

Sicherheit in Technik und Chemie

22.02.2017

5th PANIC Hilton Head Island, USA

Low Field NMR Spectroscopy for Sustainable and Flexible Production of High Quality Chemical Products

Simon Kern, Klas Meyer, Svetlana Guhl, Patrick Gräßer, Lukas Wander, Andrea Paul, Michael Maiwald

Bundesanstalt für Materialforschung und -prüfung (BAM) Division 1.4 Process Analytical Technology

Richard-Willstätter-Str. 11 D-12489 Berlin, Germany

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 636942

CONSENS: Smart Online NMR Sensor for Advanced Process Control

Flexible Intensified Continuous Plant

Kern Low field NMR spectroscopy for sustainable and flexible production

Reaction Monitoring on Lab Scale at **BAM**

Reaction Monitoring in Lab-scale at **BAM**

NTEGRATED CONTROL AND SENSING

22.02.2017

Low field NMR spectroscopy for sustainable and flexible production

CONSENS: Case Study 1

Intensified Synthesis of Organic Compounds

Modular plant

BAM

S. Kern

Low field NMR spectroscopy for sustainable and flexible production

INTEGRATED CONTROL AND SENSING

Reaction Characterization in Lab

Lab Experiments in Batch along Reaction Co-ordinate

- Data in parallel acquired with high-field and low-field spectrometer
- "Fast" and "slow loop"
- Li-HMDS was dosed stepwise

Online ¹H NMR Spectra of Lithiation Reaction Step

single scan each 15s in flow

Entropy minimization method:

Chen et al., J Magn Reson. 2002, 158, 164-168

Low-order Polynomial fit:

Mazet et al., Chemometrics Intell. Lab. Sys. **2005**, *76*, 121-133.

Alignment to reference signal (THF) using *i*coshift:

Savorani et al., J Magn Reson. **2010**, *2*, 190-202

Indirect Hard Modeling (IHM)

peak fitting of pure component spectra \rightarrow mixture model Modeling "component fitting" \rightarrow calculation of component area Analysis

Hard model for pure components

IHM – "component fitting"

14

22.02.2017

S. Kern

Low field NMR spectroscopy for sustainable and flexible production

IHM – "component fitting"

22.02.2017 S. Kern

Low field NMR spectroscopy for sustainable and flexible production

Results: Reaction Characterization

Lab Experiments in Batch along Reaction Co-ordinate

- 3 semi-batch reaction with variing starting concentrations
- 1500 Spectra for each HF- and NF-NMR

Classification of steady states

Validation of Lab Experiments in Tube Reactor

Continuous Lithiation Reaction Set-up at BAM

Experimental Design

Continuous Lithiation Reaction Set-up at BAM

18

Monitoring of Continuous Aromatic Substitution Reaction by Low Field NMR

19

S. Kern

Low field NMR spectroscopy for sustainable and flexible production

Smart NMR Sensor Concept

22.02.2017 S. Kern Low field NMR spectroscopy for sustainable and flexible production

CONSENS: Smart Online NMR Sensor for Advanced Process Control

Current and Future Requirements to *Smart* **Process Sensors**

As Parts of Cyber-Physical Production Systems

Contemporary Process Engineering

23

NTEGRATED CONTROL AND SENSING

Towards Cyber-Physical Production Systems (CPPS)

"Cyber-Physical Systems (CPS) are integrations of computation with physical processes. Embedded computers and networks monitor and control the physical processes, usually with feedback loops where physical processes affect E. A. Lee, Cyber Physical Systems: Design Challenges,

22.02.2017 S. Kern Low field NMR spectroscopy for sustainable and flexible production

Smart NMR Sensor Concept

Closing the Gap ... Key Attributes of Compact NMR Spectroscopy for Industrial Online Applications

Laboratory research

Chemical industry

BAM

25

Sicherheit in Technik und Chemie

THANK YOU!

Jürgen Kolz Ullrich Koch Juan Perlo Mike Bernstein Magritek Magritek Magritek MestreLab Harald PapePTBClemens MinnichS-PactDirk EngelS-PactAlfons SteilPSG Pere

S-Pact PSG Petro Service

CONSENS – Integrated Control and Sensing for Sustainable Operation of Flexible Intensified Processes, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement N° 636942. www.consens-spire.eu

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Any liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights are granted herein. The members of the project CONSENS do not accept any liability for actions or omissions of CONSENS members or third parties and disclaims any obligation to enforce the use of this document. This document is subject to change without notice.

Data Preparation

- Spectra for repeated batches vary, e.g., due to the quality of the respective shim
- fundamental acceptance criteria for online NMR spectroscopy:

robust data pretreatment and evaluation strategy with the potential for automation

References

- K. Meyer, S. Kern, N. Zientek, G. Guthausen, M. Maiwald, Process control with compact NMR, TrAC Trends in Analytical Chemistry, <u>October 2016</u>, <u>Vol.83</u>:39–52, doi:<u>10.1016/j.trac.2016.03.016</u>
- N. Zientek, C. Laurain, K. Meyer, A. Paul, D. Engel, G. Guthausen, M. Kraume, M. Maiwald, Automated data evaluation and modelling of simultaneous 19F–1H medium-resolution NMR spectra for online reaction monitoring, Magnetic Resonance in Chemistry, 54 (2016) 513-520.
- N. Zientek, C. Laurain, K. Meyer, M. Kraume, G. Guthausen, M. Maiwald, Simultaneous 19F–1H medium resolution NMR spectroscopy for online reaction monitoring, Journal of Magnetic Resonance, 249 (2014) 53-62.
- Meyer, K.; Ruiken, J. P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.; Process spectroscopy in microemulsions–Setup and multispectral approach for reaction monitoring of a homogeneous hydroformylation process. Measurement Science and Technology 2017, 28.

