

Since there are applications where very high frequencies are of interest, the discretization
is discussed in more detail. Elements of extremely high order (up to 200) have been imple-
mented and tested in the context of axisymmetric waveguides. To the author’s knowledge, such
high element orders have not been presented in the literature before. It is often assumed that
higher-order elements can lead to numerical problems, because the nodes close to the element’s
extremities become very close to each other. It is demonstrated in Section 5.6 that even for
very high order the utilized type of elements reveal excellent convergence properties for this
particular application. Guidelines are presented on how to choose the adequate order for the
frequency of interest.
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Figure 5.1: Discretization of a cylinder in the SBFEM.

5.1 Axisymmetric formulation of the SBFEM

In order to describe an axisymmetric waveguide, the governing equations are formulated in a
cylindrical coordinate system (θ , r, z). The waveguide depicted in Figure 5.1 is addressed. The
three-dimensional volume is denoted by Ω, while Γ1 and Γ2 denote the cross-section and the
side-faces of the cylinder, respectively. The inner radius ri can be zero to describe a solid rod.
The displacements u are written as:

u = [uθ ur uz]
T (5.1)

The strains are obtained as
εεε = [εθ εr εz γrz γθz γθr]

T = Lu (5.2)

where the differential operator L in cylindrical coordinates reads [106]

L =


1
r ∂θ 0 0 0 ∂z ∂r− 1

r
1
r ∂r 0 ∂z 0 1

r ∂θ

0 0 ∂z ∂r
1
r ∂θ 0


T

(5.3)

The strain-displacement relationship is decomposed into four terms

εεε = b1u,z +b2u,r +b3
1
r

u,θ +b4
1
r

u (5.4)
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where the matrix b4 is introduced as

b4 =

 0 0 0 0 0 −1
1 0 0 0 0 0
0 0 0 0 0 0


T

(5.5)

The matrices b1, b2 b3 are identical to the three-dimensional case (Equation 4.2). Note that only
the waveguide’s geometry is assumed to be axisymmetric while the displacement field can be
arbitrary at this stage. In the circumferential direction, the displacement field is decomposed
into a Fourier series [58, 60, 226]

u(θ ,r,z) =
∞

∑
m=0

ũm(r,z)eimθ (5.6)

where the integer m denotes the circumferential order. The terms of the Fourier series represent
different sets of modes. Solutions will be obtained for each order m separately. The maximum
value of m that leads to propagating modes, is frequency-dependent. In the following, only
one term of Equation (5.6) is addressed and the subscript m is omitted for conciseness. The
derivative with respect to θ is given by

u,θ (θ ,r,z) = imu(θ ,r,z) (5.7)

Since the θ -dependency of the displacement field is known, it is sufficient to discretize the
waveguide in radial direction only (Figure 5.1). As in the formulation for plate structures, only
a straight line has to be discretized. Three degrees of freedom are assigned to each node. Again,
each element of the discretization is defined in the local coordinate η , which is equal to −1 and
1 at the element’s extremities, respectively (cf. Figure 3.2). In the axisymmetric formulation, η
is related to the radial coordinate r by

r = ri +
(η +1)l

2
(5.8)

where l denotes the element length. If more than one element is used to discretize the radial
direction, then ri refers to the inner radius of the element under consideration. The thickness h
of the cylinder is then given by the sum over the element lengths l j

h = ∑
j

l j (5.9)

The derivative of (5.8) with respect to η is given by

r,η =
l
2

(5.10)
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The coordinate transformation from a Cartesian coordinate system is defined as
∂θ

∂η

∂z

= J


∂x

∂y

∂z

 (5.11)

Without loss of generality, the origin of the Cartesian coordinate system is placed at the center
of the waveguide’s cross-section. Hence, the Jacobian matrix J is given by

J =

 x,θ y,θ 0
x,η y,η 0
0 0 1

=

 −(ri +
(1+η)l

2 )sinθ (ri +
(1+η)l

2 )cosθ 0
l
2 cosθ l

2 sinθ 0
0 0 1

 (5.12)

and the absolute value of the Jacobian determinant reads

|J|= l
2

ri +
l2

4
(η +1) (5.13)

Note that since the Jacobian determinant is a function of η and ri, it has to be evaluated for each
node of the discretization. The same one-dimensional shape functions N(η) as in the case of
plate structures are used to interpolate between the nodal values:

u(θ ,η ,z) = N(η)un(θ ,z) (5.14)

Performing the differentiation with respect to θ explicitly (Equation (5.7)) and transforming
into the local coordinate η , the discretized strain-displacement relationship reads

εεε = b1N(η)∂zun(θ ,z)+
1

r,η
b2∂ηN(η)un(θ ,z)

+b3
1
r

N(η)un(θ ,z)+b4
im
r

N(η)un(θ ,z) (5.15)

which is re-written as
εεε = B1un,z +B2un (5.16)

with

B1 = b1N (5.17a)

B2 =
1

r,η
b2N,η +b3

im
r

N+b4
1
r

N (5.17b)

The stresses are written as

σσσ(θ ,r,z) = [σθ σr σz τrz τθz τθr]
T = Dεεε(θ ,r,z) (5.18)
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The elasticity matrix D is of the same form as in a three-dimensional Cartesian coordinate
system, because the axes of the cylindrical coordinate system are locally perpendicular to each
other for each point of the geometry.

The virtual work principle can be applied analogously to the three-dimensional formulation
for plate structures. The derivation will not be repeated in detail. Formally, integrations have
to be performed along the circumferential direction (contrary to the infinite plate length in the
x-direction in case of plate structures). However, since the θ -dependency is given by Equation
(5.6), it is not required to perform the integration explicitly. Equations (3.28) apply for the
computation of the coefficient matrices, using the modified expressions for B2 (5.17b) and |J|
(5.13). The virtual work statement, after substitution of the coefficient matrices, reads

−
ˆ 2π

0

ˆ ∞

0
δun

T(θ ,z)
(

E0un,zz(θ ,z)+(E1
T−E1)un,z(θ ,z)−E2un(θ ,z)

−M0ün(θ ,z)
)

dz dθ +

ˆ 2π

0
δun

T(θ ,0)qn(θ ,0)dθ −
ˆ 2π

0
δun

T(θ ,0)fn dθ = 0 (5.19)

The virtual displacements are arbitrary in z- as well as in θ -direction, leading to the SBFEM
equation

E0un,zz(θ ,z)+
(
E1

T−E1
)
un,z(θ ,z)−E2un(θ ,z)−M0ün(θ ,z) = 0 (5.20)

Equation (5.20) is of the same form as for plate structures. In terms of implementation, the
difference mainly lies in the computation of B2. Note that the order of the Fourier series is
incorporated into the definition of B2. Hence, in the axisymmetric formulation, the Scaled
Boundary Finite Element equation has to be solved for each circumferential mode m separately
with modified coefficient matrices E1 and E2. The nodal displacements of a mode in the circular
waveguide can be written as

un(θ ,z, t) = ûneλ z−iωt+imθ (5.21)

Substituting Equation (5.21) into (5.20) we obtain the formally identical eigenvalue problems
(3.35) and (3.42). Note that for m > 0, Z is generally a complex matrix (see Equation (5.17b)).
In contrast to that, Z is a real matrix in case of plate structures, as long as no damping is consid-
ered. It is discussed in Section 5.2 how axisymmetric waveguides can be described alternatively
using purely real coefficient matrices. Z is still a Hamiltonian matrix, applying the generaliza-
tion for complex matrices [172]

(J2gZ)∗ = J2gZ (5.22)

where ()∗ denotes the conjugate transpose.
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5.2 Real coefficient matrices

The approach presented in Section 5.1 is easy to implement for very general axisymmetric
waveguides. However, it leads to complex coefficient matrices, which can be a disadvantage if
a highly efficient algorithm is desired. If e. g. Matlab’s function eig is used, the computational
time required for solving a complex eigenvalue problem is typically 2 to 2.5 times larger than
for a real eigenvalue problem of the same dimension (around 100 degrees of freedom). Also
as mentioned before, alternative algorithms that are optimized for real Hamiltonian eigenvalue
problems can be used. These algorithms are not necessarily implemented for complex matrices.
Thus, it is interesting to point out that the same solutions can be obtained using purely real
coefficient matrices. The derivation and implementation is somewhat more cumbersome. It
will be shown that the use of real matrices is advantageous in terms of computational efficiency,
if θ is one of the material’s principal directions.

Instead of using a complex Fourier series (Equation (5.6)), we can generally write the dis-
placement components in an axisymmetric solid as [228]:

uθ (θ ,r,z) =−ũs
θ sinmθ + ũa

θ cosmθ (5.23a)
ur(θ ,r,z) = ũs

r cosmθ + ũa
r sinmθ (5.23b)

uz(θ ,r,z) = ũs
z cosmθ + ũa

z sinmθ (5.23c)

where the superscripts s and a denote the symmetric and antisymmetric parts (with respect to
θ = 0) of the displacement field, respectively. Using Equations (5.1) and (5.2), the strains are
obtained as

εεε = Lu

=


1
r ∂θ 0 0 0 ∂z ∂r− 1

r
1
r ∂r 0 ∂z 0 1

r ∂θ

0 0 ∂z ∂r
1
r ∂θ 0


T −ũs

θ sinmθ + ũa
θ cosmθ

ũs
r cosmθ + ũa

r sinmθ
ũs

z cosmθ + ũa
z sinmθ



=



−m
r c̃ 1

r c̃ 0
0 ∂rc̃ 0
0 0 ∂zc̃
0 ∂zc̃ ∂rc̃
−∂zs̃ 0 −m

r s̃
(−∂r +

1
r )s̃ −m

r s̃ 0


 ũs

θ
ũs

r

ũs
z

+


−m
r s̃ 1

r s̃ 0
0 ∂r s̃ 0
0 0 ∂zs̃
0 ∂zs̃ ∂r s̃

∂zc̃ 0 m
r c̃

(−∂r +
1
r )c̃

m
r c̃ 0


 ũa

θ
ũa

r

ũa
z

 (5.24)

with the abbreviations s̃ = sinmθ , c̃ = cosmθ . Defining the vectors ũs = [ũs
θ ũs

r ũs
z]

T, ũa =
[ũa

θ ũa
r ũa

z ]
T and denoting the corresponding matrices in Equation (5.24) by Ls and La yields

εεε = Lsũs +Laũa (5.25)
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The differential operators corresponding to symmetric and antisymmetric displacement fields
are re-written as

Ls = Lααα cosmθ +Lβββ sinmθ (5.26a)

La = Lααα sinmθ −Lβββ cosmθ (5.26b)

with

Lααα =

 −
m
r 0 0 0 0 0

1
r ∂r 0 ∂z 0 0
0 0 ∂z ∂r 0 0


T

(5.27a)

Lβββ =

 0 0 0 0 −∂z −∂r +
1
r

0 0 0 0 0 −m
r

0 0 0 0 −m
r 0


T

(5.27b)

Applying the discretization, the displacement fields, separated into symmetric and antisymmet-
ric components reads

u = Nααα cosmθ ũs
n−Nβββ sinmθ ũs

n +Nααα sinmθ ũa
n +Nβββ cosmθ ũa

n (5.28)

and the discretized strain-displacement relationship is obtained as

εεε = (B1
ααα ũs

n,z +B2
ααα ũs

n)cosmθ +(B1
βββ ũs

n,z +B2
βββ ũs

n)sinmθ

+(B1
ααα ũa

n,z +B2
ααα ũa

n)sinmθ − (B1
βββ ũa

n,z +B2
βββ ũa

n)cosmθ (5.29)

Expressions for B1
ααα ,B1

βββ ,B2
ααα ,B2

βββ ,Nααα ,Nβββ are given in Appendix A.3. We substitute Equations
(5.28) and (5.29) into the virtual work principle, analogously to the procedure described in Sec-
tion 5.1. The virtual displacement field is then separated into its symmetric and antisymmetric
components, leading to two displacement equations to be fulfilled simultaneously:

E0ũs
n,zz +E0ũa

n,zz +
(
E1

T−E1
)
ũs

n,z +
(
E1

T
−E1

)
ũa

n,z−E2ũs
n−E2ũa

n−M0 ¨̃us
n = 0 (5.30a)

−E0ũs
n,zz +E0ũa

n,zz−
(
E1

T
−E1

)
ũs

n,z +
(
E1

T−E1
)
ũa

n,z +E2ũs
n−E2ũa

n−M0 ¨̃ua
n = 0 (5.30b)

The matrices E0 and E0 are defined as

E0 =

ˆ 1

−1
B1

αααTDB1
ααα |J|dη +

ˆ 1

−1
B1

βββTDB1
βββ |J|dη (5.31a)

E0 =−
ˆ 1

−1
B1

αααTDB1
βββ |J|dη +

ˆ 1

−1
B1

βββTDB1
ααα |J|dη (5.31b)
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and similar for E1,E1,E2,E2 (see Appendix A.3). The mass matrix is given as

M0 = ρ
ˆ 1

−1
NαααTNααα |J|dη +ρ

ˆ 1

−1
NβββTNβββ |J|dη (5.32)

while the terms NαααTNβββ and NβββTNααα vanish. Equations (5.30) can be written in the same form
as (3.35) by applying(

λ 2Ẽ0 +λ
(
Ẽ T

1 − Ẽ1
)
− Ẽ2 +ω2M̃0

){
ûs

n
ûa

n

}
= 0 (5.33)

with

Ẽ0 =

[
E0 E0

−E0 E0

]
; Ẽ1 =

[
E1 E1

−E1 E1

]
(5.34)

Ẽ2 =

[
E2 E2

−E2 E2

]
; M̃0 =

[
M0 0
0 M0

]
(5.35)

With these definitions, the 12n×12n matrix Z̃ can be assembled analogously to Equation (3.39)
while the coefficient matrices are now purely real. However, to solve for the symmetric and an-
tisymmetric displacement fields simultaneously, we had to double the dimension of the eigen-
value problem so that this approach seems computationally less efficient in the general case.
On the other hand, it can easily be shown by substituting into Equations (5.31) that the matrices
E0,E1,E2 vanish, if θ is a principal material direction [229], i. e. if the elasticity matrix is given
by Equation (3.80). This is the case in the majority of practical applications, where the mate-
rial is isotropic, cubic, transversely isotropic or orthotropic with the θ -direction being one of
the axes of anisotropy. Hence, the symmetric and antisymmetric parts are then decoupled (i. e.
we can describe the modes by choosing either the symmetric or antisymmetric components in
Equations (5.23)) and we can write(

λ 2E0 +λ
(
E1

T−E1
)
−E2 +ω2M0

)
ûs/a

n = 0 (5.36)

Under these circumstances, it is sufficient to solve a real eigenvalue problem of the same size as
the complex one derived earlier. If general anisotropic material behavior has to be considered,
the symmetric and antisymmetric parts are coupled and all terms in Equations (5.23) have to be
included. It is then more efficient to employ the complex formulation as described in Section
5.1.
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5.3 Longitudinal and torsional modes

If the elasticity matrix is given by Equation (3.80), the modes with m = 0 are either longitudinal
or torsional.22 Both cases can be treated separately to reduce the size of the eigenvalue problem
to be solved. This can be desired in the high frequency range, where the number of modes
becomes large. It is then significantly more efficient to solve the eigenvalue problem twice with
a reduced number of degrees of freedom. Particularly, the excitability of torsional modes is often
negligible in practical applications and hence they do not have to be computed. In this section,
the governing equations for the modes of circumferential order zero are given explicitly to ease
the implementation of the coefficient matrices. Alternatively, the unused degrees of freedom
can be eliminated after assembling the coefficient matrices.

5.3.1 Longitudinal modes

For modes with m = 0, the displacement field is axisymmetric. Consequently, the derivatives of
the displacement components with respect to θ vanish

∂θ uz = ∂θ uθ = ∂θ ur = 0 (5.37)

Additionally, in the case of longitudinal modes the displacement components in circumferential
direction vanish

uθ = 0 (5.38)

Comparing with Equations (5.1)-(5.3), the strains are given as

εεε = [εθ εr εz γrz]
T = Llu (5.39)

with the reduced differential operator

Ll =

[
1
r ∂r 0 ∂z

0 0 ∂z ∂r

]T

(5.40)

Using the same symbols as before for simplicity, the strain-displacement relationship for m = 0
reads

εεε = b1u,z +b2u,r +b4
1
r

u (5.41)

22In the rare case that the elasticity matrix is fully populated, the longitudinal and torsional modes are cou-
pled and the following simplifications are not valid. This is equivalent to the SH and Lamb-type modes in plate
structures (cf. Section 3.5).
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with

b1 =

[
0 0 0 1
0 0 1 0

]T

(5.42a)

b2 =

[
0 1 0 0
0 0 0 1

]T

(5.42b)

b4 =

[
1 0 0 0
0 0 0 0

]T

(5.42c)

In the discretized form, the matrix B2 is given by

B2 =
1

r,η
b2N,η +b3

1
r

N (5.43)

The elasticity matrix is reduced to

Dl =


D11 D12 D13 D14

D22 D23 D24

sym. D33 D34

D44

 (5.44)

The coefficient matrices can then be obtained as in Section 5.1. Obviously, the degrees of
freedom corresponding to displacements in circumferential direction have to be removed from
the shape function matrix N.

