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Abstract. Carbon Fibre Reinforced Plastics (CFRP) are more and more used in 
modern civil aircrafts. These days the whole fuselage is made of this material 
(B787; A350). Due to strict certification standards the normal in-service loading 
gives a low stress level compared to the static and even the fatigue strength of the 
material. Hence CFRP are assumed to have an infinite life. To evaluate this 
assumption, fatigue tests on CFRP-specimens were performed up to 108 load cycles 
and the first inter-fibre failure was evaluated non-destructively by accompanying X-
ray-refraction topography. 
 A tensile testing machine was integrated in a small angle X-ray scattering 
(SAXS) setup. X-ray refraction topography [1] was performed while the CFRP-
samples were tensile loaded. This non-destructive technique enables the detection of 
micro-cracking and inter-fibre failure especially for CFRP. For Glass Fibre 
Reinforced Plastic (GFRP) X-ray refraction and in-situ loading has already been 
successfully used [2]. The increase of inner surfaces due to inter fibre failure was 
measured as a function of the stress state. Fatigue tests were performed at and below 
the limit of inter-fibre failure strength. 
 State of the art is to assume the failure of the samples under cyclic loading as 
the fatigue life. Accompanying non-destructive X-ray refraction measurements 
reflects the damage state and enables to trace its evolution even if the total failure of 
the specimens does not occur. This investigation technique is of high interest to give 
the engineer a design value of infinite life which is practically often reached due to 
knock down factors of certification standards. Finally the infinite life was found for 
cyclic fatigue loaded CFRP-samples even under high inter fibre transverse and shear 
loading investigated up to 108 load cycles. 
  

1 Introduction  
 
The aim of this research project is to understand the damage evolution in FRP being subject 
to high cycle fatigue. This is done by combined mechanical and non-destructive testing in 
order to facilitate the monitoring and characterisation of damage evolution. By means of the 
X-ray refraction topography developed at BAM [1] it is possible to identify the internal 
surfaces non-destructively quantitatively and spatially resolved. Thus it is possible to 
identify micro-damage in the µm-scale (fibre-matrix-debonding and matrix fracture) even 
in complex laminates. The objective is to monitor the micro-crack-evolution in woven 
textiles and non-crimp fabrics to determine material constants and develop models to 
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determine the boundary to “infinite life”. The basic idea of the investigation is represented 
in Fig. 1. Accompanying non-destructive testing (NDT) is mandatory to achieve 
information about the damage state of the material since at low load levels the total failure 
of the samples will not be reached. 
 

 
Fig. 1: Basic idea of investigation – characterisation of the damage state of CFRP due to fatigue loading 

before the S-N curve. 

2 Experimental  

2.1 Materials and test specimen  

The CFRP specimens were made from a 200g/m² non-crimp fabric and 400g/m² twill style 
textile each made with Tenax-E HTA40 E1, 6K yarn. The matrix system was Huntsman 
Araldite® LY 556 / Aradur® 917 / Accelerator DY 070. Flat specimens with a length of 
150mm, a width of 15mm (0°/90°-laminate) and 20mm (+/-45°-laminate) with a thickness 
of 1 and 2mm and tab reinforcement for clamping were used. 0°/90°- and +/-45°-laminates 
of each textile reinforcement were investigated. 

2.2 X-ray refraction technique  

X-ray refraction [1] is caused by the effect of refraction at the interface of materials of 
different refractive index as known from visible light passing glass lenses. In the case of X-
rays the refraction angle is below half a degree and in opposite direction due to the 
dispersion function of isolators. Hence Small Angle X-ray Scattering (SAXS) technique is 
used. In the experimental set-up (Fig. 2) a collimated X-ray beam passes the sample. At a 
fixed angle the refracted signal is measured and additionally a signal proportional to the 
absorption. A characteristic refraction value C is determined, which is proportional to the 
surface per volume unit. It can be calculated from the scattering IR and transmitted 
intensities IA and the thickness d of the sample in relation to the zero values (without 
sample): 
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The intensity of the refracted beam will increase if a difference of the refractive index 
occurs at the observed interfaces. Hence, the intensity will be higher for materials with de-
bonded fibres or pores than without (Fig. 3). By calibration the absolute as well as the 
relative inner surfaces C are measured. In most cases the relative increase is sufficient and 
used in the further investigations. Scanning the whole area of the sample gives a 
topographic map of inner surfaces (Fig. 3 and 5). According to Lambert-Beer’s law the 
absorption is a function of the density-proportional linear absorption coefficient µ and the 
thickness d of the sample: 

  d
AA eII  

0    (2) 

For several applications it is practical to normalise equation 1 to ln (IA/IA0) resulting in the 
relative specific surface Cm/µ, independent from variation of the number of fibre filaments 
due to non-perfect production of the fabrics. 
 

