

Sicherheit in Technik und Chemie

23.09.2015

AUTOMATED DATA EVALUATION AND MODELING OF SIMULTANEOUS ¹⁹F-¹H BENCHTOP NMR SPECTRA FOR ONLINE REACTION MONITORING

<u>Michael Maiwald</u>¹, Nicolai Zientek^{1,4}, Clément Laurain^{1,2}, Klas Meyer¹, Andrea Paul¹, Dirk Engel⁵, Matthias Kraume⁴, Gisela Guthausen³

- 1. BAM Federal Institute for Materials Research and Testing, Berlin, Germany
- 2. École Nationale Supérieure de Chimie de Lille, Villeneuve D'ascq Cedex, France
- 3. Pro2NMR, Institute of Mechanical Process Engineering and Mechanics and Institute of Biological Interfaces, KIT, Karlsruhe, Germany
- 4. Department of Chemical Engineering, Technische Universität Berlin, Berlin, Germany
- 5. S-PACT GmbH, Aachen, Germany

Safety in Technology and Chemistry Our Key Areas

S BAM

BAM is a senior scientific and technical Federal institute with responsibility to Federal Ministry for Economic Affairs and Energy

S BAM **Workflow** original reference - PLC control Instrument - ATEX • Stability • Line Shape ("enhancement") Standards **Data Modeling** • Direct Integration Data preparation • Line fit **Processes** Indirect Hard • Phasing Process Modeling Development Indirect Hard • Hybrid Plants Flow Probe Modeling II Some Reactions • Glass or tubing • PLS-R Polarisation chemical shift, 8/ppn Magnetisation ٠ buildup 3

Process Development

Current Developments: Hybrid Plants

Micro reaction technology (Example: Fraunhofer ICT, Pfinztal/D)

Container Concept (Example: INVITE, Leverkusen/D)

Process Understanding

Examples for online NMR reaction monitoring

Online NMR Spectroscopy as Reference

Hyphenation to reactors and devices

Online NMR Spectroscopy

Flow scheme, thermostated bypass

Online NMR Spectroscopy

Hyphenation of process spectrometers

to reactors and devices

Benchtop NMR Instruments

Key issues for industrial online applications

- optimized geometry
 chemical and thermal resistance
 thermally decoupled coil
- iow mechanical resistancejunctions glass to tubing

- commercially available
 industrial manufacture
- 8 geometry not optimal

Simple Dewar Flow Cell

Concept of a Flow Cell 1/16" PFA Tubing (ID 1 mm)

Simple Dewar Flow Cell

Concept of a Flow Cell 1/16" PFA Tubing (ID 1 mm)

Influence of flow on polarisation

Experiments with flowing EtOH

Flow NMR Spectroscopy **MSME** experiments on flow profile

Dalitz, Guthausen, Maiwald: Chem. Eng. Sci. 75 (2012) 318-326

Flow NMR Spectroscopy

CFD Calculation of Magnetisation Buildup

Long term stability and field drift

Real world line shapes (non-exponential decay)

$$s(t) = M_0 \cdot [\cos(2\pi\nu t) - i \cdot \sin(2\pi\nu t)] \cdot e^{-\frac{t}{T_2}} \cdot a(t)$$

Instrument function

Line Shape Deconvolution Algorithm (LSDA)

Reference Deconvolution

Instrument Functions a(t)

Performance of hardware adequate

Instrument Functions a(t)

Performance of hardware

Practical MR NMR Standards

¹H- and ¹⁹F-NMR MR-NMR

Quasi-parallel acquisition

 relative sensitivity of ¹⁹F-NMR: ~85 %

Pulse sequence

Proton 500 MHz Proton 43.5 MHz Fluorine 40.5 MHz

DFG

Pump Time

 30% of important industrial chemicals and pharmaceuticals contain fluorine

20 ml /min

1 minute

10 s

Zientek, N. et al. *J. Magn. Reson.*, 249 (2014), 53-62

NMR Data Acquisition

Phase stability ¹H and ¹⁹F

Zientek, N. et al. J. Magn. Reson., 249 (2014), 53-62

Monitoring of yeast based process

via high resolution online NMR spectroscopy

Automated Phase Correction

Phase Optimisation using Entropy Minimisation [1]

[1] Chen et. al, Journal of Magnetic Resonance 2002, 158, 164-168

standard phase correction

selective signal selection

NMR Data Preparation

Phase Correction: Superimposed ¹⁹F NMR spectra

2,2,2-trifluoroethanol

(a) auto-phased and baselinecorrected NMR spectra using vendor NMR software and (b) baseline-corrected and automatically phased using the minimum entropy phase correction