5.3.2 Torsional modes

For purely torsional modes, Equation (5.37) is valid as well. Additionally, the displacement
components in both z- and r-direction vanish

ur = uz = 0 (5.45)

Consequently, the wave motion of these modes is described by a scalar displacement field,
similar to a pure out-of-plane motion in a Cartesian coordinate system. Considering Equation
(5.37), the strain-displacement relationship reads

εεε = [γθz γθr]
T = Ltuθ (5.46)

with
Lt =

[
∂z ∂r− 1

r

]T
(5.47)
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Consequently, the strains are written as

εεε = b1uθ ,z +b2uθ ,r +b3
1
r

uθ (5.48)

with
b1 =

[
1 0

]T
(5.49)

b2 =
[

0 1
]T

(5.50)

b3 =
[

0 −1
]T

(5.51)

and the elasticity matrix is simplified to be

Dt =

[
D55 D56

D56 D66

]
(5.52)

5.4 Solid cylinders
Care has to be taken when a solid cylinder is modeled using the proposed approach. In that
case, the inner radius ri of the waveguide is set to zero. At r = 0, the strain-displacement
relationship (5.4) in a cylindrical coordinate system is undefined. Consequently, the matrix
B2 (5.17b) cannot be evaluated. It should be noted that the shape function corresponding to
the node at r = 0 is still well-defined (Figure 5.2a). The problem occurs when performing
the numerical integration in order to compute E1 and E2. When using the Gaussian-Lobatto-
Legendre quadrature, one integration point is placed at r = 0 and consequently B2 has to be
evaluated at this point.

An obvious approximation can be obtained by shifting the inner radius to a small non-zero
value. This approach seems rather unsatisfactory as the optimal value for ri and its effect on the
accuracy of the solution are not trivial to obtain. Alternatively, we can change the integration
scheme to a traditional Gaussian quadrature. The p+1 integration points ηg

i are positioned at
the roots of the Legendre polynomial of order p+1 [230, 231]:

Pp+1(η
g
i ) = 0 (5.53)

No integration points are placed at the element’s extremities (Figure 5.2b) so that the singu-
larity is avoided. The Gaussian quadrature with p+1 integration points gives exact results for
the integration of polynomials up to order 2p+ 1 [232]. Hence, it fully integrates all coeffi-
cient matrices. As the integration points do not coincide with the element nodes, we sacrifice
the properties of spectral elements. Particularly, the coefficient matrices E0 and M0 are now
fully populated. However, for axisymmetric waveguides the number of degrees of freedom is
typically small. Hence the numerical errors due to the inversion of the fully populated ma-
trix E0 are in most cases acceptable and the computational time for computing the matrix Z is
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(a) (b) (c)

shape function

nodes

integration points

Figure 5.2: Shape functions (—), nodes (•) and integration points (�) for different types of
elements: (a) Nodes and integration points at GLL points; (b) nodes at GLL points - integration
points at Gauss-points; (c) nodes and integration points at Gauss points.

small in comparison with the solution of the eigenvalue problem. It is then preferred to change
the integration scheme rather than shifting the inner radius. If several elements are used for
the discretization, it is possible to employ the Gaussian integration for the element containing
the singularity and to utilize the Gaussian-Lobatto-Legendre quadrature for the other elements.
The higher accuracy of the Gaussian quadrature does not necessarily lead to more accurate re-
sults for the wavenumbers, as will be demonstrated in Section 5.5. Generally, both integration
schemes result in very similar accuracy for the dispersion curves, if elements of high order are
used.

If homogeneous or functionally graded materials are addressed, the discretization can be
defined by a single high-order element. In that case, the concept of spectral elements can
actually still be applied by positioning the nodes at the Gaussian integration points. The shape
functions are only slightly modified as can be seen in Figure 5.2c. Consequently, this leads to
similarly small condition numbers for E0 and does not effect the accuracy of the integration.
On the other hand, this approach cannot be used in a trivial way, if several elements have to
be assembled or if boundary conditions are to be applied, as no nodes are positioned at the
extremities of the element. For the numerical examples presented in this work, the Gaussian
integration is employed for all elements in case of a solid cylinder. For hollow cylinders the
Gaussian-Lobatto-Legendre quadrature is used.

5.5 Numerical examples

Several numerical examples are presented in this section to demonstrate the applicability of
the proposed approach to isotropic and anisotropic materials as well as layered pipes and
rods. These examples have been computed on a current Notebook PC (Intel i7-2637M CPU
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@ 1.7 GHz, 8 GB RAM) using the interactive mode of Matlab. Using the proposed approach
as described in Section 5.1, the computational time to obtain the complete dispersion curves in
the frequency range presented here for each example is about 1 s. For modes with m > 0, the
computational time is reduced by approximately a factor 2, if the real coefficient matrices are
used as described in Section 5.2. The aim of this section is to validate the results using rather
small test problems. In Chapter 7, examples will be presented, where the computational costs
become relevant. All dispersion curves depicted in the Figures are obtained using the complex
formulation. However, it has been tested for all examples that no significant differences in the
dispersion curves occur if the real coefficient matrices are employed.

5.5.1 Isotropic homogeneous pipe
As a first example, dispersion curves are computed for a simple isotropic homogeneous pipe,
as the solutions can easily be verified by different approaches. The material parameters and
geometry are chosen to be

Shear modulus: G = 1GPa

Density: ρ = 1000kgm−3

Poisson’s ratio: ν = 0.3
Inner radius: ri = 1mm

Thickness: h = 1mm

Consequently, the angular frequency ω and dimensionless frequency a are identical (see Equa-
tion (3.83), [91]). The phase and group velocities of the propagating modes are presented in
Figure 5.3. For the sake of conciseness, only modes with a circumferential order m ≤ 3 have
been depicted. Results have been compared with the software PCDisp [52, 53]. For the dis-
cretization of the cross-section, one five-noded element is sufficient to obtain very accurate
results for the presented frequency range up to a = 5. As can be seen in Figure 5.3, the results
are in excellent agreement with the analytical solution. More details on the accuracy of the
approach will be presented in Section 5.6.
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Figure 5.3: Dispersion curves of an isotropic homogeneous pipe with a Poisson’s ratio of 0.3,
computed using the SBFEM (◦) and compared with PCDisp (–).
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5.5.2 Layered rod
In a second example, a rod consisting of two layers is analyzed (Figure 5.4). The material
properties of brass and titanium are chosen for the inner and outer element, respectively:

Brass Titanium
Shear modulus: G1 = 40.65GPa G2 = 46.5GPa

Density: ρ1 = 8400kgm−3 ρ2 = 4460kgm−3

Poisson’s ratio: ν1 = 1/3 ν2 = 0.3

The element lengths are l1 = l2 = 0.5mm. As the inner radius of the inner element equals zero,
Gaussian integration is applied as described in Section 5.4. For this example, two four-noded
elements have been tested to lead to accurate results up to a frequency of ω = 20 rad/s. Again,
the phase and group velocities of the modes with circumferential order m≤ 3 are computed and
compared with results obtained with PCDisp (Figure 5.5). The torsional modes could not be
obtained using PCDisp. All other modes are in excellent agreement. It should be noted that in
contrast to homogeneous cylinders, the fundamental torsional mode is dispersive.

θ l2

ri =0

l1

titanium

brass

Figure 5.4: Cross-section of a layered cylinder.
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Figure 5.5: Dispersion curves of a layered rod computed using the SBFEM (◦) and compared
with PCDisp (–).
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5.5.3 Anisotropic pipes
As a more advanced example, wave propagation in anisotropic pipes is analyzed and compared
with results that are available in the literature. Elmaimouni et al. [226] used a polynomial
approach to obtain dispersion curves for pipes with cubic and orthotropic anisotropy. These ex-
amples had been presented earlier by Nelson et al. [60] and Armenàkas et al. [215], respectively,
using analytical approaches. In the formulation presented in this work, general anisotropic ma-
terial behavior can be implemented in a trivial way by modifying the elasticity matrix. For the
first example in [226], showing cubic anisotropy, the non-zero entries of the elasticity matrix
and the geometry parameters are given as

D11 = D22 = D33 = 469.6GPa ρ = 1000kgm−3

D12 = D13 = D23 = 167.61GPa ri = 0.5mm
D44 = D55 = D66 = 106.8GPa h = 1mm

Results are presented in Figure 5.6. Only longitudinal modes are included in this computation.
Both the results obtained by Elmaimouni et al. and Nelson et al. are taken from [226]. One
seven-noded element is used for the discretization. The results obtained with the SBFEM are
generally in good agreement with the results previously published, particularly they agree very
well with the polynomial approach presented by Elmaimouni et al.

In Figure 5.7 results are presented for an orthotropic pipe. The nine non-zero entries of the
elasticity matrix and the geometry parameters as given in [226] are

D11 = 294GPa D12 = 88GPa D44 = 131GPa ρ = 1000kgm−3

D22 = 349GPa D13 = 84GPa D55 = 132GPa ri = 4mm
D33 = 281GPa D23 = 126GPa D66 = 108GPa h = 1mm

In this example, modes with m = 1 have been presented. Again, the results are in good agree-
ment with the polynomial approach by Elmaimouni et al. Two additional modes are found in
the presented frequency range that were not included in the earlier work. The solutions at the
highest two frequencies are assigned to a different mode than originally suggested in [215].
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Figure 5.6: Dispersion curves for a pipe with cubic anisotropy, computed using the SBFEM (—)
and compared with results obtained by Elmaimouni et al. [226] (4) and Nelson et al. [60] (∗).
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Figure 5.7: Dispersion curves for an orthotropic pipe, computed using the SBFEM (—) and
compared with results obtained by Elmaimouni et al. [226] (4) and Armenàkas et al. [215] (∗).
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5.6 Convergence and adaptive meshing
In this section, guidelines are presented to choose an appropriate number of nodes for the dis-
cretization, depending on the frequency range and element order. If the dispersion properties
have to be computed over a wide frequency range, it can be desired to modify the mesh accord-
ing to frequency in order to save computational costs. As higher-order elements are utilized,
different options to refine the mesh can be considered. On the one hand, the number of elements
can be increased while using a constant element order (h-refinement). The meshing procedure
becomes very simple and efficient in this case, because the coefficient matrices are identical
for each element. Consequently, the numerical integrations have to be performed only once for
one element. On the other hand, refinement can be achieved by using only one element (or one
element per layer in case of composite materials) for the discretization. The element order is
then increased according to frequency (p-refinement). It has already been discussed in Chapter
3 that high-order spectral elements generally show excellent convergence rates.
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Figure 5.8: Maximum error of
the wavenumbers as a function of
the number of nodes at a dimen-
sionless frequency of a = 50 in an
isotropic pipe. Results are pre-
sented for fixed element order of
1 (N), 2 (I), 5 (H) and 15 (J) as
well as variable element order (◦).

The coefficient matrices have to be updated for every refinement step. However, in this
application the computational costs for generating the mesh and computing the coefficient ma-
trices are generally negligible in comparison with the solution of the eigenvalue problem. Both
h- and p-refinement have been tested for the case of longitudinal modes in an isotropic pipe.
The material and geometry parameters are the same as in Section 5.5.1. As a reference so-
lution, the dispersion curves have been calculated using 12 elements of order p = 14. This
discretization leads to converged results for all propagating modes within the frequency range
discussed in this section. To analyze convergence in detail, the maximum error of all modes
has been calculated for increasing number of nodes using p-refinement as well as h-refinement
with different element order. As an example, results for a dimensionless frequency of a = 50
are presented in Figure 5.8. At this frequency, 25 propagating modes exist in the waveguide.
Gaussian-Lobatto-Legendre quadrature has been used for the numerical integration. Results
are presented for traditional linear (p = 1) and quadratic (p = 2) elements as well as higher-
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order elements of order p = 5 and p = 15. In these cases, refinement has been achieved by
increasing the number of elements. As can be seen in Figure 5.8, the results converge for each
element type, while the convergence rate is drastically improved when increasing the element
order. Using p-refinement (’p variable’ in Figure 5.8) generally leads to faster convergence than
h-refinement.

We are interested in the number of nodes that are required to obtain solutions with sufficient
accuracy for practical applications. This number of required nodes is a function of frequency.
We discuss the frequency range up to a = 120, where 60 propagating longitudinal modes can
be excited in the waveguide. The discretization has been refined at each frequency step until
the maximum error of all propagating modes is less than 0.1% in comparison with the reference
solution.

The number of nodes n0.1% required for the chosen accuracy is plotted as a function of
dimensionless frequency a in Figure 5.9a. Gaussian-Lobatto-Legendre quadrature has been
utilized for the numerical integrations. For all elements, the number of nodes increases almost
linearly with frequency, as long as the frequency is not too large. The non-linear behavior
of quadratic elements at very high frequencies can be explained by numerical pollution errors
[233, 234]. Obviously, the required number of nodes is much smaller, if higher-order elements
are utilized in comparison with linear and quadratic elements. Comparing the results obtained
with p = 5 and p = 15, the benefit from increasing the element order is comparably small. This
is because at some frequency steps more nodes have to be used than actually required, due to
the high order of each element. Still it should be noted that a rather small change in the number
of degrees of freedom can result in a significant increase in computational time.23

Best results have been obtained using p-refinement. Still the number of required nodes
increases linearly with frequency, while it is always smaller or equal to the number of nodes
for fixed element order. Figure 5.9b shows the equivalent results, if Gaussian quadrature is
used rather than Gaussian-Lobatto-Legendre quadrature. As can be seen from comparison with
Figure 5.9a, the required number of nodes is significantly higher, if elements of low order are
used. Contrary, for h-refinement with elements of order 15 and for p-refinement the results
are almost identical. The effect on the dispersion curves is demonstrated in Figure 5.10. The
phase velocities of the longitudinal modes in the same pipe as before are plotted as a function of
dimensionless frequency up to a = 6π . The converged solution is compared to results that are
not converged within the whole frequency range. In Figure 5.10a five quadratic elements have
been used. If the Gaussian-Lobatto-Legendre quadrature (◦) is used, the results are slightly
more accurate for up to a≈ 15 than for the Gaussian integration (�). On the other hand, if one
element of order 7 is used (Figure 5.10b), the accuracy seems very similar.

23For instance, increasing the number of nodes by 25 % leads to the computational time increasing by a factor
1.253 ≈ 2.
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Figure 5.9: Number of nodes that are required to obtain a maximum error of 0.1% if the Gaussian-
Lobatto-Legendre quadrature (a) or the traditional Gaussian quadrature (b) is employed. Results
are presented for fixed element order of 1 (N), 2 (I), 5 (H) and 15 (J) as well as variable element
order (◦).
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Figure 5.10: Converged results for the phase velocities (∗) compared with GLL (◦) and Gaussian
(�) quadrature for the same number of nodes. (a): five elements of order 2; (b): one element of
order 7.

97



CHAPTER 5. AXISYMMETRIC WAVEGUIDES

The number of required nodes can be compared to the wave length λs of shear waves in the
considered material at a given frequency. The number of wave lengths nλ in trough-thickness
direction of the pipe is given as

nλ =
h
λs

=
hω

2πcs
=

a
2π

(5.54)

The number of nodes per wavelength that is required, if a variable element order is used, is
about 3.5. In contrast to that, using a fixed element order of p= 5, about 6 nodes per wavelength
should be used. Using quadratic elements, about 13 nodes per wavelength are required. In Table
5.1 the results are summarized for Gaussian and GLL quadrature for a maximum error of 0.1%
as well as 1%. It can be seen that the number of nodes required to achieve a maximum error
of 0.1% is only slightly larger than to obtain an error of 1% if high-order elements are used.
This confirms that the results converge rapidly within the range of accuracy that is relevant
for practical applications. Even though the results presented here have been obtained from
the computation of longitudinal modes, an analogous procedure for torsional and higher-order
modes leads to almost identical results and will not be repeated.

In terms of implementation it can be more feasible to express the required number of nodes
as a function of the dimensionless frequency a. Fitting a linear function to the data presented in
Figure 5.9, yields a useful approximation for the number of nodes

n0.1% = 4+0.5a (5.55)

This result will be used to maximize the efficiency of the implementation in Chapter 7.

Table 5.1: Average number of nodes per transversal wavelength in an isotropic
material that are required to obtain a maximum error of 0.1% and 1%, respectively.

GLL Gauss

p n0.1%/nλ n1%/nλ n0.1%/nλ n1%/nλ

1 69.9 22.4 86.5 27.7
2 12.7 6.7 18.1 9.6
5 5.8 4.5 7.1 5.6
15 4.6 4.3 4.7 4.4

variable 3.5 3.3 3.5 3.4
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Chapter 6

Embedded waveguides

In some important applications of guided waves (e. g. the non-destructive testing of buried pipes,
embedded timber poles or fluid loaded plates), the waveguide is coupled to a quasi-infinite
medium, allowing for waves to be transmitted into the surrounding medium. This so-called
leakage effect has to be taken into account when modeling the dispersive behavior of guided
waves. Not only does it affect the phase velocities, but it causes the wavenumbers of all modes
to be complex. The imaginary part of the complex wavenumbers represents the attenuation due
to leakage of wave energy into the surrounding medium. As a consequence, the energy velocity
is strongly influenced by the material parameters.

