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Assuring quality in microplastic 
monitoring: About the value of 
clean-air devices as essentials for 
verified data
Charlotte Wesch1, Anna Maria Elert2, Manuel Wörner1, Ulrike Braun2, Roland Klein1 & Martin 
Paulus1

Avoiding aerial microfibre contamination of environmental samples is essential for reliable analyses 
when it comes to the detection of ubiquitous microplastics. Almost all laboratories have contamination 
problems which are largely unavoidable without investments in clean-air devices. Therefore, our study 
supplies an approach to assess background microfibre contamination of samples in the laboratory under 
particle-free air conditions. We tested aerial contamination of samples indoor, in a mobile laboratory, 
within a laboratory fume hood and on a clean bench with particles filtration during the examining 
process of a fish. The used clean bench reduced aerial microfibre contamination in our laboratory by 
96.5%. This highlights the value of suitable clean-air devices for valid microplastic pollution data. Our 
results indicate, that pollution levels by microfibres have been overestimated and actual pollution 
levels may be many times lower. Accordingly, such clean-air devices are recommended for microplastic 
laboratory applications in future research work to significantly lower error rates.

A high degree of quality assurance is a fundamental requirement to ensure global comparability of research 
results. However, well-established quality assurance schemes for microplastic (<5 mm)1 investigations, including 
all steps of sampling, processing and analysis, are missing. This may be attributed to a lack of quality-tested long 
term microplastic monitoring programmes2. Recently, efforts to ensure different quality criteria have been put 
forward but are still in their initial stages and not broadly applied2.

So far, existing microplastic records have highlighted the prevalence of microfibres in environmental samples3, 4.  
Fibres are the most common microplastic type monitored in sediments5, 6, surface seawaters7, aquatic biota8, 9 
as well as atmospheric fallout10 and in indoor environments11. However, recent studies report about numerous 
sources of analytical errors like the misidentification of synthetic fibres with artificial cellulose or lignin fibres, due 
to insufficient spectroscopic measurements12–14. Moreover, microfibres in environmental specimens can be con-
founded with post-sampling contamination in the laboratory15. Without any prevention of potential background 
contamination a quantification of microfibres in environmental samples remains highly questionable.

Possible sources of background contamination with microfibres are numerous and can be caused by abrasions 
from synthetic clothing, inexpertly cleaned laboratory equipment, plastic tools used during processing, poorly 
sealed specimen or ambient air16–18. Some basic precautionary measures and methods to prevent aerial microfibre 
contamination have been recommended in the scientific literature: Clothing made of cotton should be worn5, 12, 

19, 20, air circulation should be avoided2 and work spaces and tools need to be cleaned from any particle contami-
nation8. The general elimination of microfibres from further analyses21 has also been postulated, considering all 
fibres to be artefacts of sample processing22, 23. However, this exclusion is no longer suitable to detect microfibres 
in environmental samples, as it distorts the factual results of contamination15, 24, 25. Thus, an analytical assessment 
of airborne contamination levels is needed considering the laboratory-specific pollution with microfibres17. Moist 
filter papers in Petri dishes exposed to the laboratory air could function as control blanks during an examination 
process2. To avoid fibre contamination in the laboratory, hermetic enclosure devices like plastic covers and a pyr-
amid glove box were also tested to isolate all work spaces during processing25. Besides, textile fibre contamination 
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was found to decrease, when processing was performed in a clean air flow cabinet23. Other studies used common 
laboratory clean-air devices like laminar flow cabinets20, 26 or fume hoods16, 27 during sample processing.

To assure the efficiency of laboratory clean-air devices in microplastic monitoring, we have tested and com-
pared the airborne microfibre contamination of environmental samples in different experimental set ups: (1) 
indoor, (2) in a mobile laboratory, (3) within a laboratory fume hood and (4) on a clean bench with particles 
filtration. The object of this paper is to address the value of suitable clean-air devices for valid microplastic pol-
lution data.