Data Analysis - Overview

Zientek, N. et al. J. Magn. Reson., 249 (2014), 53-62

Method 1: Direct Integration

Method 1: Direct Integration

Zientek, N. et al. Magn. Reson. Chem. (2015), DOI 10.1002/mrc.4216

Zientek, N. et al. Magn. Reson. Chem. (2015), DOI 10.1002/mrc.4216

Indirect Hard Modeling

E. Kriesten, F. Alsmeyer, A. Bardow, W. Marquardt, Chemometr. Intell. Lab. 91 (2008) 181–193
E. Kriesten, D. Mayer, F. Alsmeyer, C.B. Minnich, L. Greiner, W. Marquardt, Chemometr. Intell. Lab. 93 (2008) 108–119

Method 3: IHM #1

Method 3: IHM #1

Zientek, N. et al. Magn. Reson. Chem. (2015), DOI 10.1002/mrc.4216

Method 3: IHM #2, combined model

Zientek, N. et al. Magn. Reson. Chem. (2015), DOI 10.1002/mrc.4216

Zientek, N. et al. Magn. Reson. Chem. (2015), DOI 10.1002/mrc.4216

Method 4: PLS-R

Decision tree

Zientek, N. et al. Chemie Ing. Techn. (2015), submitted

About the project -

- **Start Date:** 1st January 2015
- **Duration:** 36 Months, until 31st December 2017
- **Budget:** 6 million €
- Project web site: www.consens-spire.eu (in construction)
- Coordinator: Manuel A. Pereira Remelhe, BAYER TECHNOLOGY SERVICES
- **Consortium members:** see next page

2015-2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 636942

Example for integrated validation: Intensified synthesis of organic compounds

Acknowledgements

Thank you!

Ulrich Panne Simon Kern BAM, Berlin

Jürgen Kolz Andrew Coy Juan Perlo Federico Casanova

Mike Bernstein Santi Dominguez Magritek GmbH, Aachen

Mestrelab Research

NMR Process Monitoring Towards an automated field integration

Offline Calibration

Preparing Ternary Mixtures of the Reactants (projection into ternary diagram)

Course of reaction

20 Calibration mixtures

NMR Spectroscopy

Coninuous improvement of acquisition time, stability, and linearity

Quantitative Online NMR Spectroscopy

Where are the limits for qNMR?

Physics and instrument

- S/N: dependent on
 - field (w₀)
 - filling factor
 - volume ($V_{\rm C}$)
 - filling factor $(V_{\rm S} / V_{\rm C})$
 - temperature of coil ($T_{\rm C}$)

Hoult, D. I.; Richards, R. E. *J Magn Res* **24**, 71 (1976)

• Instrument electronics (amplifier circuits)

→ *T*-control of NMR console

- → Miniaturization
- Sample density (temperature dependent)
 - → T-control of probe

Radiation damping

in technical mixtures: "ugly non-linear phase jumps"

Radiation damping in technical mixtures

- intensive NMR signals can induce current in receiver coil
- produced RF field speeds up relaxation
- time constant $T_{RD} = (2\pi \eta Q \gamma M_0)^{-1}$

filling factor η , quality factor $Q = \omega L/R$, magnetogyr. ratio. γ , equilibrium magnetization M_0

- leads to
 - line broadening and phase shifts
 - problems in high field nmr (e.g., effective water suppression)
 - errors in relaxation time measurements T_1 and T_2
 - errors in pulse width calibration
 - artifacts in 2D nmr spectroscopy
 - unexpected echoes in spin echoe experiments

Suryan, G.: *Current Sci.* (*India*) **18** (1949), 203 Bloom, A. L.: *J. Appl. Phys.* **28** (1957), 800–805 Freeman, R.: A Handbook of Nuclear Magnetic Resonance, Essex : Longman 1988 Augustine, M. P.: *Prog. NMR Spectroscopy* **40** (2002), 111–150

Method 4: PLS-R

Multivariate Data Analysis – Principal Component Analysis (PCA)

Spectra are decomposed into factors cf. Principal components and the associated weights of these factors (scores).

This results in a reduced data set where all characteristics of the spectra are conserved in individually weighted factors. This is done by exchanging the spectrum matrix and the concentration matrix.

Example: Hydroformulation

Hydroformylation of long-chained alkenes in microemulsions

InPROMPT: Integrated chemical processes in liquid multiphase systems, hydroformylation of C12 – Alkenes [1]

Standard industrial process for aldehyde production

Characterisation

Linearity

Acetone in Acetone-d6

BAM