Most literature on guided waves addresses waveguides with stress-free surfaces, while the
development of adequate techniques to model waveguides embedded in or attached to an infi-
nite medium is still ongoing. Several approaches have been presented in order to account for
the influence of a surrounding medium on the propagating modes in a waveguide. The global
matrix method and similar models are generally capable of describing the transmission of waves
into an infinite medium. However, computing all complex roots of the resulting characteristic
equation is not trivial, depending on the combination of material parameters of the waveguide
and surrounding medium. Also, the global matrix method can only be applied to simple plates
and axisymmetric structures. Most analytical models for embedded waveguides address wave-
guides in fluids, where the influence of the surrounding medium is comparably small. Examples
include rods in fluids [235], leaky Lamb waves in fluid loaded plates [236], plates embedded
in fluids [34, 237] and surface waves in embedded cylindrical shells [238]. More recently, an
analytical model for cylinders embedded in a solid has been presented [239]. Also interesting
discussions on leaky waves [240, 241] and the effect of partial embedment on the scattering
of guided waves in cylindrical structures [242] can be found in the literature. More general
solutions exist for fluid-loaded anisotropic plates and cylinders [243, 244].

In Finite Element modeling, complex wavenumbers do not introduce severe difficulties, as
has been demonstrated for the case of waveguides with material damping [63]. Formulating the
effect of a surrounding infinite medium on the other hand is not trivial. Simply discretizing a
finite subdomain to represent the infinite medium leads to reflections from the boundary of the
discretized region to interfere with the modes in the waveguides. To avoid these reflections,
several authors employed the concept of absorbing regions [152, 245–250]. The absorbing re-
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gion is assumed to consist of the same material as the surrounding medium while an additional
material damping - increasing with the distance to the waveguide’s surface - is introduced, caus-
ing waves to vanish as they propagate towards the boundary of the discretized domain. It has
been demonstrated that absorbing regions can lead to accurate results in transient Finite Ele-
ment analyses [245–249] as well as the SAFE method [152,250]. However, particularly for the
computation of dispersion relations, the application of absorbing regions can be cumbersome
and lead to very high computational costs, as the size of the absorbing region typically has to
be many times larger than the waveguide’s cross-section. Also it can be difficult to distinguish
between modes propagating in the waveguide and unwanted solutions representing waves that
are excited in the surrounding medium. As an alternative, perfectly matched layers [251, 252]
or infinite elements [253–255] can be implemented to model the infinite medium, leading to
similar advantages and drawbacks compared to absorbing regions.

In this chapter the effect of a surrounding medium is modeled by a boundary condition on the
waveguide’s surface [99]. Numerous approaches have been developed by different authors over
the last decades in order to construct a boundary that simulates the effect of an adjacent infinite
medium. Depending on the application and the background of the research, these boundaries are
referred to as e. g. non-reflecting [256], transmitting [257, 258], radiating [259], open [260] or
absorbing [261, 262] boundary conditions. Comprehensive reviews of the different techniques
can be found in the literature [263, 264]. It should be noted that the main difficulty addressed
in these approaches is to model a truncated part of an infinite homogeneous medium. In that
case the boundary condition is required to simulate perfect transmission hence avoiding any
reflections at the boundary. In contrast to that, the material parameters of a waveguide and
the surrounding medium are typically very different and this difference in acoustic impedances
leads to most of the wave energy being reflected inside the waveguide (If this assumption is not
valid, the structure cannot be considered as a waveguide).

For this situation a simple dashpot boundary condition is introduced into the existing for-
mulation for guided waves. The idea to replace the infinite medium surrounding the waveguide
by a dashpot boundary has been inspired by Hall and Chopra [265], who used a similar concept
in the context of dam-reservoir interaction. Hall and Chopra formulated a damping boundary
condition applied along the bottom of a semi-infinite reservoir in order to approximately ac-
count for the interaction between the fluid and underlying foundation medium. The derivation
of the boundary condition is based on the assumption that each component of the displacement
vector on the surface obeys the one-dimensional Helmholtz equation. As a result, the surround-
ing medium acts as a damper with its acoustic impedances being the damping coefficients. This
concept of a dashpot boundary has originally been developed to fulfill the Sommerfeld radia-
tion condition and is mentioned in the literature many times in the context of simulating infinite
media [264–269]. It is very effective in absorbing waves that propagate perpendicular to the
boundary with a known wave velocity, which typically occurs at high wavenumbers. In the
majority of other applications, where general infinite media are modeled at low wavenumbers,
this type of boundary condition leads to unsatisfactory results due to spurious reflections at the
boundary. For the simulation of embedded waveguides, where the wave velocity in the sur-
rounding medium is typically much lower than that of the waveguide, it will be demonstrated
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6.1. SBFEM FORMULATION FOR EMBEDDED WAVEGUIDES

that this approximation leads to very accurate results. The dashpot boundary condition can eas-
ily be incorporated into the existing formulation for free waveguides. Since the surrounding
medium does not require discretization, the computational effort is drastically reduced in com-
parison with other Finite Element approaches and the identification of propagating modes in the
waveguide is straightforward.

In order to model a waveguide coupled to an infinite medium, first an adequate boundary
condition for a one-dimensional system is derived. Similar descriptions can be found in the
work presented by Hall and Chopra [265], where the interaction of a solid dam with an infinite
fluid medium is modeled. In the following subsections it will be discussed how these considera-
tions can be adapted to model the interaction of a plate or a cylindrical structure with an infinite
solid medium.

Waveguide
k

k̃

Medium

∞

∞

∞

∞

y

x

Figure 6.1: One-dimensional wave propagation in two adjoining half spaces.

6.1 SBFEM formulation for embedded waveguides

6.1.1 One-dimensional dashpot boundary condition
The simple wave propagation problem depicted in Figure 6.1 is addressed. It consists of two
adjoining half spaces with an interface at y = 0. Assume that the lower half space (y < 0)
represents the waveguide, while the upper half space represents the surrounding medium. In this
section, the superscript ~ indicates variables that refer to the surrounding medium. Particularly,
the wavenumbers k and k̃ denote the wavenumbers of waves traveling in the waveguide and
the surrounding medium, respectively. The structure is of infinite dimension in x- as well as
y-direction. For now it is assumed that waves can propagate in the y-direction only and hence
can be treated as a one-dimensional problem.

101



CHAPTER 6. EMBEDDED WAVEGUIDES

Under this assumption, the displacements u and ũ in the waveguide and the surrounding
medium obey the one-dimensional Helmholtz equation. For instance, for the surrounding
medium the Helmholtz equation reads [270]

ũ,yy +
ω2

c̃2 ũ = 0 (6.1)

with the wave velocity c̃. The general solution of Equation (6.1) is given by

ũ(y,ω) = A(ω)exp(
iω
c̃

y)+B(ω)exp(− iω
c̃

y) (6.2)

where the arbitrary frequency-dependent amplitudes A(ω) and B(ω) correspond to the ampli-
tudes of waves traveling in negative and positive y-direction, respectively. The stresses σ and σ̃
in the waveguide and the surrounding medium must be continuous at the interface, y = 0, i. e.

σ(0,ω) = σ̃(0,ω) = Ẽũ,y(0,ω) (6.3)

where Ẽ denotes the elastic modulus, defined as the ratio of stress σ̃ and strain ε̃ = ũ,y

Ẽ =
σ̃
ε̃

(6.4)

In case of scalar wave propagation, the elastic modulus can be written as [271]

Ẽ = ρ̃ c̃2 (6.5)

with the mass density of the surrounding medium ρ̃ . The derivative of the displacement field
in the surrounding medium with respect to y is given by

ũ,y(y,ω) =
iω
c̃

[
A(ω)exp(

iω
c̃

y)−B(ω)exp(− iω
c̃

y)
]

(6.6)

Substituting Equations (6.5) (6.6) into (6.3) yields

σ(0,ω) = iωρ̃ c̃[A(ω)−B(ω)] (6.7)

In addition to the stresses, the displacements at the interface y = 0 must be continuous, i. e.

u(0,ω) = ũ(0,ω) = A(ω)+B(ω) (6.8)

and consequently
B(ω) = u(0,ω)−A(ω) (6.9)

Substituting Equation (6.9) into (6.7) leads to

σ(0,ω) = 2iωρ̃ c̃A(ω)− iωρ̃ c̃u(0,ω) (6.10)
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Equation (6.10) describes the stress at the interface caused by waves that are transmitted from
inside the waveguide as well as incident waves from the surrounding medium. In this applica-
tion the surrounding medium is assumed to be of infinite dimension, hence we can assume the
term describing incident waves to vanish (Sommerfeld radiation condition). Consequently we
can set

A(ω) = 0 (6.11)

and write
σ(0,ω) =−iωρ̃ c̃u(0,ω) = iωqu(0,ω) (6.12)

with
q =−ρ̃ c̃ (6.13)

The interaction of the waveguide with the surrounding medium has been formulated as a bound-
ary condition for the stresses at the interface. The boundary condition can be interpreted as a
dashpot with the damping coefficient q. It should be noted that the coefficient q is given by the
(negative) acoustic impedance of the surrounding medium [272].

6.1.2 Application to plate structures
Even though the boundary condition has been derived under drastically simplified prerequisites
in the previous subsection, it can similarly be applied to obtain a realistic model for an em-
bedded waveguide. First, the dashpot boundary condition is employed for plate structures.
The three-dimensional formulation as described in Section 3.5 is used and the plate may be
attached to (different) infinite media at both of its surfaces. For simplicity the plate’s up-
per surface is positioned at y = 0. According to Equation (6.12), the effect of the surround-
ing medium can be represented by imaginary stresses that act on the plate’s surface. In the
three-dimensional formulation we assign surface tractions to these external stresses, denoted
by τττ(x,y,z,ω) = [τx τy τz]

T. We assume that each component of the surface tractions can be
represented by a one-dimensional dashpot (Figure 6.2), i. e.

τττ(x,0,z,ω) = iωQu(x,0,z,ω) (6.14)

where the damping coefficient is replaced by the 3×3 matrix24

Q =−ρ̃

 c̃s 0 0
0 c̃l 0
0 0 c̃s

 (6.15)

c̃l and c̃s refer to the shear and longitudinal wave velocities in the surrounding medium, respec-
tively. Since τy is directed normal to the plate’s surface, it is described by the longitudinal wave
velocity, while the in-plane components τx and τz are associated with the shear wave velocity in

24Note that Q can have different values at the lower and upper surface. For the sake of conciseness, the η-
dependency will be omitted in the equations.
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τz =−iωρ̃ c̃suz

τy =−iωρ̃ c̃luy
τx =−iωρ̃ c̃sux

Waveguide

Figure 6.2: Three-dimensional dashpot boundary condition on a plate surface.

the surrounding medium.

Equation (6.14) is an approximation, as it implies that each component of the displacement
vector in the surrounding medium obeys the one-dimensional wave equation, while the coupling
between the components is neglected. It will be demonstrated by numerical examples that for
practical applications this approximation leads to very accurate results, particularly in the high
frequency range. Hence, it is generally reliable for the modeling of ultrasonic guided waves.

When introducing the boundary condition in the discretized formulation of the displacement
field

u = N(η)un(x,z) (6.16)

we have to take into account that the shape functions are defined in the local coordinate η .
Hence, we have to consider the coordinate transformation when performing the differentiation
in Equation (6.6):

ũ,y(η) =
1

y,η
ũ,η(η) (6.17)

For the tractions on the plate’s upper surface we obtain

τττ(x,0,z,ω) =
iω
y,η

QN(η=1)un(x,z) (6.18)

To include the boundary conditions into the SBFEM formulation, we derive the virtual external
work δWd corresponding to these boundary tractions. Integration is performed over the plate’s
upper and lower surface, denoted by Γ2 (in contrast to the integration over the cross-section that
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is required to compute the coefficient matrices)

δWd =

¨

Γ2

δuTτττ dΓ =
iω
y,η

¨

Γ2

δun
T(x,z)NTQNun(x,z)|J|dΓ

= iω
∞̂

0

∞̂

−∞

δun
T(x,z)C0un(x,z)dx dz (6.19)

where the matrix C0 is introduced as

C0 =
1

y,η
NTQ1N|J|

∣∣∣∣
η=−1

+
1

y,η
NTQ2N|J|

∣∣∣∣
η=+1

(6.20)

As a generalization, Q1 and Q2 denote the damping coefficients at the lower and upper plate
surface, respectively. Note that for a plate structure the simple coordinate transformation yields
the Jacobian determinant (see Equation (3.5))

|J|= y,η =
l
2

(6.21)

Consequently, C0 is obtained as a simple diagonal matrix with a maximum of 6 non-zero entries:

C0 =−diag(c̃(1)s , c̃(1)s , c̃(1)l ,0, . . . ,0, c̃(2)s , c̃(2)s , c̃(2)l )ρ̃ (6.22)

Including Equation (6.19) into the virtual work principle (3.15) leads to an additional damping
term in the partial differential equation for the nodal displacements:

E0un,zz(z)+
(
E1

T−E1
)
un,z(z)+(−E2 +ω2M0− iωC0)un(z) = 0 (6.23)

The same term has to be included in the polynomial eigenvalue problem(
λ 2E0 +λ

(
E1

T−E1
)
−E2 +ω2M0− iωC0

)
ûn = 0 (6.24)

(c. f. Equation (3.35)) as well as the standard eigenvalue problem

−Zeψψψ = λψψψ (6.25)

where the modified coefficient matrix is assembled as

Ze =

[
E0
−1E1

T −E0
−1

−iωC0 +ω2M0−E2 +E1E0
−1E1

T −E1E0
−1

]
(6.26)

Since in comparison to stress-free surfaces, the Ze matrix for embedded structures differs only
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by the damping term, it can easily be incorporated into the existing implementation. This term
inevitably causes the Ze matrix to be complex, leading to higher computational costs. More im-
portantly, all wavenumbers obtained from the solution of the eigenvalue problem are generally
complex. While the real part kr of a wavenumber k is related to the phase velocity cp of the
mode by

cp =
ω
kr

(6.27)

the imaginary part ki represents the attenuation of the mode, caused by radiation of sound energy
in the surrounding medium. Solutions with both positive and negative imaginary part exist.
Considering wave propagation in positive z-direction, wavenumbers with positive imaginary
part represent unphysical solutions, as the amplitude of the corresponding mode increases as the
wave propagates. These unphysical solutions can easily be eliminated. On the other hand, there
is no trivial distinction between propagating and evanescent modes, since all modes are obtained
with complex wavenumber. The only possibility to chose the relevant modes is to consider only
wavenumbers with an imaginary part smaller than a predefined value. The optimal choice of
this value is problem-dependent.

6.1.3 Application to axisymmetric waveguides

Only minor modifications have to be made when dealing with embedded axisymmetric wave-
guides, compared to plate structures. Obviously, only the outer radius of the cylindrical structure
can be in contact with the infinite medium. Hence, to obtain the virtual work corresponding to
the boundary condition, the integration has to be performed over the side faces of the cylinder
(r = ro, cf. Figure 5.1)

δWd = iω
¨

Γ2

1
r,η

δun
T(z,θ)NTQNun(z,θ)|J|dΓ

= iω
∞̂

0

2πˆ

0

δun
T(z,θ)C0un(z,θ)dθ dz (6.28)

and the damping matrix reads

C0 =
1

r,η
NTQN|J|

∣∣∣∣
η=+1

(6.29)

The Jacobian determinant differs from the case of plate structures:

|J|= l
2

r (6.30)

r,η =
l
2

(6.31)
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Consequently, the damping matrix can be written as

C0 =−diag(0, . . . ,0, c̃s, c̃s, c̃l) · ρ̃ro (6.32)

With these modifications, Equations (6.23)-(6.26) are still valid for axisymmetric structures.