Results
Number of airborne fibres. Airborne fibres contamination levels from different setups (indoor laboratory, 
mobile laboratory, fume hood, clean bench with particles filtration) were tested and compared. A total of 138 
fibrous appearances were counted in 54 of the overall 94 samples exposed to the four setups. Particle-shaped 
appearances were not found. All detected fibres were mostly black, blue or transparent. Figure 1 illustrates the 
number of fibres in the samples belonging to each setup. Microfibres abundance ranged from zero to 11 fibres 
per sample. The highest frequency of fibres was observed in the samples of the indoor setup, as nearly all samples 
contained fibres (Fig. 2). Likewise, 24 of the 27 samples of the mobile laboratory setup contained fibres. In the 
fume hood setup (Fig. 3), on the other hand, fibres were only detected in 10 of 20 samples. One single fibre was 
discovered in the samples of the clean bench setup (Fig. 4).

Figure 1. Number of aerial microfibres monitored in the samples. The boxplots show the number of airborne 
fibres detected in the samples belonging to the four different setups (il = indoor laboratory; ml = mobile 
laboratory; fh = laboratory fume hood; cb = clean bench with particle filtration). The boxes cover the 25th and 
75th percentile, including the median (horizontal line). The whiskers are set to default representing ±1.5*IQR 
(interquartile range).

Figure 2. Percentage of samples with microfibre contamination. The figure shows the percentage of samples 
found with microfibre contamination indoor, in the mobile laboratory, the fume hood and on the clean bench 
with particle filtration. The number of samples exposed to the four different setups are represented as well. The 
entire list of samples exposed to the different setups can be found as Supplementary Tables S1 and S2.

http://S1
http://S2
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Statistics. The sample size was tested to have an adequate power (>0.99). The differences in samples size was 
due to varying availability of fish samples for our experimental setups. The statistical tests showed that the amount 
of fibres collected in all samples exposed to the four different setups were significantly different (Kruskal-Wallis; 
df = 3; p = 0.000). The number of microfibres detected in the samples from the clean bench was significantly 
lower than the number of fibres collected either indoor (Wilcoxon Mann-Whitney U; Z = −6.089; p = 0.000), 
in the mobile laboratory (Z = −6.012; p = 0.000) or the fume hood (Z = −3.704; p = 0.000). No significant dif-
ference was found between the number of fibres recorded indoor and in the mobile laboratory (Table S3). The 
number of fibres indoor and the mobile laboratory was not significantly correlated to the time of exposure to the 
ambient air (Fig. 5; linear regression analysis p > 0.05).

Types of airborne fibres. Unfortunately, spectroscopic analyses could only be conducted for 13 of the 138 
fibres, due to difficulties in handling the fibres during manual sample preparation and processing (e.g. loss of 
fibres or too small fibres), which is not unusual when dealing with tiny microfibres28. Six fibres were confirmed 
as microplastics, with the plastic polymer types identified as polypropylene (PP) (Fig. 6), polyacrylonitrile (PAN) 
(Fig. 7; Figure S1) and polyethylene terephthalate (PET) (Figure S2). But, six more fibres could be identified as 
of natural origin by the presence of melanin or cellulose derivatives, as e.g. contained in animal or human hair 
(Fig. 8). No assignments could be obtained for the thirteenth fibre. The size of the detected microfibres was 
between a few µm up to cm in length and from few µm up to 50 µm in thickness. Natural fibres however were, 
with up to 100 µm, generally thicker than the synthetic ones.

Figure 3. Image of a typical laboratory fume hood. A fume hood is a ventilated enclosure that provides 
protection of the operator and the environment from particularly hazardous substances like fumes, vapours, 
dusts and gases. During processing, ambient air flows into the fume hood through a vertically movable front 
sash (1). The unfiltered air flows across the work surface, over the sample (2) and circulates in the workspace 
(3). Air and all airborne contaminants are directed through an air exhaust duct (4) into the exhaust fan (5) and 
suctioned out of the fume hood.

http://S3
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Discussion
We highlight the need for greater attention to quality issues in order to identify and lower methodological errors 
in future microplastic investigations. Despite strict precautionary measures, the outcomes of our study indicate 
the high risk of aerial microfibre contamination of environmental samples during processing. Overall, common 
precautions like wearing 100% pure cotton lab coats and using non-plastic equipment were shown to be insuf-
ficient to ensure sample purity. Contamination of all but the clean bench setups were alarming. The single fibre 
found in the clean bench sample might have been released from laboratory equipment during processing. While 

Figure 4. Image of a laboratory clean bench with particles- and activated carbon filtration. Clean benches 
provide a particle-filtered environment to protect samples from aerial contamination. Ambient air with floatable 
particles (black arrows) and filtered pure air (white arrows) are transported to suction slots (1) and passed 
through an activated carbon filter (2). Cleaned air is drawn by a radial fan (3) and pressed through a particle 
filter (Hosch-Filter) into the workspace (4). The filtered pure air flows gently (laminar flow) across the work 
surface over the sample (5) and towards the operator and then back into the suction slots.

