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Real Time Imaging of Deuterium 
in a Duplex Stainless Steel 
Microstructure by Time-of-Flight 
SIMS
O. Sobol, F. Straub, Th. Wirth, G. Holzlechner, Th. Boellinghaus & W. E. S. Unger

For more than one century, hydrogen assisted degradation of metallic microstructures has been 
identified as origin for severe technical component failures but the mechanisms behind have not yet 
been completely understood so far. Any in-situ observation of hydrogen transport phenomena in 
microstructures will provide more details for further elucidation of these degradation mechanisms. A 
novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium 
in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS 
instrument enables electrochemical charging with deuterium through the inner surface of the cell made 
from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by 
TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This 
in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite 
phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the 
austenite-ferrite interface has been found.

The popularity of Duplex Stainless Steel (DSS) arises from an attractive combination of properties, including 
high strength and excellent corrosion resistance. Due to these properties, this type of steel is being used in many 
applications and environments which frequently provide critical conditions for hydrogen absorption in metallic 
microstructures1. By cathodic charging or during free corrosion of DSS in hydrogen environments retarding 
recombination, overall hydrogen concentrations of more than 40 at.ppm have frequently been observed and 
found to be harmful2,3. Dependent on the respective solution and trapping mechanisms, hydrogen taken up from 
various sources might cause significant degradation of the mechanical properties and consequently might entail 
hydrogen assisted cracking (HAC) of components, as documented by severe failure cases. Although HAC rep-
resents an important issue in industrial applications and attracted enormous research attention for decades, the 
mechanisms of hydrogen assisted crack initiation and propagation as well as those of hydrogen transportation 
in the respective microstructures are not yet fully understood3–7. Local in-situ characterization of the hydrogen 
distribution in steel microstructures represents a key for elucidation of HAC as well as hydrogen transporta-
tion in the respective microstructures8,9. One, if not the only, laterally resolving method of chemical analysis 
for imaging the locally hydrogen distribution and interaction in a specific microstructure is secondary ion mass 
spectrometry (SIMS)10. Up to the present, all of the SIMS experiments aiming on the elucidation of hydrogen 
effects were carried out using externally charged samples and dynamic SIMS instruments (for a survey cf. SI). In 
contrast, real time imaging results have been obtained in the present study by static ToF-SIMS monitoring of the 
deuterium distribution in a DSS microstructure while continuously charged for the first time (cf. Fig. 1). In the 
experiments, deuterium that permeated through the steel’s microstructure has been imaged at the outer surface of 
an electrochemical permeation cell made from DSS itself which is located within the ultra-high vacuum chamber 
of the instrument (for details see SI). Analysis of that vacuum/steel interface avoids any impact of the electrolyte 
on the imaged surface. In the permeation experiment, the DSS surface has been investigated with increasing time 
of charging: First deuterium secondary ions were detected after 28 days of charging, saturation after 37 days. The 
limited sensitivity of SIMS (secondary ion emission probabilities may be small as 10−4) leads to an underesti-
mation of the “break-through” time which is the time of charging required for detecting the first intentionally 
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introduced deuterium on the analyzed surface. To gain a maximum of information from the SIMS image data 
acquired multivariate data analysis by Principal Component Analysis (PCA) has been performed. By using key 
co-variations between element and fragment secondary ions the image contrast between features is substantially 
increased. In comparison to a previous SIMS study of deuterium effusion from the DSS sample reported by the 
authors11 the steps beyond the present experiment al state are (i) the real time monitoring of the permeation, 
diffusion and distribution of deuterium in individual phases of the DSS microstructure and (ii) the multivariate 
treatment of SIMS image data.

The use of the hydrogen isotope deuterium emerges from the requirement to distinguish between hydrogen 
species diffused through the microstructure of DSS to the imaged surface and hydrogen containing residual gas 
species adsorbed thereon. Of course, there are differences in diffusibility and solubility for both hydrogen iso-
topes, but these range within the same order of magnitude. It is well-known that, in principal, deuterium behaves 
very similar to hydrogen in steel microstructures7,10,12–14.