6.1.4 Absorbing region
To validate the results obtained with the proposed dashpot approach, an alternative technique
has been implemented. As described in detail by other authors [152, 250] the influence of a
surrounding medium on a waveguide can be incorporated by modeling a representative part of
the surrounding medium and adding an absorbing region in order to avoid reflections at the
boundary of the discretization to interfere with the modes in the waveguide. The absorbing
region is assumed to consist of the same material as the surrounding medium, while an artifi-
cial material damping is added, increasing with the distance to the waveguide’s surface. The
material damping is represented by an additional imaginary part of the shear modulus Ga in the
absorbing region [152]

Ga = Gr

[
1+ iα

(
ra

da

)3
]
+ iGi (6.33)

where Gr and Gi denote the real and imaginary parts of the shear modulus in the surrounding
medium, ra is the position within the absorbing region and da its thickness. To determine the
required thickness of the absorbing region, the estimation suggested by Castaings and Lowe
[152] is followed. First, the minimum angle β of waves radiated into the surrounding medium
is obtained from Snell-Descartes’ law as

β = sin−1
(

c̃l

min(cp)

)
(6.34)

where min(cp) is the smallest phase velocity of a propagating mode in the waveguide and c̃l
denotes the longitudinal wave velocity in the surrounding medium. For a wave propagating at
this angle with frequency f , the projection of its wavelength on the y-axis is given by

λy =
c̃l/ f
cosβ

(6.35)

Empirically, the required thickness da of the absorbing region is set to twice this value. Substi-
tuting Equation (6.34) into (6.35) we obtain

da = 2λy =
2c̃l

f

[
1−
(

c̃l

min(cp)

)2
]− 1

2

(6.36)

In traditional Finite Element approaches, absorbing regions are realized by discretizing the
surrounding medium with a high number of quadratic elements and assigning different damping
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Figure 6.3: Discretization of the waveguide and surrounding medium using two elements of high
order. In the absorbing region, an imaginary part of the shear modulus is assigned to each node
according to Equation (6.33).

coefficients to each element. Using the proposed SBFEM approach, the surrounding medium
(including the absorbing region) can be described using only one element of very high order
(Figure 6.3). The procedure is similar to the modeling of functionally graded materials as
described in Section 3.2.4. According to Equation (6.33), varying values for the imaginary part
of the complex shear modulus are assigned to each node within the element.

One of the problems emerging when using absorbing regions is that modes propagating in
the discretized domain of the surrounding medium form additional solutions to the eigensys-
tem. It can be challenging to distinguish modes mainly propagating within the waveguide from
unwanted solutions in the surrounding medium. One possible approach to overcome this dif-
ficulty is to evaluate the Poynting vector to determine the energy flux density perpendicular to
the cross-section of the discretized structure [152]. The desired solutions are expected to reveal
the highest energy flux within the waveguide. This technique can easily be implemented in the
proposed approach. The z-component of the Poynting vector in a Cartesian coordinate system
is given by [273]

pz(y) = Re
[ iω

2
(u∗z σz +u∗xτxz +u∗yτyz)

]
= Re

[ iω
2

u∗b1
Tσσσ
]

(6.37)
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Integrating over one element yields

Pz = Re
[ iω

2

+1ˆ

−1

u∗b1
Tσσσ|J|dη

]

= Re
[ iω

2

+1ˆ

−1

û∗nB1
TD(λB1ûn +B2ûn)|J|dη

]

= Re
[ iω

2

+1ˆ

−1

û∗n(λB1
TDB1 +B1

TDB2)ûn|J|dη
]

= Re
[ iω

2
û∗n(λE0 +E1

T)ûn
]

(6.38)

Hence, the Poynting vector can easily be obtained after the coefficient matrices, eigenvalues and
eigenvectors have been computed. Evaluating the Poynting vector for the element describing
the waveguide Pw

z and the total discretized cross-section Pt
z for a given mode, we can define the

ratio
Rp =

Pw
z

Pt
z

(6.39)

This value should be significantly higher for solutions representing propagating modes in the
waveguide compared to modes that are excited in the surrounding medium. However, choos-
ing an appropriate limit for Rp is problem-dependent and not trivial. It can be worthwhile to
first eliminate modes with very high attenuation. Particularly, if the wave velocities in in the
surrounding medium are much smaller than in the waveguide, it can be helpful to eliminate all
modes with a phase velocity smaller than the pre-set value for min(cp).

6.2 Numerical examples

6.2.1 Plate attached to infinite medium

As a first rather simple example an aluminum plate in contact with an infinite elastomer is
analyzed (Figure 6.4). This example has been presented earlier by Castaings and Lowe [152]
who employed a Finite Element formulation to compute the phase velocities and attenuations
of the first three modes in the low frequency range. The plate thickness is 4 mm. The shear
moduli G, densities ρ and Poisson’s ratios ν are given as

G [GPa] ρ [g/cm3] ν
Aluminum 27 2.78 0.3412
Elastomer 0.3(1+0.1i) 1 0.2858
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Elastomer

Aluminum

⇒ ∞∞ ⇐

∞ ⇑

Figure 6.4: Aluminum plate attached to an elastomer of infinite dimensions.

In the approach presented by Castaings and Lowe, a representative part of the two-dimen-
sional cross-section of the plate and the elastomer is discretized using rectangular elements
with quadratic shape functions. An absorbing region is employed to avoid reflections from
the boundary of the discretized domain to interfere with the guided wave modes in the plate.
This example is comparably simple, as the elastic parameters of the considered materials are
very different, causing a weak interaction. Moreover, a high (physical25) material damping
is assumed for the elastomer. This facilitates the application of an absorbing region. Also,
the modes that primarily propagate in the aluminum can easily be identified, as they reveal
significantly smaller attenuation than the modes that can propagate in the elastomer. Still a total
number of 23382 degrees of freedom had to be used by Castaings and Lowe, leading to very
high computational costs. Using the dashpot approximation in the SBFEM formulation, only
the plate has to be discretized with one line element. For the frequency range presented by
Castaings and Lowe (0 . . .0.4MHz), a one-dimensional element of order 4 (5 nodes, cf. Figure
6.2) is sufficient to obtain converged results. Hence, the total number of degrees of freedom
required to compute the Lamb-type modes as well as the shear-horizontal modes is 15.

Results are presented in Figure 6.5 and compared with the results by Castaings and Lowe.
Both approaches are in very good agreement. For the attenuations, small deviations of about
1% . . .2% can be observed, which are caused by the one-dimensional approximation of the dash-
pot boundary condition. However, for practical applications these deviations of the attenuations
are negligible. The phase velocities are obtained very accurately. For very low frequencies,
no results are presented in [152]. Generally, when using an absorbing region, computations
in the low frequency range become cumbersome, since the size of the absorbing region tends
towards infinity. In the proposed SBFEM approach, the computation for arbitrary frequencies
is straightforward. A more detailed discussion will be presented in the following subsection.

It should be noted that the immense reduction of degrees of freedom compared to the ap-
proach presented in the literature is due to several reasons:

25I. e. a constant imaginary part of the shear modulus that represents the physical property of material damping
- in contrast to the space-dependent damping that is introduced to simulate the behavior of an infinite domain.
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Figure 6.5: (a) Phase velocities and (b) attenuations of the fundamental symmetric (S0), anti-
symmetric (A0) and shear-horizontal (SH0) modes in an aluminum plate attached to an infinite
elastomer. Dispersion curves are obtained with the proposed SBFEM approach (—) and com-
pared with results presented by Castaings and Lowe [152] (×××).

• First of all, in the current work only the through-thickness direction of the plate is dis-
cretized rather than a two-dimensional section.

• Second, only the waveguide has to be discretized, while the surrounding medium is re-
placed by a boundary condition.

• Third, a uniform mesh was used by Castaings and Lowe for the whole structure, though
the size of the elements representing the aluminum plate can be increased by approxi-
mately a factor 6 compared to the elastomer, according to the higher wave velocity.

• Finally, in the current work one higher-order element has been employed to discretize the
plate rather than using several quadratic elements. As has been demonstrated by previous
examples this leads to a significant reduction of the number of degrees of freedom.

6.2.2 Varying acoustic impedances

The influence of a surrounding medium on the propagating modes strongly depends on the
material properties of this medium relative to the waveguide’s material. If the materials are very
different, most of the acoustic wave energy inherent in the guided waves will be reflected from
the waveguide’s surface. Hence, the damping effect of the surrounding medium will be small.
On the other hand, if the material parameters become very similar, the reflection coefficient at
the waveguide’s surface tends towards zero and the structure cannot be assumed to represent
a waveguide anymore. It is important to analyze the reliability of the different approaches for
varying materials. To estimate the effect of the surrounding medium, the ratio Rc of the acoustic
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impedances

Rc =
csρ
c̃sρ̃

=

√
Gρ
G̃ρ̃

(6.40)

can be used as a helpful parameter. The shear wave velocities of the materials have been used
here. The ratio of longitudinal wave velocities will be different, if the Poisson’s ratio is differ-
ent for the two materials. It is expected that the influence of the surrounding medium becomes
smaller as Rc increases. To demonstrate this, a simple embedded waveguide has been modeled
several times with varying material parameters of the surrounding medium. Again, the example
consists of a homogeneous plate with one surface being attached to an infinite medium. Results
for axisymmetric structures are very similar and will be omitted. For simplicity, the parame-
ters of the waveguide’s material are chosen to be G = 1GPa, ρ = 1000kg/m3, ν = 1/3. The
plate thickness is 1mm and frequencies up to 1MHz have been considered. The surrounding
medium is assumed to have the same density and Poisson’s ratio as the waveguide. Its acoustic
impedance is modified by varying the shear modulus. A constant imaginary part Gi = 0.1Gr has
been incorporated in the shear modulus as in the previous subsection. This additional material
damping facilitates the application of the absorbing region while the results are not affected
significantly. For the given frequency range, one element of order 7 (8 nodes) is sufficient to
discretize the plate’s cross-section. Consequently, using the SBFEM approach an eigenvalue
problem of the dimension 48× 48 is solved at each frequency. The solutions have been ob-
tained using the function eig in Matlab. The computational time to evaluate the set of solutions
at 20 frequencies is only about 0.1 s on a desktop PC (Intel Quad CPU Q8400 @2.66 GHz, 4GB
RAM).

For comparison, the same structures have been modeled using an absorbing region. All
parameters can be found in Table 6.1. The size of the absorbing region has been estimated as
summarized in Section 6.1.4. In order to do so, the minimal phase velocity min(cp) of a mode
in the waveguide has been estimated from the solution of the waveguide with free surfaces.
However, the phase velocity of the A0 mode tends to zero for ω → 0. Considering Equation
(6.36), the required size of the absorbing region tends to infinity for min(cp)→ c̃l . To obtain
realistic results, the minimal phase velocity of interest has been set to min(cp) = 1.2 c̃l . The size
of the absorbing region has been evaluated at the frequency fmin, where the phase velocity of
the A0 mode reaches this value. Consequently, for frequencies below fmin this approach is not
reliable. In Table 6.1, ’DOF’ denotes the total number of degrees of freedom that are required.
The number of nodes increases with the size of the discretized domain and decreases with the
wave velocities. Consequently, the computational times become larger for increasing values of
Rc. When using the absorbing region, the computational times are at least several hundred times
larger compared to the dashpot approach.
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Table 6.1: Numerical study to analyze the effect of varying acoustic impedances of the surround-
ing medium on a waveguide. Results have been obtained with the dashpot boundary and compared
with an alternative approach utilizing an absorbing region.

Absorbing region Dashpot

Rc c̃s c̃l min(cp) fmin da DOF tc DOF tc ∆c ∆a

[km/s] [km/s] [km/s] [MHz] [mm] [s] [s] [%] [%]

8 0.125 0.250 0.3 0.040 23 1161 1645

24 0.1

0.2 2.1
6 1.667 0.333 0.4 0.065 19 741 484 0.3 2.8
4 0.250 0.500 0.6 0.160 11 519 188 0.4 5.3
3 0.333 0.667 0.8 0.400 6 237 27 1.2 7.6
2 0.500 1.000 1.2 ∞ 143 1521 4001 8.0 ≈ 50

The results have been compared with the proposed approach utilizing the dashpot boundary
condition. The maximum relative deviations of the phase velocities and attenuations between
both approaches are denoted by ∆c and ∆a, respectively. Examples are presented in Figure
6.6. Only the attenuations are plotted as the phase velocities are always obtained with higher
accuracy. For large values of Rc, both approaches are in very good agreement. It should be
noted that for most practical applications (e. g. steel in water, timber in soil) Rc is still much
larger than the values considered here. For smaller values of Rc the deviations between both
approaches become larger. Also the minimum frequency, where the absorbing region leads to
reliable results increases. Still, even for Rc = 3 the maximum deviation in phase velocities is
1.2% and the attenuations differ by no more than 7.6%. For Rc = 2 the phase velocity of the
A0 mode is always smaller than the longitudinal wave velocity in the surrounding medium.
Consequently, the minimum frequency cannot be reached. Arbitrarily a discretization using
500 nodes for the surrounding medium has been chosen, leading to an absorbing region with a
thickness of 143 mm. It has been tested that this discretization leads to converged results. For
this extreme case, the deviations between both approaches become significant (Figure 6.6c).
However, if the materials are that similar, it is usually not appropriate to model the structure as
an embedded waveguide.
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Figure 6.6: Attenuation of the
propagating modes in a plate at-
tached to an infinite medium, com-
puted using a dashpot boundary
condition (—) and an absorbing re-
gion (×××). Results are presented
for different ratios Rc of acoustic
impedances: (a) Rc = 8; (b) Rc = 4;
(c) Rc = 2.
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6.2.3 Timber pole embedded in soil
As a realistic example, dispersion properties of guided waves in a timber pole have been an-
alyzed. The timber pole is assumed to be embedded in infinite soil (Figure 6.7). This con-
figuration is of relevance for the development of non-destructive testing methods for wooden
structures [98].

Soil

Timber ⇒ ∞∞ ⇐

⇑ ∞

⇓ ∞
Figure 6.7: Cross-section of a timber pole embedded in soil.

In contrast to the previous examples, timber cannot be considered as an isotropic material.
Typically, orthotropic material behavior can be assumed with the principal directions being the
axes of a cylindrical coordinate system. Hence, 9 independent parameters are required to define
the elasticity matrix. In this example the material properties are chosen to be

Ez = 23GPa Gzr = 2.047GPa νθr = 0.309
Eθ = 1.177GPa Gzθ = 1.403GPa νzr = 0.35
Er = 2.665GPa Grθ = 0.483GPa νzθ = 0.43

The elasticity matrix is obtained as

D =



1
Ez

−νθz
Eθ
−νrz

Er

−νzθ
Ez

1
Eθ

−νrθ
Er

−νzr
Ez
−νθr

Eθ
− 1

Er
1

Grθ
1

Gzr
1

Gzθ



−1

(6.41)

The density is chosen as ρ = 9kgm−3 and the radius of the pole is 150 mm. The surrounding
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soil can be assumed to be isotropic with the material parameters

G̃ = 0.04GPa ρ̃ = 1500kgm−3 ν̃ = 0.3

Again, dispersion curves have been computed using the proposed dashpot boundary and
compared with results obtained by utilizing an absorbing region. For both approaches, one
element of order 7 has been used to discretize the pole. Using the absorbing region, a total
thickness of the surrounding medium of 850 mm leads to converged results for frequencies
above 2 kHz. For frequencies up to 10 kHz one element of order 250 has been used to obtain
accurate results. The phase velocities and attenuations of the longitudinal and first order flexural
modes are presented in Figure 6.8. The results obtained with both approaches are in very good
agreement, showing that the dashpot boundary condition leads to a very good approximation
for this practical application.
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Figure 6.8: (a) Phase velocities
and (b) attenuations of longitudi-
nal (- -) and flexural (—) modes in
an embedded timber pole, obtained
using the proposed dashpot bound-
ary condition. Results have been
verified using the authors’ imple-
mentation of an absorbing region
(×××).
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Chapter 7

Novel solution procedure

While the algorithms presented in the previous chapters offer generally highly efficient and
reliable ways to compute dispersion curves for many different applications, it can sometimes be
worthwhile to further improve efficiency by considering the specific requirements of the set-up.

This chapter focuses on an algorithm developed for a measurement system that utilizes
guided waves for material characterization [36, 274–276]. In this particular application, dis-
persion curves have to be computed for a large frequency range. As the computation has to
be performed many times with varying material parameters, the efficiency of the algorithm is
crucial. The current measurement set-up utilizes guided waves in hollow cylinders, so that the
axisymmetric formulation as described in Chapter 5 applies. A novel solution procedure is
proposed in order to significantly increase its computational efficiency. Details have also been
published in [100]. Similar to many other applications of guided waves, only few modes can
actually be excited at each frequency, due to the geometrical characteristics of the excitation.
In the proposed approach, only the modes of interest are computed, rather than solving for the
complete set of solutions at each frequency. This is done by tracing the selected modes and
computing the required solutions using the concept of inverse iteration [277, 278]. The current
formulation focuses on homogeneous axisymmetric waveguides with isotropic or orthotropic
material behavior. However, the proposed algorithm can easily be adopted to include more
general waveguides.

7.1 Background

7.1.1 Motivation

The proposed algorithm is utilized in the context of ultrasonic material characterization of cylin-
drical waveguides as presented in [36,276,279]. The experimental set-up (Figure 7.1a) consists
of an ultrasonic transmitter, a hollow cylindrical waveguide and an ultrasonic receiver. Measure-
ments are performed in transmission between the parallel faces. Figure 7.1b shows an example
for the pulse excited by the transmitter and the resulting signal at the receiver. A plane-wave
approximation yields a first estimation of the material parameters. The estimated values are
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Figure 7.1: (a) Experimental set-up for the material characterization of cylindrical waveguides
and (b) example of a measured signal.

used to initialize an inverse approach. Using an optimization algorithm, the material parame-
ters of the waveguide are modified until the simulated and measured signals are consistent. As
the simulation of the waveguide’s dispersive behavior has to be performed in every iteration of
the optimization process, an efficient and numerically stable waveguide model is desired.