Figure 5. Linear regression analysis. Correlation between the number of fibres recovered on the filter papers 
and the time of exposure indoor (left) and in the mobile laboratory (right).



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 5424  | DOI:10.1038/s41598-017-05838-4

the use of a laboratory fume hood reduces the contamination of specimens by almost 50%, it does not fully 
prevent it, as it is designed for the protection of the operator and ambient air from particularly hazardous sub-
stances, instead of protecting the sample from secondary contamination. Reason for the non-linear relationship 
between the number of fibres in the laboratory and the time of exposure, might be due to a variety of parameters. 
Movements in a room during processing (persons walking) for example might have an effect on the number of 
fibres settling down on the filter papers. Michele et al.25 already found no significant dependency between the 
amount of fibres in a sample and the time of exposure to the ambient air within their investigations. Procedural 
blank outcomes of recent studies do not indicate significant contamination levels in comparison to the levels 
found in environmental samples10. However, following our results, only standardised clean working conditions 
using suitable clean-air devices with particle filtration provide a sufficiently effective method to significantly 
reduce airborne microfibre contamination.

Figure 6. Optical image and spectra of an aerial fibre identified as polypropylene. The figure shows an optical 
image (a) with a corresponding FTIR chemical image integrated at 2800–3000 cm−1 (b). Image c is showing a 
fibre spectra (green) with its corresponding spectra (black; PP reference).

Figure 7. Optical image and spectra of an aerial fibre identified as polyacrylonitrile. The figure shows an optical 
image of a microfibre (a) with its corresponding FTIR chemical image (b), showing the PAN fibre at integration 
2200–2300 cm−1. Image c shows the PAN reference spectrum (black) and the fibre’s spectrum (light blue).

Figure 8. Optical image and spectra of an aerial fibre identified as cellophane. The figure shows an optical image 
of a microfibre (a) with corresponding FTIR chemical image (b), showing the studied fibre at integration 3000–
2900 cm−1. CMC (red) and cellophane (blue) reference spectra with black corresponding to a microfibre (c).
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The results of our spectroscopic analyses show that the microfibres found in our samples were in equal parts of 
natural as well as of synthetic origin. Dris et al.10 also found this relation of natural to synthetic fibres in samples 
from the atmospheric fallout. The polymer types PP, PET and PAN detected in our study are often used in sani-
tary and personal care products29, as well as in the clothing and packaging industry30. Accordingly, their presence 
in samples could be a contamination signature of laboratory environments.

Notwithstanding the urgent call for quality assurance systems in microplastic analyses, many monitoring 
research studies still apply error-prone methodology. Likewise, for all steps of sampling, sample handling, pro-
cessing and preparation prior to analysis, suitable methods to prevent contamination are missing in current 
monitoring protocols, guidances (cf. Recommendations by NOAA Marine Debris Program19 or Guidance on 
Monitoring of Marine Litter by MSFD TSGML2) and single research surveys. The MSFD TSGML2 recommended 
that background contamination should be considered as negligible, if it comprises less than 10% of the overall 
microplastic average across all samples. Our results suggest, that this target can be easily achieved and back-
ground contamination can even be reduced by 96.5% if using suitable clean-air devices. However, these results are 
limited to our specific laboratory and the used safety workbench and we do not aim to provide accurate evidence 
for overestimations of microfibres in the natural environment as a lot of scientific questions remain uncertain. 
We highly emphasise that more standardised research is needed and other variables should be taken into account 
as well.

Nevertheless, the predominance of microfibres in environmental samples might be linked to aerial fibres 
contamination. Consequently, suitable clean-air devices with particles filtration, designed for the protection of 
biological specimens should be taken into consideration by scientist for microplastic laboratory applications. We 
suggest this working procedure to be implemented in standard operating procedures for microplastic analysis of 
environmental samples.