Fig. 2: Experimental setup of the X-ray-refraction 
technique 

Fig. 3: The absorption and refraction signal are 
measured at the same position on the sample. Only 
in consideration of the refraction signal the cracks 

could be visualised. 
 
The density itself contains no information about inner surfaces. In the experimental setup of 
the refraction technique the absorption and the refraction signals are measured 
independently in one shot. In Fig. 3 the absorption and refraction mapping of a CFRP 
sample made of a twill fabric are compared. The absorption (Fig. 3, left) maps only slight 
differences of the density. Instead, the refraction-signal (Fig. 3, right) maps the micro 
cracks due to inter fibre failure caused by the cyclic fatigue loading. Thus, if there is no 
significant change of the density it is impossible to detect any fibre matrix de-bonding with 
the classical X-ray radiography which only uses the absorption proportional to mass. 

2.3 Damage evaluation in-situ tensile strength test  

A tensile testing machine was integrated in a small angle X-ray scattering (SAXS) setup 
(Fig. 4, right). X-ray refraction topography [1, 2] was performed while the CFRP-samples 
were tensile loaded (Fig. 4, left). This non-destructive technique enables the detection of 
micro-cracking and inter-fibre failure especially important for CFRP. For GFRP X-ray-
refraction and in-situ loading has already been successfully used [2, 3]. The increase of 
inner surfaces due to inter-fibre failure was measured as a function of the stress state. For 
0°/90°-laminate made of non-crimp fabrics the first inter-fibre failure occur at a stress level 
of approximately 350 to 400MPa. In steps of about 1kN (approx. 40MPa) the load was 
increased until the total failure of the sample. For 0°/90°-laminate made of twill style textile 
the first cracks occur above 300MPa. Since the first inter-fibre failure was detected at a certain 
stress level, it is assumed to reach the very high cycle (VHCF) range (Fig. 1) for the 0°/90°-
laminate below this value. 
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Fig. 4: left - 0°/90°-CFRP-sample of non-crimp fabric, tensile loaded and in-situ X-ray-refraction testing. 
right - 15kN-elektro-mechanical tensile testing machine integrated in the X-ray scanner. 

 
Due to the 0°/90°-fibre orientation the inter fibre failures occur perpendicular to the load 
direction. Beside the phenomenological degradation process of increasing inner surfaces 
measured and visualised with the refraction technique [2] described above (Fig. 4), the 
proper shape of the micro cracks is of high interest for physical interpretation. Therefore a 
comparative investigation was done at the Berlin synchrotron BESSY with Diffraction 
Enhanced Imaging (DEI) [4, 5, 6].  
 

Fig. 5: Principle of Diffraction Enhanced Imaging 
(DEI) – refracted light is discriminated with the 

rocking curve of an analyser crystal. 

Fig. 6: Imaging transverse cracks in a CFRP-sample – 
from right to left: 0°/90°-CFRP, DEI at the edge and in 

the middle of the rocking curve, SAXS-technique.
 
With DEI the refracted light at cracks or pores is discriminated with an analyser crystal 
(Fig. 5), in contrast to the Small Angle X-ray Scanning (SAXS) technique (Fig. 2). 
Therefore a parallel beam of monochromatic X-ray light is mandatory which can be 
generated with synchrotron radiation and a double-crystal monochromator. The analyser 
crystal can be rotated precisely. If the Bragg-angle is adjusted to the maximum intensity 
only the unrefracted light complies with the Bragg condition and refracted light is missing. 
Thus, the cracks are imaged dark. If the Bragg-angle is adjusted to the edge of the rocking 
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curve, only refracted light passes the analyser crystal and the cracks are imaged bright (Fig. 
5 and 6). 
 