To increase efficiency, we first have a closer look at the required waveguide modes to be
computed. Due to the spatially homogeneous excitation on the cylinder’s cross-section, only
longitudinal modes are propagating through the sample. If we model a plane excitation of
normal tractions on the cylinder’s cross-section using a least-squares approach [36, 276] and
considering the reciprocity theorem [53,280], we obtain the modal amplitude of each mode at a
given frequency. Figure 7.2 shows typical results that have been computed at the University of
Paderborn [36, 276]. A polymeric waveguide consisting of natural polypropylene (PPN) with a
longitudinal wave velocity of cl = 2.7 km/s and a Possion’s ratio of ν = 0.35 is analyzed. The
inner and outer radius in this example is chosen as 3 mm and 9 mm, respectively. Due to the
symmetric and normal excitation, only modes with a phase velocity close to cl propagate in
the waveguide. Additionally, the spectral range of the transmitter defines the frequency range
of interest. It is interesting to note that only every second mode has a significant amplitude.
This is due to the fact that the tractions are constant over the cross-section and hence lead to
an excitation of modes with (quasi-)symmetric mode shapes.26 This prior knowledge of the
waveguide modes that can be excited using the given experimental set-up, will be utilized to

26This is similar to the symmetric and antisymmetric Lamb wave modes in a plate, which will be discussed in
more detail in Chapter 8. Contrary to plate waves, the modes in an axisymmetric waveguide do not show exact
symmetric or antisymmetric behavior. In Figure 7.2, the fundamental mode L(0,0), which is quasi-antisymmetric,
shows a significant amplitude at low frequencies. This is simply because no other propagating modes exist for very
low frequencies and hence the relative excitability for this mode becomes large.
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Figure 7.2: Normalized modal amplitudes of the longitudinal modes in a hollow PPN cylinder.

develop an efficient algorithm for computing the dispersive behavior of a cylindrical waveguide.

7.1.2 Fundamental equations

We are focusing on longitudinal modes, so that the displacement field is always considered as
axisymmetric. Hence, we can employ the simplified formulation as described in Section 5.3.1,
where two degrees of freedom are assigned to each node of the one-dimensional discretiza-
tion. We allow isotropic as well as transversely isotropic and orthotropic material behavior.
Consequently, the elasticity matrix D for the case of longitudinal modes is of the form

D =


D11 D12 D13 0

D22 D23 0
sym. D33 0

D44

 (7.1)

Particularly, for an isotropic material the elasticity matrix reads

Disotr. =
2G

(1−2ν)


1−ν ν ν 0

1−ν ν 0
sym. 1−ν 0

1−2ν
2

 (7.2)
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By substituting the expressions for the shear and longitudinal wave velocities in an infinite
isotropic material

cs =

√
G
ρ

(7.3a)

cl =

√
2(1−ν)G
(1−2ν)ρ

(7.3b)

we can write

Disotr. =


ρc2

l
2Gν

(1−2ν)
2Gν

(1−2ν) 0

ρc2
l

2Gν
(1−2ν) 0

sym. ρc2
l 0

ρc2
s

 (7.4)

To simplify notations in case of anisotropic material behavior, we define more generally

cl =

√
D33

ρ
(7.5)

cs =

√
D44

ρ
(7.6)

With these definitions, the relationship

b1
TDb1 =

[
0 0 0 1
0 0 1 0

]
D11 D12 D13 0

D22 D23 0
sym. ρc2

l 0
ρc2

s




0 0
0 0
0 1
1 0

= ρ

[
c2

s

c2
l

]
(7.7)

holds as long as the elasticity matrix is of the form (7.1). Since we apply the concept of spectral
elements (Section 3.2), the matrices E0 and M0 are diagonal, and the non-zero submatrices,
relating nodes i and j are given as (cf. Equations (3.47))

E0i j = δi jwib1
TDb1|J(ηi)|= δi jwi|J(ηi)|ρ

[
c2

s

c2
l

]
(7.8)

M0i j = δi jwiρI2|J(ηi)|= δi jwi|J(ηi)|ρ
[

1
1

]
(7.9)
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7.2 Solution procedure

The algorithm developed in this chapter involves four major steps, which are described in the
following subsections. First, since we will always compute eigenvalues close to a given solu-
tion, the polynomial eigenvalue problem (3.35) is approximated using a simple Taylor expan-
sion of first order. Second, we compute the frequencies where the phase velocities of the modes
of interest equal the longitudinal wave velocity in the given material. Third, these solutions are
used as initial values for a mode-tracing procedure, where the wavenumbers at subsequent fre-
quency steps are estimated from previous solutions using a Padé expansion [94,203]. Fourth, at
each frequency step, the estimated eigenvalues are improved by means of inverse iteration [277].

7.2.1 Linear approximation

In this application we are particularly interested in modes with a phase velocity close to the
longitudinal wave velocity. In other words, at each frequency we have to compute eigenvalues
in the vicinity of a pre-defined value. For the general case let this eigenvalue be denoted by λ+.
One obvious approach to simplify the computation of solutions in the vicinity of this value is to
approximate the quadratic eigenvalue problem (3.35) by means of a first order Taylor expansion
around λ+:

λ 2E0 +λ
(
E1

T−E1
)
−E2 +ω2M0

= λ 2
+E0 +λ+

(
E1

T−E1
)
−E2 +ω2M0 +(2λ+E0 +E1

T−E1)(λ −λ+)+O(λ 2)

= λ (2λ+E0 +E1
T−E1)−λ 2

+E0−E2 +ω2M0 +O(λ 2) (7.10)

Substituting this approximation into Equation (3.35) we obtain

(λ (2λ+E0 +E1
T−E1)−λ 2

+E0−E2 +ω2M0)ûn = 0 (7.11)

which can be written as a generalized eigenvalue problem for λ :

A1ûn = λA2ûn (7.12)

with
A1 =

(
λ 2
+E0 +E2−ω2M0

)
(7.13)

A2 =
(
2λ+E0 +E1

T−E1
)

(7.14)

By inversion of A2, Equation (7.12) can be transformed into a standard eigenvalue problem

A2
−1A1ûn = λ ûn (7.15)

As the size of the eigenvalue problem has been reduced by a factor of two compared to the
Z-matrix in Equation (3.39), it can be solved several times faster, depending on the employed
algorithm. Note that we could also solve the generalized eigenvalue problem (7.12) directly
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(for instance, the eig function in Matlab can handle both standard and generalized eigenvalue
problems). Nevertheless, the solution of the standard eigenvalue problem is much faster, even
taking into account the computational time for the inversion of A2. As an example, Figure 7.3
shows results that have been computed using this approximation in comparison with solutions
obtained from Equation (3.42). The material parameters for PPN are chosen as defined in
Section 7.1.1. Phase velocities cp have been computed in the vicinity of cp ≈ cl by substituting
λ+(ω) = iω/cl . As can be seen from this example, the linear approximation leads to accurate
results close to λ+. It can be employed in this form if the range of relevant phase velocities
is very small. Comparing Figure 7.3 with Figure 7.2 shows that this approximation does not
suffice to accurately compute all modes that have a significant modal weight. However, the
generalized eigenvalue problem (7.12) that has been derived using this approximation will be
an essential step to simplify the inverse iteration.
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Figure 7.3: Phase velocities of propagating modes in a hollow PPN cylinder, computed using the
Z-matrix (•) and the linear approximation (◦).

7.2.2 Initial values

The second step of the proposed solution procedure is to compute starting points to initialize
the mode-tracing. These initial values are obtained by computing the frequencies of all modes
where the phase velocities equal the longitudinal wave velocity cl . The corresponding eigen-
values and frequencies are denoted by λ0 and ω0, respectively. Starting from these values,
the modes can be traced in direction of both increasing and decreasing frequency to obtain all
solutions in the frequency range of interest. Choosing these particular starting points is advan-
tageous for two additional reasons: First, the solutions are generally well separated (see Figure
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7.2), which facilitates the first steps of the mode-tracing algorithm. Second, for cp = cl the
eigenvalue problem can be simplified, as will be demonstrated in this subsection.

The computation of the initial values only has to be performed once to obtain the dispersion
curves for a given structure. However, it has to be done with the discretization that is required
for the highest frequency of interest. For this reason it causes computational costs of the same
order as the sum of the other parts of the algorithm. Thus it is worthwhile to have a closer look
at this problem. We rewrite the polynomial eigenvalue problem (3.35) in terms of frequencies
by applying

λ0 =
iω0

cl
=:

ω̃
cl

(7.16)

where the imaginary frequencies ω̃ = iω0 have been defined for convenience. The polynomial
eigenvalue problem for the frequencies yields(

ω̃2(
1
c2

l
E0−M0)+

ω̃
cl

(
E1

T−E1
)
−E2

)
ûn = 0 (7.17)

After left multiplication with c2
l E0

−1 we obtain(
ω̃2(I− c2

l E0
−1M0)+ ω̃clE0

−1(E1
T−E1

)
− c2

l E0
−1E2

)
ûn = 0 (7.18)

From Equations (7.8) and (7.9) it follows immediately that

E0
−1M0 =


1/c2

s

1/c2
l

1/c2
s

1/c2
l

. . .

 (7.19)

so that the first term of Equation (7.18) can be simplified as

(I− c2
l E0

−1M0) =

(
1− c2

l
c2

s

)


1
0

1
0

...


(7.20)

In order to facilitate the following steps, we re-arrange the degrees of freedom by separating the
displacement components in r- and z-direction. We define

ū = [ur uz]
T = [ur1 ur2 . . . uz1 uz1]

T (7.21)
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We re-arrange the rows and columns of the coefficient matrices accordingly and denote the
modified matrices by M̄0, Ē0, Ē1 Ē2. As a consequence, Equation (7.20) is transformed into

(I− c2
l Ē−1

0 M̄0) =

(
1− c2

l
c2

s

)[
In

0

]
(7.22)

where n is the number of nodes and In is the n×n identity matrix. Considering Equation (7.22),
the polynomial eigenvalue problem (7.18) can be written as(

ω̃2C+ ω̃B−A
)

ū = 0 (7.23)

with

C =

[
In

0

]
(7.24)

B =
cl

1− c2
l /c2

s
Ē−1

0
(
ĒT

1 − Ē1
)

(7.25)

A =
c2

l

1− c2
l /c2

s
Ē−1

0 Ē2 (7.26)

Using classical linearization [281,282], Equation (7.23) is transformed into a generalized eigen-
value problem, yielding

ω̃

[
B C

I2n 0

]{
ū

ω̃ū

}
=

[
A 0
0 I2n

]{
ū

ω̃ū

}
(7.27)

Considering the displacement components

ω̃


Brr Brz In 0
Bzr Bzz 0 0
In 0 0 0
0 In 0 0




ur

uz

ω̃ur

ω̃uz

=


Arr Arz 0 0
Azr Azz 0 0
0 0 In 0
0 0 0 In




ur

uz

ω̃ur

ω̃uz

 (7.28)

it is obvious that the last set of equations is decoupled from the others and can be neglected.27

Hence we can write

ω̃

 B
In

0
In 0 0




ur

uz

ω̃ur

=

 A
0
0

0 0 In




ur

uz

ω̃ur

 (7.29)

27Note that this is a consequence of Equation (7.20) and hence originates in the choice cp = cl . If any other
value for cp was chosen to compute the initial values, this simplification would not apply.
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To improve computational efficiency, it is desirable to transform this generalized eigenvalue
problem into a standard eigenvalue problem. Generally, this can be done by inverting either one
of the matrices in Equation (7.29). However, both matrices are (close to) singular. The matrix
on the right hand side is singular due to the singularities of E2. It is well understood that these
singularities are caused by rigid body motions (see Section 3.3.1). Note that due to the structure
of this matrix, we only have to compute the inverse of A. In order to do that, we can transform
A into a non-singular matrix by adding small real numbers to its diagonal. An adequate choice
is to add a multiple of the non-singular diagonal matrix E0. This results in an approximation
for A that can be inverted using standard algorithms. We define the inverse of this matrix as

Â = (A+κE0||E2||max)
−1 (7.30)

Multiplication with the max norm ||E2||max (largest absolute value of E2) ensures the condition
number of Â to be of approximately the same order, irrespective of the number of nodes. κ is
a small real number. A value of κ = 10−8 has been chosen for the current application.28 Note
that Â is symmetric, because E0 and E2 are both symmetric:

Â =

[
Â11 Â12

Â12 Â22

]
(7.31)

Equation (7.29) can be re-written as

ω̃

 Â
0
0

0 0 In


 B

In

0
In 0 0




ur

uz

ω̃ur

=


ur

uz

ω̃ur

 (7.32)

or  ÂB
Â11

Â12

In 0 0




ur

uz

ω̃ur

=
1
ω̃


ur

uz

ω̃ur

 (7.33)

From (7.33), the eigenvalues 1/ω̃ can be computed using standard solvers. All eigenvalues
are purely imaginary (i. e. all frequencies ω0 are real). As the solutions are obtained from a
quadratic eigenvalue problem, the negative of each eigenvalue is an eigenvalue as well. Solu-
tions are selected within the desired frequency range. The discretization of the cross-section has
to be chosen fine enough in order to lead to accurate results at the highest frequency of interest
(see Section 5.6).

28This leads to the condition number of Â being roughly of order 109, which is small enough to avoid significant
numerical errors in the inversion. On the other hand, this value for κ ensures that the modification of A does not
lead to a relevant change in the resulting eigenvalues.
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7.2.3 Mode-tracing

Starting from the initial values, each mode is traced separately in positive as well as negative
direction for the pre-defined frequency range. Let ω0 and λ0 be the initial values of one particu-
lar mode, and cg0 its group velocity, computed using Equation (3.70). We obtain an estimation
λ+ of the eigenvalue at the subsequent frequency step, say ω1, using a linear approximation:

λ+ = λ0 +
i(ω1−ω0)

cg0
(7.34)

Improving the estimated value λ+ by means of inverse iteration (Section 7.2.4) leads to the
subsequent eigenvalue λ1. The estimation λ+ is then updated to obtain an approximation for
λ2. For the following frequency steps, more accurate estimations can be obtained by utilizing
a Padé expansion, similarly to the procedure described in Section 4.3. For instance, the third
eigenvalue λ3 is approximated by

λ3 ≈
α0 +α1∆ω

1+β1∆ω +β2∆ω2 (7.35)

with the frequency increment ∆ω = ω3−ω2 and the Padé coefficients α0, α1, β1, β2 as defined
in Equations (4.31). In contrast to Section 4.3, the frequency increment will typically not be
constant. This is because the frequencies of the initial values are obtained from Equation (7.33)
(and thus are not known a priori), while the subsequent solutions are typically desired at pre-
defined frequency steps. For varying frequency increments, the parameters γ0, γ1, γ2, γ3 read

γ0 = λ2 (7.36a)

γ1 =
i

cg2
(7.36b)

γ2 =
1
2

(
1

cg2
− 1

cg1

)
i

ω2−ω1
(7.36c)

γ3 =
1
6

[
cg1− cg2

(ω2−ω1)cg1cg2
− cg0− cg1

(ω1−ω0)cg0cg1

]
2i

ω2−ω1
(7.36d)

7.2.4 Inverse iteration

At each frequency step, an accurate solution for the desired eigenvalue is computed, based on
the estimated value λ+. In contrast to general eigenvalue solvers, where the main difficulty lies
in the computation of the complete set of eigenvalues and eigenvectors, we can use a very simple
scheme to obtain only one particular eigenvalue that is close to a given estimation. Assume M is
an arbitrary n×n matrix and y(0) is a n×1 vector with random non-zero entries. The so-called
power iteration [283]

y( j+1) = My( j) j = 0,1,2, .. (7.37)
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converges towards the eigenvector corresponding to the largest eigenvalue of M. Generally
very few iteration steps are required to obtain converged results while each step involves only
one matrix-vector multiplication. This simple approach forms the basis of a number of mod-
ern eigenvalue solvers. For this reason, the largest eigenvalues of a matrix can generally be
computed very efficiently. We can modify this algorithm to obtain the inverse iteration [284]

My( j+1) = y( j) j = 0,1,2, .. (7.38)

which converges towards the smallest eigenvalue of M. Note the difference in terms of the
implementation: While the power iteration (7.37) only requires a matrix multiplication, Equa-
tion (7.38) implies the solution of a linear system of equations in each step of the iteration (or
alternatively the inversion of M, if M is non-singular). We can now apply a shift to the matrix
M:

(M− τI)y( j+1) = y( j) j = 0,1,2, .. (7.39)

where τ is an arbitrary scalar. Compared to the matrix M, the complete spectrum of the matrix
(M− τI) is shifted by τ and the iteration (7.39) converges to the eigenvector with the corre-
sponding eigenvalue closest to τ . Hence, if we have an approximation of one particular eigen-
value and apply this approximation as a shift, the inverse iteration can be utilized to accurately
compute the eigenvector corresponding to the desired eigenvalue [277].