Results of the in-situ permeation experiment are displayed in Fig. 2. Figure 2a shows the scores image for the 
first principle component (PC1) obtained from the positive secondary ion data set comprising matrix related 
secondary ions. The related loadings plot (cf. Figure S2 in the SI) indicate Ni+, Mn+ and Fe+ as key secondary 
ions that characterize the variance captured by PC1 obtained from the positive secondary ion data set. Thus the 
different phases in DSS can clearly be distinguished. The ferrite appears dark and the austenite appears bright. 
Figure 2b exhibits the PC1 scores image delivered by PCA of the negative secondary ion data set where deute-
rium related secondary ions contribute to. In this case the related loadings plot (cf. Figure S2 in the SI) indicates 
D− and OD− as key (fragment) secondary ions that characterize the variance captured by PC1. By comparison 
of Fig. 2a,b, a preferential deuterium accumulation in the ferrite phase becomes evident. For single grains inside 
austenite and ferrite phases, intensity variations in Fig. 2b have been observed. This observation is assumed to 
be due to the dependency of the secondary ion emission probability of deuterium related secondary ions on the 
respective grain lattice plane exposed to the impinging primary ions.

Based on Fig. 2a,b, a higher permeation of deuterium and faster saturation of the ferrite phase is concluded 
when compared to the austenite phase. This experimental result is consistent with literature data, where deute-
rium in the ferrite phase is reported to have an about five orders of magnitude higher diffusivity7,15,16. By this, the 
current in-situ measurements provide evidence to previous statements15,17,18 based on models and experiments 
that deuterium preferentially diffuses through the ferrite matrix. In accordance to the diffusion coefficient18, 
within the time frame of the reported experiment, only a minor amount of deuterium will be diffusing into and 
trapped in the austenite grains at considerably lower diffusion coefficients.

Reduction of the negative image data matrix used for score images displayed in Fig. 2b by the use of only a 
mass range 20–50 m/z reveals images shown in Fig. 2c,d. Figure 2c presents an image of the scores of PC1 where 
significant positive loadings have been found only for m/z =  26, i. e. CN− fragment ions (cf. Figure S2 in the SI).  
Comparison of Fig. 2c with Fig. 2a reveals that these occur in areas corresponding to the austenite phase. 
Moreover, the comparison of Fig. 2c with Fig. 2b reveals that certain regions in the ferrite phase where a bright 
region related to CN− correlates with a bright area representing high deuterium concentrations.

Figure 2d displays the PC2 scores image belonging to the PC1 image in Fig. 2c. The loadings plot for PC2 
shows strong positive loading exclusively at m/z =  43 assigned to CN2HD− (cf. Figure S2 in the SI) and displays 
distinct positive scores at grain boundaries within a specific phase and high positive scores at ferrite-austenite 

Figure 1. Schematic view of the unique design of the real time and in-situ deuterium permeation 
experiment within ultra-high vacuum chamber of the ToF-SIMS instrument. This set-up enables to monitor 
the deuterium distribution in the DSS microstructure at the polished vacuum exposed surface of the charging 
cell made from 2205 DSS. Deuterium becomes visible after permeation through a 0.5 mm thick DSS sheet.
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Figure 2. Principle component score images of the ToF-SIMS data sets acquired after 34 days of charging. 
(a) PC1 scores image for identifying phases using the positive ToF-SIMS data set acquired after 34 days of 
charging DSS with deuterium by using a peak list with secondary ions covering the main alloying elements. 
The bright regions represent the austenite phase (as proved by the loadings plot in shown Figure S2a). (b) PC1 
scores image identifying locations rich in deuterium obtained from the negative SIMS data set acquired after 34 
days and using the full peak list. Bright pixel indicate positive scores and correlate with the ferrite phase. (c) PC1 
scores image obtained from the same data set but using a different peak list prepared to focus on carbides and 
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interfaces. This image provides evidence that regions at the grain boundaries and interfaces contain carbon and 
nitrogen as well as accumulated deuterium at the same time. Such findings indicate that grain and phase bound-
aries act as /sinks in the microstructure which attract hydrogen or deuterium ions19–21.