The fractured specimen shown in Fig. 4 was investigated with DEI. The DEI images are 
shown comparative to the SAXS topography in Fig. 6. The DEI images are area-wide and 
contain 520 vs 800 pixel with a pixel-size of 28.8µm vs 28.8µm. The SAXS images are 
non-area-wide with a step size of 0.3mm each in x- and y- direction (horizontal and 
vertical) and contain 40 vs 67 pixel of 2000µm vs 50µm. The marginal values were omitted 
in the images due to the width of the X-ray beam of the Kratky collimation. The DEI 
images have a much higher resolution and visualise that the inter fibre cracks mostly pass 
the hole width of the specimen. Additionally the cracks are not straight but rather follow the 
waviness of the 90°-fibre bundles. With this finding all crack indications in the SAXS-
topography can be assumed as one crack over the whole width of the specimen. The result 
is a crack density of approximately 1/mm. Counting the cracks of the DEI images gives the 
same result. For further SAXS investigations the scanning grid was optimised. Finally the 
specimens were scanned in 7 steps over the width and 100 steps of each 0.2mm in fly by 
technique over a length of 20mm.  

2.4 Damage evaluation in-situ tensile fatigue loading  

Fatigue tests were done in servo-hydraulic tensile testing machines at 5 up to 100Hz 
(0°/90°-laminate). All tests were done air conditioned at 23°C and 50% humidity. The 
intrinsic heating at low load levels is insignificant and hence the recorded surface 
temperature rise is moderate until shortly before failure. Even for +/-45°-laminate the 
increase of the surface temperature is only 7°C at the lowest load-level of 50MPa and a test 
frequency of 50Hz. The surface temperature was recorded during all fatigue tests with an 
infrared sensor. A maximum temperature rise of 10°C is acceptable since the maximum 
temperature increase inside the specimen could be assumed below 20°C. Hence the total 
temperature of the specimen is far below the glass transition temperature of about 120°C 
for this epoxy-matrix system.  
 

Fig. 7: left - 0°/90°-CFRP-sample of non-crimp fabric, tensile cyclic (fatigue) loaded and in-situ X-ray-
refraction testing. right - 10kN servo-hydraulic tensile testing machine integrated in the X-ray scanner. 

 
Two test rigs of servo-hydraulic tensile testing machines were built-on with a load capacity 
of max. 10kN. One load frame was integrated in the SAXS scanner (Fig. 7, right) instead of 
the electro-mechanical tensile testing machine (Fig. 4, left). The specimens were scanned 
after a certain number of load cycles (Fig. 7, left) und the crack density was measured while 
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a preload was applied to open the cracks. These in-situ measurements were done up to 106 
load-cycles at different load levels (Fig. 7, 8 and 10). In a second load frame the very high 
cycle fatigue tests were performed up to 108 load-cycles. After a certain number of load 
cycles the fatigue experiments were stopped and the specimens were scanned in a second 
SAXS scanner unloaded. All results are summarised in the Figures 9 and 11. 
 

 
Fig. 8: 0°/90°-CFRP-sample of twill style textile, tensile cyclic (fatigue) loaded and in-situ X-ray-refraction 

testing. Load ratio R=0.1.
 

 
Fig. 9: S-N-curve of 0°/90°-CFRP of twill style textile – failed, damaged and no detectable damage.  

Load ratio R=0,1 

2.4.1 0°/90°-laminate  

The 0°/90°-CFRP specimen of non-crimp fabric do not fail at and below a stress level of 
500MPa (R=0.1) up to 108 load cycles, even though the first inter fibre failure occur at the 
first load cycle (Fig. 4 and 7). The maximum crack density is doubled to approx. 2/mm 
compared to the static strength test with ca. 1/mm at fracture. In the fatigue tests the 
maximum crack density decreases with stress level. Below 200MPa there is no micro 
cracking detected up to 106 load cycles. Thus technically infinite life could be assumed at 
this load level in respect to the laminate, the load ratio and the taken material concerning 
fibre, fabric and matrix. 
An overview of the fatigue tests on 0°/90°-CFRP specimen of twill style textile is summarised in 
Fig. 8 and 9. The total failure of the samples emerged in the fatigue tests at and above 
400MPa upper limit, load ratio R=0.1. Above 300MPa inter-fibre failure occurs at the first 
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load cycle however the specimens does not fail up to 107 and hence reach the VHCF 
region. 
Below a stress level of 150MPa no increase of micro cracking could be observed up to 107 
load cycles (Fig. 9). This is approximately 50% of the inter-fibre failure stress in static 
loading. Again technically infinite life could be assumed at this load level in respect to the 
laminate, the load ratio and the taken material concerning fibre, fabric and matrix. There is 
a transition region from undamaged to damaged state between 150 and 300 MPa upper 
limit stress. X-ray refraction enables to show an increasing crack density with the stress 
amplitude (Fig. 8).  