Since we want to employ this procedure to compute solutions to Equation (7.12), we extend
the inverse iteration to include generalized eigenvalue problems. The proof is along the lines of
the formulation for standard eigenvalue problems as described in [277]. Details are presented
in Appendix A.4. Let λ (0)

+ be the approximation of one particular eigenvalue, obtained from
previous solutions via mode-tracing, and x(0) is an arbitrary vector. Similar to the case of stan-
dard eigenvalue problems we can compute an approximation of the corresponding eigenvector
by solving (

A1−λ (0)
+ A2)x(1) = A2x(0) (7.40)

The frequency as well as the current estimation for the eigenvalue have to be substituted into
A1 and A2 as defined in Equations (7.13) and (7.14). If the estimation λ (0)

+ for the eigenvalue
is accurate enough29, the solution x(1) is close to the corresponding eigenvector. The improved
solution for the eigenvalue can then be obtained by substituting the computed vector into the
generalized eigenvalue problem and solving for the eigenvalue:

A1x(1) = λ (1)
+ A2x(1) (7.41)

For instance, in Matlab Equation (7.41) can be solved using the backslash operator, which

29Typically, the accuracy of the estimation is sufficient, if no eigenvalue is closer to λ (0)
+ than the desired one -

unless x(0) is accidentally very close to a different eigenvector.
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computes the optimal value for λ (1)
+ in the least squares sense.30 This leads to significantly

faster convergence than the eigenvalue computation described in [277].
The procedure is iterated by replacing x(0) with the solution for x(1) and updating the coef-

ficient matrices. Hence, we have the following iteration:(
A1(λ

( j)
+ )−λ ( j)

+ A2(λ
( j)
+ ))x( j+1) = A2(λ

( j)
+ )x( j) j = 0,1,2, ... (7.42)

A1(λ
( j)
+ )x( j+1) = λ ( j+1)

+ A2(λ
( j)
+ )x( j+1) j = 0,1,2, ... (7.43)

Note that the matrices E0 and M0 are diagonal and hence can be stored as vectors. At each
step of the iteration, only the main diagonal of A1 and A2 has to be modified. For the starting
vector x(0) of the iteration we can choose the eigenvector corresponding to the same mode at
the previous frequency step. As the eigenvectors (mode shapes) at two adjacent frequencies
are typically very similar, this leads to slightly faster convergence of the iteration and, more
importantly, helps to avoid convergence towards an eigenvalue of a different mode. Obviously,
the accuracy and convergence rate of this approach depend on the frequency increment and
the quality of the eigenvalue estimation. The frequency increment has to be small enough, to
ensure that the inverse iteration converges towards the correct eigenvalue. If this is the case,
typically two iterations are sufficient to obtain the eigenvalues with a relative error in the order
of 10−3...10−5.

7.3 Details of the implementation

7.3.1 Dimensionless parameters

Again, it is advantageous to compute the dispersion curves in terms of the dimensionless fre-
quency (cf. Section 3.7.1)

a =
ωl
cs

(7.44)

This is done by using the dimensionless material parameters

ρ̄ = 1, l̄ = 1, D̄ = D/D44, r̄i = ri/l (7.45)

As a result we obtain the dimensionless phase velocities

c̄p = cp/cs (7.46)

30Note that there is no unique solution for λ (1)
+ until the iteration has converged. To be precise, Equation

(7.41) should be written as a system of equations resulting in a different approximation for the eigenvalue for each
component of the estimated vector. The most obvious solution is to use the mean value as the approximation of the
eigenvalue. However, optimizing the eigenvalue in the least squares sense as done by Matlab’s backslash operator
results in more reliable convergence. The computational costs for this operation are negligible compared to the
solution of the matrix equation (7.40).
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Using dimensionless variables, the entries of the coefficient matrices are always of approxi-
mately the same order. Each mode is traced for a given range of dimensionless frequencies
[a0− a−, a0 + a+], where a0 denotes the initial value for the mode under consideration. The
values a− and a+ as well as the dimensionless frequency increment ∆a can also be kept approx-
imately constant for all considered material properties in this application.

7.3.2 Adaptive meshing

Since the dispersion curves are computed for a large frequency range, the discretization of
the cross-section should be refined according to frequency. As detailed in Section 5.6, it is
most efficient to discretize a homogeneous waveguide with only one element and increase the
element order with frequency (p-refinement). By doing so, the number of equations that have
to be solved at each frequency step is reduced to a minimum. However, the coefficient matrices
have to be computed for each discretization. In the current implementation, assembling the
coefficient matrices can become computationally more expensive than the computation of the
few desired eigenvalues at several frequency steps. Hence, the element order is kept constant for
each mode, since each mode is only traced over a comparably small frequency range. This also
facilitates the implementation of the mode-tracing, as the eigenvector at a previous frequency
step can directly be used as a starting vector at the subsequent step, without having to interpolate
the displacement amplitudes to the modified nodal coordinates. Based on the results in Section
5.6, we choose the number of nodes n according to the dimensionless frequency as

n≈ 4+0.5a (7.47)

The shape functions N and their derivatives N,η are computed once for element orders up to
p = 200 and stored in a separate file.

7.3.3 Parallelization

After the initial values (Section 7.2.2) have been obtained, the computation of each mode is
performed independently of the others. Hence, the main part of the algorithm can easily be
parallelized by performing the mode-tracing for several modes simultaneously. In the current
Matlab implementation this is realized by using a parfor loop.

7.3.4 The L(0,0) mode

The phase velocity of the zeroth order longitudinal mode is always smaller than the longitudinal
wave velocity cl . Hence, it will not be obtained as a solution to Equation (7.33). In the current
application, the computation of this mode is not required, as it cannot be excited within the
frequency range of interest. However, if this mode is of relevance, we can trace it starting from
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ω = 0, where its wavenumber equals zero and its phase velocity equals the bar speed cb

cb =

√
E
ρ

(7.48)

with the Young’s modulus E. We can choose a random vector to initialize the inverse iteration
in the first step of the mode-tracing algorithm. Alternatively, we can solve Equation (3.42)
once for a low frequency (i. e. with a very small number of degrees of freedom) to obtain initial
values for this mode.

7.4 Numerical examples

7.4.1 Natural polypropylene (PPN)
Dispersion curves Dispersion curves have been computed for PPN with the parameters de-
fined in Section 7.1.1. In Figure 7.4 results are presented for frequencies between 0.2 MHz
and 1.8 MHz with a step size of 0.02 MHz. Each mode is traced for dimensionless frequency
ranges of a− = 14 and a+ = 7 in negative and positive direction, respectively. This range ap-
proximately corresponds to the frequencies where the excitability of each mode is significant
(cf. Figure 7.2). The computational time for the proposed approach is about 0.5 s on a current
notebook PC (Intel i7-2637M CPU 1.7 GHz, 8GB RAM). For validation, the phase veloci-
ties are compared to results obtained using an improved implementation of the Global Matrix
Method developed at the University of Paderborn [285–287]. In this implementation of the
GMM enhanced reliability is achieved by employing an interval-Newton approach in combina-
tion with algorithmic differentiation. It leads to similar reliability and accuracy compared with
the SBFEM, but the computational times are about 10 minutes to obtain the dispersion curves
presented in this example.

Convergence In the proposed approach, the accuracy of the results is mainly affected by two
types of errors. On the one hand, discretization errors arise, depending on the element order p
and the complexity of the mode shape. This type of error is discussed in Sections 3.8 and 5.6.
It has been demonstrated that the utilization of higher-order spectral elements together with
p-refinement leads to excellent convergence rates for the present application.

On the other hand, the accuracy of the eigenvalues depends on the number of iterations used
in the inverse iteration. For this type of error, convergence is obviously affected by the quality
of the estimation λ (0)

+ and hence by the frequency increment that is employed in the mode-
tracing algorithm. As an example, convergence is demonstrated for one particular eigenvalue
(Figure 7.5). At a frequency of 1.06 MHz, the mode with the largest phase velocity is selected.
The computation of this value is critical due to the adjacency of a different mode. Figure 7.5a
shows the estimated values based on the mode-tracing algorithm, for a dimensionless frequency
increment ∆a of 0.2, 2 and 4. The latter is an extreme case, where the accuracy of the estimation
is very poor.
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Figure 7.4: Dispersion curves computed with the proposed algorithm (•) and compared to results
obtained with the Global Matrix Method (—).

1 1.02 1.04 1.06 1.08 1.1 1.12
2.5

3

3.5

4

frequency [MHz]

ph
as

e 
ve

lo
ci

ty
 [k

m
/s

]

 

 

current mode
adjacent modes

 

 

∆ a=0.2
∆ a=2
∆ a=4

(a) Estimated values

0 1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

number of iterations  j

re
la

tiv
e 

er
ro

r 
Ξ

 

 

∆ a=0.2
∆ a=2
∆ a=4
∆ a=4*

(b) Convergence

Figure 7.5: (a) Example of estimated phase velocities in the mode-tracing algorithm using differ-
ent frequency increments: (MMM) 0.2, (?) 2, (◦◦◦) 4. (b) Convergence of the estimated values towards
the desired eigenvalue in the inverse iteration. If the inverse iteration is initialized with a random
starting vector (×), the results tend to converge to a different eigenvalue.
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For each of these starting values, the inverse iteration is performed. The relative error Ξ( j)

compared to the solutions obtained with an eigenvalue solver is computed for each step of the
iteration. Results are presented in Figure 7.5b, showing very fast convergence to the desired
eigenvalue. Numerical values are summarized in Table 7.1. We can conclude that for a rea-
sonable dimensionless frequency increment of about 0.1 ...2.0 (corresponding to dimensioned
frequency increments of about 3.5kHz...70kHz in the present example), two iterations are typ-
ically sufficient to obtain results with a relative error of order 10−3 ...10−5. It is interesting to
note that even for ∆a = 4 results converge to the correct eigenvalue despite the fact that there
exist 4 modes with phase velocities closer to the estimated value than the desired mode. This
demonstrates the advantage of utilizing the eigenvector of the same mode at a previous fre-
quency step as the starting vector for the iteration. Additional results for ∆a = 4 are plotted
in Figure 7.5b using a random vector to initialize the iteration. In that case results usually31

converge to one of the two modes that are closest to the initial eigenvalue.

31Since the starting vector is random, there is a chance that the iteration still converges towards the desired or
any other eigenvalue. Figure 7.5b only shows a typical example.
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Efficiency As demonstrated by this example, the proposed approach allows for a highly ef-
ficient computation of parts of the dispersion curves. Currently, the proposed algorithms are
implemented in Matlab. The computational times might vary significantly, if different solvers
are utilized. Nevertheless it is worthwhile to compare the computational efficiency of the current
implementation to the basic approach presented in the previous chapters, where the complete
set of solutions is obtained from the standard eigenvalue problem (3.42) at each frequency. In
the current implementation, about 80 % of the computational time is required for solving Equa-
tions (7.42) and (7.43). In Figure 7.6 computational times Tit are presented to obtain solutions
for one mode at a given frequency step, using two iterations. Computations are performed for a
varying number of degrees of freedom. For comparison, computational times Teig are presented
to solve the eigenvalue problem (3.42) using the Matlab function eig. Note that Teig is the time
to obtain the complete set of solutions while Tit is the time required to solve for one mode only.
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Figure 7.6: Computational time to obtain
one eigenvalue using the inverse iteration
(O) compared to solving the full eigenvalue
problem (M).
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Figure 7.7: Ratio of computational times re-
quired for the eigenvalue solver and inverse
iteration.

Figure 7.7 shows the ratio Rt = Teig/Tit of computational times. This ratio is approximately
of the same order irrespective of the number of degrees of freedom. This is expected, since
the costs for solving the eigenvalue problem (3.42) and the linear system of equations (7.43)
are both roughly of order O(n3). As a rule of thumb, the proposed approach is superior, if no
more than 20 ...25 modes have to be computed at each frequency step. For the example pre-
sented here, the proposed approach would still be faster if we computed the complete dispersion
curves, as the maximum number of propagating modes at the highest frequency of interest is
24. Depending on the application, an additional advantage of the proposed algorithm can lie
in the fact that the modes are traced within the computation. Contrary, when using Equation
(3.42), the modes have to be traced and sorted separately when required (Section 4.3), increas-
ing computational costs.
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7.4.2 Polyphenylene oxide (PPO-GF30)
As a second example dispersion curves for Polyphenylene oxide with 30% glass fiber content
(PPO-GF30 [36]) are presented. This composite material shows transversely isotropic behavior.
Hence, its elasticity matrix can be defined by five independent parameters:

Dti =


1

EL

νL
EL

νL
EL

0
1

ET

νT
ET

0
sym. 1

ET
0
1

GL


−1

(7.49)

The material parameters are given as [36]

EL = 5.606 GPa, νL = 0.303, GL = 1.978 GPa (7.50)
ET = 0.857 GPa, νT = 0.909, ρ = 1.319 g/cm3 (7.51)

As in the previous example, the inner radius is ri = 3 mm and the element length is l = 6 mm.
Results are presented in Figure 7.8. For this anisotropic case, no reliable implementation of
the Global Matrix Method was available to the author. Hence the results have been validated
using the alternative approach based on Equation (3.42). The results obtained by the two dif-
ferent solution techniques are in excellent agreement, showing the applicability of the proposed
approach to anisotropic materials. Again the computational time is about 0.5 s.
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Figure 7.8: Dispersion curves for a PPO-GF30 cylinder, computed using the proposed approach
(•) and compared to solutions obtained by solving the full eigenvalue problem (—).
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Chapter 8

Simulations in the time domain

This chapter is fundamentally different to the other parts of the thesis. While the Chapters
3-7 almost exclusively address the computation of dispersion relations and mode shapes for
different waveguides, this chapter deals with the simulation of guided wave propagation in
actual (bounded) structures in the time domain (see also [101–104]). Particularly, attention is
drawn to the interaction of guided waves with cracks. A very general transient elastodynamic
formulation of the SBFEM is utilized for this purpose. The underlying algorithms have been
developed by Song et al. and evolved over years. The main solver has not been modified within
the current work. The aim of this chapter is to demonstrate, how the SBFEM can be employed
for the simulation of guided waves. The discretization of the structure is a crucial step and
will be discussed in detail. For now, the discussion is limited to simple homogeneous plate
structures with straight cracks in a two-dimensional formulation. These examples suffice to
show the applicability of this method in the context of non-destructive testing. The extension to
more complex two-dimensional structures is generally straightforward. The SBFEM has also
been derived for the three-dimensional case. It will be a future task to effectively discretize
a complex three-dimensional (cracked) waveguide in order to apply the SBFEM. The present
work is, to the author’s knowledge, the first example for the modeling of ultrasonic waves
by means of the Scaled Boundary Finite Element Method. Hence, it introduces a promising
simulation technique to the broad subject of ultrasonic testing and structural health monitoring.

Different numerical methods have been employed by other authors to model the complex
propagation behavior of guided waves and their interaction with defects or other irregularities in
the structure. In most cases, the Finite Element Method (FEM) is employed, as it is a very gen-
eral and flexible tool for the simulation of arbitrary geometries and materials [23, 70, 145, 288].
Many different concepts of Finite Element modeling have been applied, some of them also de-
scribing the excitation process [289]. Nevertheless, the modeling of the complete structure with
standard FEM software is computationally expensive. In addition, the computational costs are
highly increased, if defects of small dimension, compared with the area of the whole structure,
have to be modeled. The size of the modeled domain is often reduced by combining the FEM
with advanced signal processing [290], wave function expansion [291] or, most commonly, dif-
ferent modal decomposition techniques [292–296]. A different approach combines the Finite
Element Method with the Boundary Element Method (BEM) [297, 298] or a Green’s function
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representation [299] for a more efficient modeling of the flawless regions of the plate. Also,
pure Boundary Element modeling has been conducted to assess the reflection properties of
Lamb wave modes [71, 300].

Other established numerical methods have also been employed for the simulation of Lamb
waves, such as the Finite Difference Method [74], the Elastodynamic Finite Integration Tech-
nique (EFIT) [76] or, more recently, the Local Interaction Simulation Approach (LISA) [301,
302]. The Wiener-Hopf technique [303] and other analytical solutions have been considered for
some specific scattering problems [304–306].

To apply a transient formulation of the SBFEM, a representation of the fundamental equa-
tions in the time domain is required. Since different solution procedures have been proposed in
the literature, a very brief summary of the employed algorithm is presented in the following sec-
tion. The formulation is based on a continued fraction approximation [307] of the dynamic stiff-
ness matrix as described in [90]. It has to be discussed, how the order of the continued fraction
approximation affects the solution, depending on the discretization of the boundary [101, 104].
To validate the results and demonstrate the efficiency of the SBFEM for the current application,
traditional Finite Element analyses are performed.

As mentioned in the introduction, the SBFEM is particularly advantageous if cracks have to
be modeled, since the crack can be extremely small without causing numerical problems and the
stress singularity at the crack tip does not require special techniques or refinement. Furthermore,
cracks at various possible locations and depths can be modeled with no or minimum re-meshing.
The SBFEM can also be used to analyze crack propagation [89, 120, 159] which can be an
interesting extension for non-destructive testing applications.