Methods
Experimental setup and design. To verify the efficiency of clean-air devices in microplastic monitor-
ing, we examined possible aerial contamination of environmental samples with microfibres in four different test 
setups. Airborne contamination was tested (1) indoor (laboratory without clean-air facilities), (2) in a mobile 
laboratory (fully housed within a vehicle without clean-air facilities and designed to function while stationary at 
a sampling site), (3) a laboratory fume hood and (4) on a clean bench with particles- and activated carbon filtra-
tion (microbiological safety workbench; Type ASW-UP, BLEYMEHL Reinraumtechnik). The used clean bench 
removes particulates from ambient air by a gentle laminar flow of the filtered air, which streams vertically through 
the entire work space, reliably transporting all floatable particles to suction slots.

Sample preparation and preventing contamination. As samples, we used white filter papers (90 mm 
diameter) moistened with ultrapure water, imitating a moist surface of an aquatic environmental sample. Prior 
to the exposure, all filter papers were observed visually for any fibre contamination and prepared in cleaned glass 
Petri dishes on the clean bench to prevent any previous contamination. These Petri dishes were then exposed to 
the four different setups described above. In the laboratory, general precautionary measures were adopted like 
wearing clothing made of 100% cotton, avoiding air circulation in the laboratory and furthermore all work spaces 
as well as all used equipment was cleaned from any particle contamination with deionised water.

Exposure and enumeration. Exposure included all steps of a routine sample processing (as applicable for 
fish dissection) following the standard operating procedures (SOP)31, 32 of the German Environmental Specimen 
Bank, providing high quality assurance standards for environmental monitoring. The period of exposure was 
analogous to the mean time needed for a standardised fish dissection and ranged between 0.75 and 4.75 hours. 
After processing, all samples were sealed temporarily in the Petri dishes. For counting all fibrous microplastics, 
the sealed samples were visually observed under a Greenough Stereo Microscope with Apochromatic Optics 
(Leica S8 APO). To ensure the accuracy of the counting, two independent observers enumerated them alternating 
for two minutes. After analysis, fibres which were easy to handle were transferred into small Eppendorf tubes for 
storage prior to spectroscopic analyses.

Statistical data analysis. We initially determined the optimal sample size with an adequate power to detect 
the statistical significance (G*Power 3.1). Statistical data comparison was conducted using SPSS software (IBM 
SPSS Statistics 23.0). Data was tested for normal distribution using the Shapiro-Wilk test. As our data was not 
normally distributed, non-parametric tests were performed. The Kruskal-Wallis test was used to test the statisti-
cal significance of the differences of fibre contamination between the four different setups. Two tailed Wilcoxon 
Mann-Whitney U tests were applied to test for differences in quantity of fibres between the different setups. The 
relationship between the fibres recorded on the filter papers and the time of exposure was tested with linear 
regression analysis. The significance level (p) for the performed statistical tests was set at 0.05.

Spectroscopic analysis. Fourier Transform infrared (FTIR) spectroscopy was used to chemically char-
acterise microfibres, which were suggested to be of synthetic origin by their morphology. Measurements were 
carried out using a FTIR Vertex 70 spectrometer (Bruker) as beam source coupled with a Hyperion 3000 FTIR 
Microscope with a 15 x IR Objective (Bruker Corporation, Billerica, USA) and a 64 × 64 Focal Plane Array (FPA) 
detector. For analysis, fibres were uniformly spread on a KBr crystal and placed under a microscope equipped 
with a 15 × Objective (pixel resolution 2.7 µm). The measurements were performed in transmission mode in 
wavenumber range 3850–900 cm−1 using a spectra resolution of 16 cm−1. OPUS 7.2 Software was used to acquire 
and analyse data. Zero filling factor 2, Blackman Harris three term windows function were chosen. The back-
ground was measured with the same parameters against the KBr window. No transformation or post-processing 
of the spectra were conducted. To differentiate the fibres chemistry, the special integration was applied. For PP 
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fibre CH-valence-stretching vibrations at 3000–2800 cm−1 and for PAN fibres specific vibration of CN absorption 
band at 2260 cm−1 were integrated.

Data availability statement. There are no restrictions on the availability of materials or information. 
Supporting raw data and materials that cannot be included in the printed version of the manuscript for rea-
sons of space are available as Supplementary Information file that will be freely accessible on nature.com upon 
publication.
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