2.4.2 +/-45°-laminate  

Fig. 10: +/-45°-CFRP-samples of twill style textile, tensile cyclic (fatigue) loaded and in-situ X-ray-refraction 
testing parallel and perpendicular to the samples length direction. Load ratio R=0.1. 

left: maximum stress 75MPa, right: maximum stress 60MPa 
 

 
Fig. 11: S-N-curve of +/-45°-CFRP of twill style textile – failed, damaged and no detectable damage.  

Load ratio R=0,1
 
The overview of the fatigue tests on +/-45°-laminate is summarised in Fig. 10 and 11. The 
failure in fatigue loading is found at and above a maximum stress of 70MPa up to 106 load 
cycles. The region of no damage is below 50MPa. That’s also approximately 50% of inter-
fibre shear strength. The VHCF region could be reached at an upper stress limit of 60MPa. 
Fortunately the scatter of number of load cycles to failure of the S-N-curve is much lower 
compared to the 0°/90°-laminate. Figure 10 depicts the transition from undamaged to 
damaged state by fatigue tests on constant stress levels at 75 and 60MPa. Due to the +/-45°-
fibre orientation two perpendicular oriented X-ray refraction measurements have to be done 
[2, 3]. Two different failure mechanisms occur. First perpendicular to the specimen length 
direction matrix cracks appear in the crossings of the fibre bundles and subsequent 
intralaminar fibre matrix debonding occurs due to the inter-fibre shear loading. Both effects 
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can be distinguished by the perpendicular measurements. In parallel configuration only the 
fibre matrix de-bonding is visualised. In perpendicular configuration both – the fibre matrix 
debonding and the matrix cracks become visible. The scattering orientation function is 
proportional to cos2 [2, 3]. Hence both the +/-45°-fibres and/or the fibre-matrix de-
bonding contribute to the parallel and perpendicular scans. In contrast the matrix cracks 
contribute only to the perpendicular scanning configuration. Neither the matrix cracks nor 
the fibre-matrix-debonding travel over the whole width of the sample rather distribute 
statistically over the specimen. Due to this micro crack behaviour no crack density could be 
defined as for the 0°/90°-laminates. Therefore the normalised refraction value was plotted 
vs. the number of load cycles to characterise the damage state. 

3 Discussion  

It is well known [8] to visualise inter-fibre failure with the classical radiography at low X-
ray energies, however contrast agent has to be used to mark them and only cracks 
connected to the sample surface will be detectable. With the X-ray refraction technique thin 
micro cracks and inter-fibre failure could be visualised without contrast agent averaged 
over the volume [1] and hence an in-situ investigation of increasing micro damages in 
parallel to mechanical static [2, 3] and fatigue loading [7] is possible. 
In [9] acoustic emission is used as a powerful tool to detect non-destructively inter-fibre 
failure and fibre failure in-situ mechanical loading. However due to the noise of the 
mechanical testing machines it is difficult to separate the right signal. Additionally acoustic 
emission could only measure the inter-fibre failure just in-situ in the moment it happens. 
Consequently subsequent analysis offline is impossible. Finally a coupling of mechanical 
testing and X-ray-refraction was favoured. 
A stress level of 50% of static inter-fibre failure seems to be the limit to the infinite life of 
CFRP either for intralaminar transverse and shear loading. This is in the region where the 
airliners and wind-turbine blades are designed nowadays due to certification standards. 
Thus, the fatigue of composite materials plays an underpart regarding the service life of 
such applications. Finally it has to be stated that these results are only valid for the 
investigated materials. In an ongoing project the influence of the sizing of the fibres and the 
matrix are investigated to improve the limit of infinite life regarding inter-fibre failure. 

4 Conclusion 

An infinite life was found for cyclic fatigue loaded CFRP-samples under high inter-fibre 
transverse (0°/90°laminate) and shear (+/-45-laminate) loading investigated up to 108 load 
cycles. State of the art is to take failure of the samples as the fatigue life whereas 
accompanying non-destructive X-ray-refraction measurements reflects a level of damage 
even if samples failure not occurs. These results and investigation technique are of high 
interest to give engineers a design value of infinite life which is practically often reached 
due to knock down factors of certification standards. Further investigations at different load 
ratios (especially R=-1) are running. A high influence of the load ratio on the stress level of 
infinite life is assumed and well known for the fatigue life of FRPs. 
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