8.1 SBFEM formulation in the time domain

Similarly to the procedure as summarized in Section 2.3, an equation for the dynamic stiffness
matrix S(ω) of a bounded domain can be derived in the frequency domain [77, 78]

(S(ω)−E1)E0
−1(S(ω)−E1

T)−E2 +ωS,ω(ω)+ω2M0 = 0 (8.1)

Note that, for the static case (ω = 0) we obtain the static stiffness matrix (Equation (2.47)). The
dynamic stiffness matrix is defined analogously to Equation (2.41) as

S(ω)un = fn (8.2)

where fn denote the nodal forces on the boundary. As mentioned in Section 2.3, for ω = 0
Equation (8.1) states an algebraic Riccati equation, which can be solved in order to compute
the static stiffness matrix. Furthermore, when addressing problems in structural dynamics by
means of traditional Finite Element analyses, a mass matrix M for a bounded domain is often
defined by [308]

S(ω) = K−ω2M (8.3)
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8.1. SBFEM FORMULATION IN THE TIME DOMAIN

Equation (8.3) can be considered as a low-frequency expansion of the dynamic stiffness matrix,
where terms of order in ω higher than two are neglected. Substituting (8.3) into (8.1) and
neglecting the higher-order terms in ω we obtain

KE0
−1(K−E1

T)+E1E0
−1(−K+E1

T)−E2

+ω2 [(−K+E1)E0
−1M+ME0

−1(−K+E1
T)+M0

]
= 0 (8.4)

The constant term is independent of M. The coefficient matrix corresponding to the quadratic
term can be interpreted as a real continuous Lyapunov equation [309, 310]

ÃM+MÃT +M0 = 0 (8.5)

with
Ã = (−K+E1)E0

−1 (8.6)

Note that both K and E0 are symmetric. Equation (8.5) can be solved using standard techniques
[311–313]. An alternative solution procedure is presented in [77]. After solving Equations
(2.47) and (8.5) for K and M, respectively, the dynamic stiffness matrix can be approximated
by Equation (8.3). This procedure has been applied successfully to solve dynamic problems in
the low-frequency range [77, 79, 80].

More recently, an improved solution procedure that includes the higher-order terms in ω
and hence can be applied for a large frequency range, has been developed [86,87,90]. The idea
is to expand the dynamic stiffness matrix as a continued fraction solution

S(ω̂) = K+ ω̂M− ω̂2[S(1)
0 + ω̂S(1)

1 − ω̂2[S(2)
0 + ω̂S(2)

1 − ...

− ω̂2[S(Mc f )
0 + ω̂S(Mc f )

1 ]−1]−1]−1 (8.7)

where Mc f denotes the order of continued fraction and

ω̂ =−ω2 (8.8)

is introduced for convenience. The first step in computing the coefficient matrices in Equation
(8.7) is to substitute the ansatz

S(ω) = K+ ω̂M− ω̂2(S(1))−1 (8.9)

into Equation (8.1). Since K and M are already known, this leads to an Equation for S(1). A
recursive procedure is then established to obtain the higher-order terms as

S(i)(ω̂) = S(i)
0 + ω̂S(i)

1 − ω̂2(S(i+1))−1 (8.10)

The explicit derivation of the procedure is lengthy and is formulated comprehensively in [90].
Only the results are presented here. After the coefficient matrices have been computed up to a
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given order of continued fraction Mc f , an equation of motion can be stated

Khυυυ +ω2Mhυυυ = r (8.11)

using the following definitions

Kh = diag(K,S(1)
0 ,S(2)

0 , ...,S(Mc f )
0 ) (8.12a)

Mh =



M −I 0 · · · 0

−I S(1)
1 −I · · · 0

0 −I S(2)
1 · · · 0

...
...

... . . . ...

0 0 0 · · · S(Mc f )
1


(8.12b)

υυυ =



u
u(1)

u(2)

...
u(Mc f )


, r =



fn

0
0
...
0


(8.12c)

where r denote the external tractions on the boundary and I is the identity matrix. Kh and Mh
can be interpreted as higher-order stiffness and mass matrices. Equation (8.11) can as well be
written in the time domain as

Khυυυ +Mhϋυυ = r (8.13)

The equation of motion (8.13) can be solved by applying a numerical time integration proce-
dure. In this work a simple Newmark scheme [90, 314, 315] is employed.

It should be noted that the size of the system of equations (8.11) increases with the order of
continued fraction, which on the other hand has to be chosen according to frequency. The higher
the frequency, the more terms of the continued fraction approximation have to be included. In
other words, a certain number of terms have to be considered per wavelength in radial direction.
Thus, similar considerations have to be applied compared with a Finite Element discretization,
where a certain number of nodes per wavelength have to be employed. The displacements u(i)

corresponding to the higher-order terms can be considered as additional degrees of freedom.
Hence, the continued fraction expansion can be interpreted as a novel strategy to ’discretize’ the
interior of the domain (This is in contrast to the static and low-frequency formulations where
solely the degrees of freedom on the boundary have to be considered).

However, it will be demonstrated by the numerical examples in this chapter that the total
number of degrees of freedom required for the continued fraction approximation is significantly
smaller than the number of degrees of freedom in a Finite Element analysis leading to compa-
rable accuracy. This is particularly valid for the simulation of cracked structures, where a very
fine discretization is required in the vicinity of the crack tip in the FEM.
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8.2 Problem definition
In this chapter, Lamb wave propagation in a steel plate of 2 mm thickness is analyzed as an
example to demonstrate the applicability of the SBFEM. The material parameters are chosen to
be

Young’s modulus: E = 200GPa
density: ρ = 7850kg/m3

Poisson’s ratio: ν = 0.3

The same parameters are used throughout the numerical studies in this chapter. Figure 8.1
shows the dispersion curves in terms of group velocity for the given example. The current
analysis will be restricted to the frequency range around 600 kHz, where only the fundamental
symmetric and antisymmetric Lamb wave modes (S0 and A0) can be excited. To generate Lamb
wave modes, a typical ultrasonic pulse is applied to one side of the structure, while everywhere
else stress-free boundary conditions are used. The pulse is a uniformly distributed load with a
time-dependent pressure distribution P(t) described as

P(t) = sin(2π f t) · e− 1
2(

t−µ
σ )

2

[GPa] (8.14)

with µ = 6µs, σ = 2µs and a frequency of f = 600kHz (Figure 8.2). Depending on the ori-
entation of the applied pressure distribution, either symmetric or antisymmetric modes (or a
superposition of both) can be excited. Cracks of different depth and opening angle will be in-
troduced in the plate to model the interaction of the different Lamb wave modes with defects in
the material.
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Figure 8.1: Group velocity dispersion for the first Lamb wave modes in a 2 mm thick steel plate.
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Figure 8.2: Pulse applied to the structure for the excitation of Lamb waves.
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Figure 8.3: Representative part of the discretization of a cracked plate using the SBFEM.
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8.3 Discretization
To model the propagation of guided waves, typically a large structure with a small aspect ratio
has to be discretized. Hence, it is essential to optimize the discretization in order to reduce
computational cost. As only the boundary of a domain has to be meshed in the SBFEM, the
discretization process is very simple and straightforward compared to the FEM. However, if a
long plate has to be modeled with the SBFEM, it should be divided into subdomains rather than
describing the whole structure as a simply connected boundary. This is due to the fact that the
order of continued fraction Mc f needed to approximate the solution in the interior of the domain,
depends on the distance between the boundary and the scaling center. For a structure with a
small aspect ratio, this distance would differ strongly for different sections of the boundary. In
that case, a rather high continued fraction order, related to the longest distance to the boundary
has to be used. The dimension of the equation of motion increases with the continued fraction
order (cf. Equation (8.12)). This results in a rather inefficient computation for domains with a
small aspect ratio.

Consequently, the plate is divided into subdomains with a maximum aspect ratio of 4, which
has been tested to give excellent results. An example for the discretization is presented in Figure
8.3. Only a representative part of the mesh is depicted, including a subdomain containing a
crack with opening angle α . The crack is introduced simply by leaving a small gap between
two elements and positioning the scaling center at the crack tip. In contrast to the Finite Element
Method, the crack is not discretized and the stress singularity at the crack tip does not require
special treatment. Furthermore, the depth and the opening angle of the crack can easily be
modified by changing the position of the scaling center.

As can be seen in Figure 8.3, only six higher-order elements are used for the discretization
of one subdomain. Hence, the mesh generation and integration over the boundary can be done
with very high efficiency. The subdomains are assembled similar to the elements in the standard
Finite Element Method.

8.4 Results

8.4.1 Comparison with Finite Element Analysis
To assess the accuracy and efficiency of the Scaled Boundary Finite Element Method for this
specific application, a test problem is chosen to compare with a standard Finite Element Ana-
lysis. A representative section of the steel plate with a length of 4 mm is modeled. The plate
contains a 1 mm deep crack with a width of 2 ·10−9 mm at the surface32. For the Finite Element
Analysis, the commercial software ANSYS [316] is used. Examples for the discretization are
shown in Figure 8.4. Creating the optimal mesh for the Finite Element Method is not trivial
and can become very time consuming if both a high accuracy and a low computational time are

32The extremely small value has been chosen here to demonstrate that there are no limitations on the crack
width in the SBFEM in terms of numerical stability. The results, however, are almost identical for a crack width of
2 ·10−2 mm.
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Figure 8.4: Discretization of a test problem in the (a) Finite Element Method and (b) Scaled
Boundary Finite Element Method.

desired. Several aspects have to be considered in the meshing: Due to the stress singularity, a
very fine discretization is required for the FEM in the vicinity of the crack tip, while a rather
coarse mesh is sufficient in the regular areas of the structure. Consequently, the optimal growth
rate has to be found, taking into account that the difference in size of two adjacent elements
cannot be arbitrarily big. Furthermore, elements with very small angles in one corner as well
as elements with a high aspect ratio can lead to numerical problems and should be avoided. To
prove convergence of the results, a consistent way of refinement is desired, offering for instance
the possibility to divide every element into four in every step of refinement.

Because of these requirements, there is no general way to create an optimal mesh for com-
plex geometries. However, the best results have been obtained with the type of discretization
shown in Figure 8.4a. The structure is divided into a square containing the continuously grow-
ing elements close to the crack tip and two rectangles with highly regular rectangular elements.
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Figure 8.5: Vertical displacement at point A computed with the FEM and the SBFEM.

Hence, the plate can always be extended by increasing the area of the regular mesh without
changing the discretization of the crack. Within a circle around the crack tip, quarter-point ele-
ments are used to better describe the stress singularity (KSCON-command in ANSYS), leading to
more accurate results for the same number of nodes than conventional elements. Everywhere
else four-sided elements with quadratic shape functions are applied. Obviously, the mesh gen-
eration is very cumbersome in the FEM and the whole mesh has to be modified, when the
crack depth or opening angle is varied. When comparing the efficiency of both approaches it
should be kept in mind that the meshes used for the FEM have been highly optimized through a
time-consuming process. Using a simple automatic meshing algorithm results in much higher
computational costs for the same order of accuracy.

In contrast to that, the meshing is straightforward when applying the SBFEM, as only the
boundary has to be discretized (Figure 8.4b). If higher-order elements are utilized, a minimum
of six elements has to be used for this application. Figure 8.4b shows the discretization with
six 10-noded elements. A finer discretization can be achieved by either increasing the number
of elements on the boundary or the element order. The crack is described by leaving a gap of
given size between two elements and placing the scaling center at the crack tip. Note that the
crack’s surfaces do not need to be discretized and the crack depth can be varied by changing the
position of the scaling center without modifying the discretization.

A uniformly distributed pressure with a time-dependency given by Equation (8.14) is ap-
plied to one side of the structure as indicated in Figure 8.4. The response of the structure is
computed in the time domain using a Newmark time integration procedure with the Newmark
parameters [107] δ = 0.5 and α = 0.25. 1000 time steps are computed with a time increment
of 35 ns. The analysis is performed with numerous discretizations using the FEM as well as
the SBFEM. As an example, Figure 8.5 shows vertical displacements uy for the discretizations
presented in Figure 8.4, computed at the position A (as indicated in Figure 8.4a). The methods
are generally in good agreement. However, in this example the difference between the results
of both methods increases slightly with the number of time steps. To compare the methods in
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Figure 8.6: Average deviation from the FE result with the finest discretization as a function of (a)
the number of degrees of freedom (DOF) and (b) the computational time.

terms of accuracy and efficiency, a Finite Element result with a very fine discretization (131 648
quadratic elements) is chosen as a benchmark result. The accuracy of the computations with
different discretizations is calculated as the relative deviation from the benchmark result, aver-
aged over the time steps. Time steps with a displacement close to zero are neglected, as they
can lead to large deviations in terms of percentage without having a relevant absolute value.

This average deviation is plotted in Figure 8.6a as a function of the total number of degrees
of freedom (DOF). Results are shown for the Finite Element Method using quadratic elements
and for the Scaled Boundary Finite Element Method using quadratic as well as higher-order
elements of order 4 and 9. When quadratic elements are utilized, the nodes on the boundary
are in exactly the same positions for both methods. In the SBFEM, the number of degrees of
freedom depends on the number of nodes on the boundary as well as the order of continued
fraction. The required order of continued fraction is related to the smallest wave length that can
be represented by the mesh on the boundary [90]. Typically, 3-4 terms of continued fraction are
sufficient to represent one wavelength, which is significantly smaller than the number of nodes
required by Finite Elements. For the finest discretizations, an order of continued fraction of 10
has shown to result in converged solutions while for the coarsest discretizations an order of 1
was used.

As can be seen in Figure 8.6a, the methods are in excellent agreement for a sufficient number
of DOF. It cannot be proven which method gives more accurate results when the deviation is
very small (say, smaller than 0.01 %) as there is obviously no analytical solution available for
complex geometries. However, for practical applications such a high accuracy is usually not
required. If we are looking at a reasonably good accuracy of about 0.1% ...1%, the SBFEM is
always about ten times more accurate for the same number of DOF, if quadratic elements are
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used. On the other hand, if higher-order elements are applied, Figure 8.6a shows the extremely
fast convergence of the results. Even if only six elements of order 9 are used, the SBFEM
result has nearly converged, while the FEM with quadratic elements produces an average error
of about 5 % for the same number of DOF.

If the same values of the deviation are plotted as a function of the computational time re-
quired for the solution (not including the mesh generation), the large difference in efficiency of
the two methods is revealed (Figure 8.6b). If quadratic elements are used, the CPU time for
the SBFEM is roughly about 10 to 20 times less than for the FEM.33 If higher-order elements
are applied, the SBFEM is about 100 times faster than the FEM with quadratic elements for
comparable accuracy. All computations have been performed on a HP EliteBook 8560w (Intel
core i7-2820QM CPU @2.30 GHz with 8GB RAM). Only one core of the processor has been
enabled to obtain comparable results because the SBFEM code has not been parallelized yet.

It should be noted that the difference in efficiency of different numerical methods is always
problem-dependent. The SBFEM is particularly advantageous for the modeling of cracked
structures. Also the meshing is generally much easier, which can be of high advantage, espe-
cially when the analysis has to be performed multiple times with slightly modified geometry.
It should also be highlighted that the Finite Element Analysis is conducted using a commer-
cial software while the SBFEM code runs in the interactive mode of Matlab and has not been
optimized for computational efficiency.

Also, at the current stage the SBFEM is especially highly effective for simple geometries
with no or simple inhomogeneities. While different material properties can be assigned to
every node on the boundary, the treatment of inhomogeneities in the scaling direction is not
straightforward. Still it is always possible to divide the structure into subdomains with different
material parameters. For highly inhomogeneous materials the difference in efficiency compared
to the FEM will be significantly smaller than for the examples presented in this work. The
boundary of every subdomain of the SBFEM has to be ’visible’ from the scaling center (i. e.
the domain has to be a star domain in the mathematical sense), which imposes limitations on
the application to complex geometries. Obviously, these drawbacks are similar to the ones
of the Boundary Element Method (BEM), which also requires discretization of the boundary
only. However, the SBFEM offers several advantages in comparison with the BEM. General
anisotropy, for instance can be included in the SBFEM in a trivial way by simply modifying
the elasticity matrix. No fundamental solution is required. Because the integration over the
elements is performed independently of each other in the SBFEM, different material parameters
can simply be assigned to each node of the discretization. Also this fact makes the SBFEM very
efficient, if one problem has to be solved several times with only slightly different geometry,
because only the integration over the modified parts of the structure has to be repeated.

The boundary of the structure can generally be of arbitrary shape. Hence, other types of
defects, such as corrosion, notches or delaminations in composite materials will be analyzed in
future work. If cracks of arbitrary shape have to be modeled, they cannot generally be defined

33Only the computational times required for the solution process are compared. In ANSYS the ’Elapsed time

spent computing solution’ from the ANSYS statistics is used. This time does not include any pre- or post-
processing.
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along the scaling direction as was done in the current work. Alternatively, parts of the crack can
be introduced as a gap between two subdomains which can be of arbitrary shape [89, 121]. It
should be discussed in future work how this affects the results and the efficiency of the solution.

