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Motivation

Specific challenges are

n Small dimensions:        
fast sensors & closed-
loop control 

n Higher quality levels: 
more accurate sensors 

n Innovative products:    
fast design, engineering 
and optimization

n Fouling and clogging

The first step of a pharmaceutical model reaction (Eq. 1) is 
focused[4]:

The F³ Factory focuses on new "plug and produce" modular and 
standardized chemical production for low to medium scale 
production, in order to demonstrate cleaner and more efficient 
manufacturing technologies. By introducing novel online sensors & 
closed-loop control methods flexible intensified continuous 
processes can be advanced. Online NMR spectroscopy has an 
enormous potential to become an important analytical tool for 
reaction monitoring, when flow probes are directly coupled to 
reactors.

Fig. 1: Containerized modular plant from F³ 
Factory project (www.f3factory.com)

Methods

The intended work flow for the process integration of a benchtop 
43 MHz NMR spectrometer including acquisition of NMR signal 
(FID), automated data correction and evaluation by univariate and 
multivariate models is proposed according to Fig. 2.

Fig. 2:  Workflow for process integration of NMR sensor 

Recent work proofed the following principles

1 19 [1]
§ Online acquisition of quasi-simultaneous H and F spectra
§ Automated data pretreatment and evaluation methods    
§ Comparison to quantitative 500 MHz HR NMR spectroscopy
§ Indirect hard modeling works well to compensate overlapping 

 [2]   peaks and non-linear effects (line broadening, peak shifts)
§ Prediction of IHM can be improved by combined models 

1 19 [3]
  ( H and F)  

Model Reaction

FNB Aniline Li-HMDS NDPA HMDS
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Experimental
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The reaction was performed in a 25 mL glass reactor with thermal 
jackets for temperature control of the reaction mixture (Fig. 3). 
The Li-HMDS was dosed stepwise by using a glass syringe. 

Fig. 3: laboratory setup of first lithiation

Outlook
Construction of a “field” demonstrator (Fig. 5) 

for industrial applications 
§ Explosion proof housing for spectrometer,

   electronics and peripheral equipment
§ Model based spectra evaluation by

   embedded PC
§ Automation: programmable logic controller

   (PLC) 
§ Feedback to process control system Fig. 5: ATEX housing
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Eq. 1: Reaction sheme, FNB: 1- Fluoro- 2- nitrobenzene, Li-HMDS: Lithium 
bis(trimethylsilyl)amide, NDPA: 2-Nitrodiphenylamine

First spectra in the proton and fluorine domain were recorded 
-1online using a flowrate of 3.5 mL min  and a simple 5 mm 

polytetrafluoroethylene tube (PTFE) as a flow cell.

1Fig. 4: H spectra (4 scans) along reaction path (a) complete spectrum with dominat solvent 
19signals; (b) aromatic region; (c) F spectra (4 scans) along reaction path  
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