The SIMS data sets leading to images displayed in Fig. 2 have been taken from a region of interest (ROI) 
selected at the beginning of the in-situ permeation experiment which has been analyzed many times before to 
identify the break-through of deuterium. To rule out any unintended measurement artifacts (e.g. due to beam 
damage) a fresh ROI was selected for ToF-SIMS imaging after 37 days of charging (shown in Fig. 3). Again, the 
ferrite phase appears dark and the austenite is bright in Fig. 3a. Also, the significantly higher deuterium concen-
tration in the ferrite grains in comparison to the austenite has been confirmed by Fig. 3b. Similar results to those 
obtained after break-through of deuterium have been found for the saturated state. Additionally an ion-induced 
secondary electron image (Fig. 3c) of the duplex microstructure at the new ROI is taken where also phase and 
even grain boundaries can be distinguished.

Principally the in-situ permeation experiment should enable also a determination of kinetic data as, e.g., 
overall diffusion coefficients. Unfortunately quantitative evaluation of such values will be limited by the detection 
limit of the SIMS instrument for deuterium and the tortuous effect occurring in a two phase alloy17,18. However, 
it has to be expected that most of the deuterium detected at the time of the break-through permeated predomi-
nantly through the ferrite phase on paths circumventing the austenitic phase (cf. ref. [15]) characterized by con-
siderably lower diffusivity and higher solubility for deuterium.

It has been demonstrated for a technically relevant multiphase metallic microstructure, here DSS, that imag-
ing ToF-SIMS together with subsequent image data treatment by PCA is a powerful approach for phase iden-
tification (positive SIMS mode) and in-situ visualizing the deuterium distribution (negative SIMS mode). The 
in-situ approach using a deuterium charging cell in the analysis chamber of a ToF-SIMS instrument provided 
clear experimental evidence for a preferred diffusion of deuterium through the ferrite phase, while ex-situ SIMS 
studies could only show preferential accumulations in the phases subsequently to charging with hydrogen or 
deuterium10,22.

The experiment also enables an investigation of interactions of deuterium with grain and phase boundaries, 
carbon and nitrogen in the DSS microstructure. However, it addresses the diffusion and permeation of deute-
rium through the microstructure without any external mechanical loading on the specimen. It is anticipated 
that, under these specific circumstances, deuterium accumulates in the lattice and is trapped at dislocations and 
already existing twins3 with much higher solubility and lower diffusivity of hydrogen/deuterium in austenite 
as compared to ferrite.7 The authors currently develop an advanced experiment aiming on the realization of an 
in-situ mechanical loading of deuterium charged specimens to study the degradation process of each phase under 
these more complex circumstances by imaging ToF-SIMS.

The real time and in-situ imaging ToF-SIMS based approach introduced in this letter widens the perspectives 
for experiments aiming on deuterium and hydrogen (or even other mobile constituents) behavior in a range 
of relevant metallic microstructures. It will contribute to a better understanding of hydrogen and deuterium 
permeation and subsequent cracking in metallic microstructures known to be crucial for the design of engineer-
ing components in industrial branches with high impact as petrochemical, off-shore constructions and oilfield 
applications.

Finally it should be mentioned that the in-situ ToF-SIMS experiment reported here is part of recent com-
munity overarching activities to develop new experiments e.g. on the big and flexible sample holder within the 
analysis chamber of ION TOF’s ToF-SIMS instruments. One example is a microfluidic device for in situ ToF-SIMS 
analysis of the Liquid/Vacuum interface introduced in ref. 23.

Methods
ToF-SIMS analysis procedure. ToF-SIMS measurements were performed using a ToF-SIMS IV instrument 
(ION-TOF GmbH, Muenster, Germany). 25 keV Bi+ primary ions delivered by a liquid metal ion gun (LMIG) 
were used for analysis. A sputter ion gun providing 3 keV Ar+ ions for sputtering has been used for cleaning the 
region of interest. Previously to the measurements an area of 300 ×  300 μ m2 was sputtered by Ar+ primary ions 
for 5 min to remove surface contaminants originating from the cell production process. ToF-SIMS data from 
the surface of the steel were acquired from 100 ×  100 μ m2 sample ROI performing the burst alignment mode 
with a beam diameter of approximately ~250 nm providing sufficient lateral resolution for imaging the steel’s 
micro structure. The information depth of the SIMS method equals to the first and second monolayer of the steel 
surface24.