8.4.2 Reflection of the fundamental Lamb wave modes from a crack
Incident S0 mode As an example for the interaction of Lamb waves with cracks, a steel
plate with a length of 160 mm and a thickness of 2 mm is modeled. The plate is divided into
21 subdomains (Figure 8.3) and in the 11th subdomain a crack is introduced (at z = 80mm).
The same pulse as in the previous example (Figure 8.2) is applied to one side of the plate (at
z = 0mm). The excitation frequency of 600 kHz is below the cut-off frequency of the first order
modes (cf. Figure 8.1). Results are presented for a crack depth of 1 mm and opening angle
of 5◦.

Figure 8.7 shows the computed vertical displacements at three different time steps. The
displacements on both upper and lower surface are plotted to visualize the symmetric and anti-
symmetric behavior of the Lamb modes, respectively. Since the pulse is purely symmetric with
respect to the z-axis, only the S0 mode is excited (Figure 8.7a). As the S0 mode interacts with
the crack (Figure 8.7b), it is partly converted into the A0 mode. Consequently, the reflected and
transmitted signals consist of both modes (Figure 8.7c).

To obtain the amplitudes of the different modes in the reflected signal, the displacements on
the plate’s lower surface are analyzed at one time step. For this analysis, the time t = 31.5µs is
chosen, where the reflection at the crack is completed and the reflected S0 mode has not reached
the edge of the plate yet. Hence, the complete reflected signal is captured at this time step. Only
the displacements on one half of the plate (z≤ 80mm) is required to analyze the reflected signal.
A spatial Fourier transformation [290, 317] is performed to obtain the displacement amplitudes
as a function of the wavenumbers contained in the signal (Figure 8.8). In this depiction the
two modes can be clearly identified. The maximum amplitudes occur at k = 0.741mm−1 and
k = 1.544mm−1. These values agree well with the theoretical wavenumbers of the S0 and
A0 mode at the center frequency of 600 kHz, which are obtained as kS0 = 0.727mm−1 and
kA0 = 1.559mm−1. Denoting with AS0,r and AA0,r the maximum amplitudes of the two modes
in the reflected signal, the following reflection parameters are defined

RS0 =
AS0,r

Ai
(8.15a)

RA0 =
AA0,r

Ai
(8.15b)

with the amplitude of the incident mode Ai. Note that only the amplitudes of the displacements
in y-direction are taken into consideration, which are not proportional to the energy transported
by the mode.
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Figure 8.7: Displacements at the upper and lower surface of the plate to visualize (a) the incoming
pulse, (b) the interaction with the crack, (c) the reflected and transmitted signals
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Figure 8.8: Displacement on plate surface at t = 31.5µs and the results of a spatial Fourier
transformation.

The reflection parameters are calculated for different crack geometries to demonstrate the
applicability of the proposed method. However, it should be noted that the exact results are valid
for this example only and that the reflection parameters are generally frequency-dependent.
Figure 8.9 shows the reflected amplitudes as a function of the relative crack depth d, which is
the ratio of crack depth and plate thickness. The computations are performed for different crack
opening angles. An opening angle of 0 refers to the smallest crack with a width of 1 nm. As
can be seen in Figure 8.9a, the amplitude of the reflected S0 mode is monotonically increasing
as a function of the crack depth while it is only slightly influenced by the opening angle. On the
other hand, the amplitude of the A0 mode significantly decreases with the opening angle (Figure
8.9b). Thus, the total reflected energy also decreases with increasing crack opening angle. RA0

follows approximately a sinusoidal function of the crack depth. The dotted lines in Figure 8.9b
represent sinusoidal fits to the data points.

The computational costs for this example are also compared with the FEM based on the
results obtained in Section 8.4.1. As in the previous example, the discretization for the FEM is
refined consistently. Except for the small area in the vicinity of the crack the plate is discretized
with a highly regular mesh. For the SBFEM, only the element order is increased, while always
six elements per subdomain are used. As a benchmark result, an SBFEM analysis with an
element order of 14 and a continued fraction order of 15 is used. Some results are summarized
in Table (8.1). Note that the SBFEM requires a significantly smaller number of DOFs than the
FEM to obtain the same accuracy. Again, the SBFEM is much faster than the FEM, although
the difference in efficiency is smaller than in the example in Section 8.4.1. This is due to the
fact that the area around the crack tip, where a very fine discretization is required in the FEM,
is relatively smaller. However, as highlighted in Table (8.1), the SBFEM is still about 70 times
faster for a similar accuracy of about 0.02%.
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Figure 8.9: Vertical displacement amplitudes of the (a) S0 and (b) A0 mode in the reflected signal
as a function of the relative crack depth, divided by the amplitude of the incident S0 mode. In (b),
the dashed line corresponds to sinusoidal fits to the data.
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Table 8.1: Comparison of different FEM and SBFEM discretizations for the case
of an incident S0 mode.

el. order # DOF deviation [%] CPU [s]

2 9450 3.727 146
FEM 2 34630 0.240 515

2 131446 0.018 2006

6 4262 0.463 12
SBFEM 8 7712 0.017 30

10 9648 0.008 46

Incident A0 mode To excite an antisymmetric mode, the same geometry is used as in the
previous example. Only the direction of the excitation pulse is changed to have a y-component
only. Consequently, the excitation is antisymmetric with respect to the z-axis and a pure A0
mode is excited. The reflected amplitudes are calculated in the same way as before. But as the
group velocity of the incident mode is smaller, more time steps have to be computed and a later
time step has to be chosen for the Fourier transformation of the surface displacements. Results
are presented in Figure 8.10. The amplitude of the S0 mode is a sinusoidal function of the crack
depth, similar to the A0 mode in the previous example. The amplitudes of the reflected S0 mode
are very low with a maximum of about 10% of the incident amplitude. The maximum occurs at
an opening angle of 0 and a relative crack depth of about 0.6. The amplitude of the reflected A0
can become as large as nearly half of the incoming amplitude for large crack depths. However,
as long as the plate is not fully cracked, a significant fraction of the incoming A0 mode will
always be transmitted.

In practical applications, the amplitude of the incident wave is usually not measured. Fur-
thermore, the damping properties of the specimen are generally difficult to model. Hence, the
determination of RS0 and RA0 is not straightforward. On the other hand, the ratio of the am-
plitudes of both modes in the reflected signal can always be obtained. This amplitude ratio is
plotted in Figure 8.11 for the given frequency. If S0 is the incident mode, the amplitude ratio
is monotonically increasing with the crack depth, except for the case where both opening angle
and crack depth are large. In most applications, cracks with a small opening angle have to be
found and hence this correlation can theoretically be used to obtain an estimation for the crack
depth. To obtain more information about the crack geometry, the A0 or higher-order modes
could be used as the incident modes.
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Figure 8.10: Vertical displacement amplitudes of the (a) S0 and (b) A0 mode in the reflected
signal as a function of the relative crack depth, divided by the amplitude of the incident A0 mode.
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Chapter 9

Concluding remarks

In this work, numerical methods have been developed and applied in order to model the prop-
agation of elastic guided waves and their interaction with defects. These simulations are of
high relevance in non-destructive testing and structural health monitoring applications as well
as material characterization. The presented approaches are based on the Scaled Boundary Finite
Element Method, which has, to the author’s knowledge, never been applied to model ultrasonic
wave propagation phenomena prior to this work. In the predominant part of this thesis, wave-
guides of infinite length and constant thickness are addressed. Describing these structures with
the Scaled Boundary Finite Element Method quite naturally yields an elegant formulation to
compute dispersion curves and mode shapes. It has been demonstrated that this concept can
be applied to waveguides of any cross-section and arbitrary distribution of material parame-
ters. Particularly for plates and axisymmetric structures, extremely efficient formulations have
been presented requiring the discretization of a single straight line only. Many details on the
discretization process and the solution of the resulting eigenproblems are presented that are of
particular interest if a highly efficient algorithm is required. The novel solution procedure offers
an innovative and extremely efficient technique to solve for the dispersion curves and can be
employed for many practical applications.

An additional very important development in this work is a novel approach to model em-
bedded waveguides. This has previously been considered a very difficult and computationally
expensive task that has been addressed by numerous researchers. The approach presented here
is not only surprisingly easy to implement but it also requires only minimal additional compu-
tations compared to the formulation for free waveguides.

As a conclusion, a very comprehensive approach to analyze dispersion properties of guided
waves has been presented can can be used for a large range of applications.

For the transient analysis of bounded domains, as presented in the previous chapter, the
situation is very different. The aim of this work is to test the applicability of the SBFEM
to the modeling of ultrasonic wave propagation. An already existing general elastodynamic
formulation has been utilized. Consequently this part of the current work mainly focuses on
discretization issues rather than the development of new formulations. A basic procedure is
presented to extract information on the crack geometry from measured data. The comparison
with traditional Finite Elements reveals the highly superior efficiency of the SBFEM. How-
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ever, comparably simple two-dimensional geometries have been studied until now. A general
three-dimensional formulation of the SBFEM exists, but the discretization is obviously more
cumbersome. A novel approach to introduce cracks in three-dimensional subdomains is cur-
rently under development. The SBFEM will be subsequently used to simulate more complex
structures and study multi-mode wave propagation at higher frequencies. An interesting future
task will be the inclusion of this method in approaches for defect detection and characterization
by means of inverse analysis or artificial neural networks.

Even though this work focuses on ultrasonic guided waves in solids, the formulations can be
adapted to model waves in very different applications. For instance, similar wave propagation
phenomena can be observed in soil layers and are considered in geophysics and earthquake
engineering. Moreover, water reservoirs in contact with a dam can be modeled as waveguides.
Guided waves in air are of interest in acoustics, e. g. to model active noise reduction. Finally,
similar concepts can be used to model electrodynamic waveguides.
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Appendix A

A.1 Parameters used for the simulation in Section 1
The commercial software Comsol [318] has been used for the simulations. For convenience,
the material parameters are chosen as

shear modulus: G = 1Pa
density: ρ = 1kg/m3

Poisson’s ratio: ν = 1/3

Consequently, the shear and longitudinal wave velocities yield

shear wave velocity: cs =

√
G
ρ
= 1m/s

longitudinal wave velocity: cl = cs

√
2(1−ν)
1−2ν

= 2m/s

In the first example (large solid) the size of the computational domain is chosen as 32m×20m.
The plate in the second example is 32 m long and 0.5 m thick.

The pulse is excited by prescribing the vertical displacements uy(t) on a 1 m section on the
boundary. Its time-dependency is given by

uy(t) = sin(2π f t) · exp(−(t−µ)2

2
)[Pa] (A.1)

with f = 1 Hz and µ = 3 s. Simulations have been performed in time domain with a time
increment of 0.1 s. 34

34Obviously, this is not an ultrasonic frequency. Nevertheless, the complete set-up can be scaled to model
realistic materials and frequencies (see Section 3.7.1).
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A.2 Equations related to Section 2.3
For a two-dimensional problem, defined in the Scaled Boundary coordinates (η ,ξ ), the follow-
ing matrices are defined [81]:

b1(η) =
1
|J|

 z(η),η 0
0 −y(η),η

−y(η),η z(η),η

 (A.2a)

b2(η) =
1
|J|

 −z(η) 0
0 y(η)

y(η) −z(η)

 (A.2b)

where |J| is the Jacobian determinant on the boundary (ξ = 1):

|J|=
∣∣∣∣∣ y(η) z(η)

y(η),η z(η),η

∣∣∣∣∣= y(η)z(η),η − z(η)y(η),η (A.3)

b1 and b2 depend on the geometry of the boundary only. With these definitions, the differential
operator L can be written as

L = b1∂ξ +
1
ξ

b2∂η (A.4)

and the matrices B1 and B2 as introduced in Equation (2.45) are then obtained as

B1 = b1N (A.5a)
B2 = b2N,η (A.5b)

The coordinate transformation used in Chapter 3 is a simplification of this general formula-
tion, since the Scaled Boundary coordinates can be chosen parallel to the axes of a Cartesian
coordinate system.
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A.3 Equations related to Section 5.2

The strain components of one mode with circumferential order m follow from Equation (5.23)
as [319]

εz = ∂zuz = us
z,z cosmθ +ua

z,z sinmθ (A.6a)

εθ =
1
r

∂θ uθ +
1
r

ur =
1
r
(us

r−mus
θ )cosmθ +

1
r
(ua

r −mua
θ )sinmθ (A.6b)

εr = ∂rur = us
r,r cosmθ +ua

r,r sinmθ (A.6c)

γrθ = (∂r−
1
r
)uθ +

1
r

∂θ ur = (−us
θ ,r +

1
r

us
θ −

m
r

us
r)sinmθ +(ua

θ ,r−
1
r

ua
θ +

m
r

ua
r )cosmθ

(A.6d)

γrz = ∂ruz +∂zur = (us
z,r +us

r,z)cosmθ +(ua
z,r +ua

r,z)sinmθ (A.6e)

γzθ =
1
r

∂θ uz +∂zuθ = (−m
r

us
z−us

θ ,z)sinmθ +(
m
r

ua
z +ua

θ ,z)cosmθ (A.6f)

In Section 5.2, the strain-displacement relationship is presented as

εεε = (B1
ααα ũs

n,z +B2
ααα ũs

n)cosmθ +(B1
βββ ũs

n,z +B2
βββ ũs

n)sinmθ

+(B1
ααα ũa

n,z +B2
ααα ũa

n)sinmθ − (B1
βββ ũa

n,z +B2
βββ ũa

n)cosmθ (A.7)

We define

B1
ααα = b1

αααN (A.8a)

B2
ααα =

1
r,η

b2
αααN,η +b3

ααα m
r

N+b4
ααα 1

r
N (A.8b)

B1
βββ = b1

βββ N (A.8c)

B2
βββ =

1
r,η

b2
βββ N,η +b3

βββ m
r

N+b4
βββ 1

r
N (A.8d)

It follows that

b1
ααα =

 0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0


T

(A.9a)

b1
βββ =

 0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


T

(A.9b)
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b2
ααα =

 0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0


T

(A.9c)

b2
βββ =

 0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0


T

(A.9d)

b3
ααα =

 −1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


T

(A.9e)

b3
βββ =

 0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 −1 0 0


T

(A.9f)

b4
ααα =

 0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0


T

(A.9g)

b4
βββ =

 0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


T

(A.9h)

The shape functions in Equation (5.28) are given as [319]

Nααα =

 0 0 . . .

N1 N2 . . .

N1 N2 . . .

 (A.10a)

Nβββ =

 N1 N2 . . .

0 0 . . .

0 0 . . .

 (A.10b)
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Obviously, the products NαααTNβββ and NβββTNααα vanish and consequently there is only one mass
matrix, contrary to the other coefficient matrices. The real coefficient matrices are obtained as

E0 =

ˆ 1

−1
B1

αααTDB1
ααα |J|dη +

ˆ 1

−1
B1

βββTDB1
βββ |J|dη (A.11a)

E0 =−
ˆ 1

−1
B1

αααTDB1
βββ |J|dη +

ˆ 1

−1
B1

βββTDB1
ααα |J|dη (A.11b)

E1 =

ˆ 1

−1
B2

αααTDB1
ααα |J|dη +

ˆ 1

−1
B2

βββTDB1
βββ |J|dη (A.11c)

E1 =−
ˆ 1

−1
B2

αααTDB1
βββ |J|dη +

ˆ 1

−1
B2

βββTDB1
ααα |J|dη (A.11d)

E2 =

ˆ 1

−1
B2

αααTDB2
ααα |J|dη +

ˆ 1

−1
B2

βββTDB2
βββ |J|dη (A.11e)

E2 =−
ˆ 1

−1
B2

αααTDB2
βββ |J|dη +

ˆ 1

−1
B2

βββTDB2
ααα |J|dη (A.11f)
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A.4 Inverse iteration for a generalized eigenvalue
problem

The case of a generalized eigenvalue problem can be treated very similarly to the standard
eigenvalue problem as described in [277]. Let λ j,u j denote the solutions of the generalized
eigenvalue problem

A1u j = λ jA2u j (A.12)

We define the vector y as the solution of the following system of equations

[A1− τA2]y = A2b (A.13)

where b is a random nonzero complex vector and τ is a scalar. We expand the vectors y and b
as linear combinations of the eigenvectors

y = ∑
j

α ju j (A.14)

b = ∑
j

β ju j (A.15)

Substituting Equations (A.14) and (A.15) into (A.13) yields

∑
j
[A1− τA2]α ju j = ∑

j
β jA2u j (A.16)

or
∑

j
α j(λ j− τ)A2u j = ∑

j
β jA2u j (A.17)

We obtain the same relationship between the coefficients α j and β j as for standard eigenvalue
problems:

α j =
β j

λ j− τ
(A.18)

If τ is close to one eigenvalue λk, the corresponding coefficient αk becomes large and the so-
lution y is close to the eigenvector uk, up to a normalization. The vector b has to be chosen in
a way that the coefficient βk is not accidentally very small compared to the other coefficients.
In the current application this is guaranteed by using an eigenvector corresponding to the same
mode at a previous frequency step.
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