The first step of the experiment was to image the finely polished DSS surface of the cell before charging by 
ToF-SIMS in positive mode. A representative ROI of 100 ×  100 μ m2 was selected to identify the austenitic and the 
ferritic phases by the detection of Cr+, Mn+ and Fe+ secondary ions; first with instrument settings delivering high 
mass resolution and thereafter with settings for high lateral resolution25. Subsequently, negative secondary ion 
images were acquired from one and the same ROI at increasing times of charging with deuterium over a period 
up to saturation (37 days).

nitrides. This image is identifying locations rich in N and C. Bright pixels indicate positive scores and correlate 
with the austenite phase. (d) PC2 scores image identifying locations rich in N, C and D (bright pixel means 
positive score) indicating graded accumulation of deuterium at the ferrite and austenite grain boundaries and at 
the ferrite/austenite interface (highest scores!) as well. All ToF-SIMS image acquisition settings and parameters 
are given in table S3 in SI.
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PCA and data preprocessing. Image data were treated by PCA (for details see SI). PCA was performed 
using the Solo +  Mia toolbox (v7.5.2, Eigenvector Research Inc.) which were run under MATLAB (v7.9.0.529, 
MathWorks Inc.). Prior to principal component analysis the raw data of secondary ions were pre-processed by 
normalization to the total intensity of each respective mass spectrum, Poisson scaling and mean centering finally.

Design and details of the in-situ charging experiment. The results have been obtained by a novel 
experimental approach, i.e. by mounting a specifically designed cell (Fig. 1) in the ultra-high vacuum (UHV) 
analysis chamber of the ToF-SIMS instrument. The cell was made using a rolled cylindrical bar of a duplex stain-
less steel grade 2205 (UNS S31803, EN 1.4462). The material was purchased from ThyssenKrupp and specified 

Figure 3. Principle component score and secondary electron images of the ToF-SIMS data sets acquired 
after 37 days of charging. (a) PC1 scores image obtained from the positive SIMS data set acquired after 37 
days of charging DSS and used to identify phases in the DSS micro structure. A fresh region of interest (ROI) 
has been selected. The bright regions represent the austenite phase (as shown in the loading plot in Figure S2a). 
(b) PC1 scores image related to locations rich in deuterium. The image was generated by PCA of a negative 
ToF-SIMS image data set obtained after loading with deuterium for 37 days. The bright deuterium-rich areas 
have positive scores and correspond to the ferrite phase while the dark areas have negative scores and relate to 
austenite grains. (c) Ion induced secondary electron (SE) image of displaying grains in the DSS microstructure 
at the selected region of interest.
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by Deutsche Edelstahlwerke GmbH according to applicable standards26–31 to have a ferrite content of 51%. After 
rolling, the bar was solution annealed in 1050 °C and water quenched. The cell was fully made from this DSS 
material. The flat outer surface of the cell exposed to UHV and the primary ion beam has been polished for in-situ 
imaging by ToF-SIMS and is illustrated in Fig. 1. The DSS material has been machined in a way enabling obser-
vation of diffusion perpendicular to the rolling direction. This cell allows continuous electrochemical charging 
of the duplex stainless steel (DSS) with deuterium from inside and analyzing its outer surface exposed to UHV at 
the same time. The inner surface of the cell was flat and plan-parallel to its monitored outer surface. In that way 
a 0.5 mm thick steel membrane has been established for permeation experiments with deuterium. To introduce 
deuterium into the steel a continuous flow of an electrolyte solution of 0.05 M D2SO4 and 0.01 M NaAsO2 (recom-
bination poison) in D2O was realized through the tubular test sample. This was accomplished by pumping the 
electrolyte through a flexible polymer pipe. The pipe was lead from outside the UHV chamber to the tubular sam-
ple within the chamber by using flexible stainless steel bellows. A Pt wire was acting as counter electrode (anode) 
in the galvano-static charging process using a current density of 10mA·cm−2.
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