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Abstract 

Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate 

concrete structures, to measure thickness as well as to locate and characterize built-in components 

or inhomogeneities. Currently SAFT algorithms (Synthetic Aperture Focusing Technique) are 

mostly used for imaging. These algorithms are highly developed but have some limitations. For 

example it is not possible to image the lower boundary of built-in components like tendon ducts or 

vertical reflectors. 

We transferred a geophysical migration technique, the Reverse Time Migration (RTM), to non-

destructive testing in civil engineering to improve the imaging of complicated structures in 

concrete. By using the information from wide angle reflections as well as from waves reflected 

more than once there are fewer limitations compared to SAFT. As a drawback the required 

computing power is significantly higher as for the techniques currently used. 

First simulations for polyamide and concrete showed the potential for non-destructive testing. The 

simulations were followed by experiments at a polyamide specimen. Here, having acquired almost 

noise free measurement data to test the algorithm, we were able to determine shape and size of 

boreholes with a sufficient accuracy. After these successful tests we performed experiments at 

concrete members in the laboratory as well as at a reinforced foundation slab and at a bridge 

girder. We obtained information from the data by RTM (e. g. shape of tendon ducts), which was 

not accessible by traditional imaging. The imaging of the location and structure of the lower 

boundary of the concrete foundation slab could be improved. Furthermore vertical reflectors 

inside the slab could be imaged clearly and more flaws could be found. It has been shown that 

RTM is a step forward for ultrasonic testing in civil engineering.   
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1. Introduction 

Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. 

New sensors and data processing techniques have led to many new applications in quality 

assurance, structural investigation as well as health monitoring. The state of the art is 

described e.g. in [1], [2], [3]. Main targets in ultrasonic concrete inspection are thickness 

measurements, geometry determination, localization and characterization of tendon ducts as 

well as detection of quality issues (honeycombing, cracks, low concrete strength).  

More than 10 years ago, the application of ultrasonic echo methods to concrete inspection was 

limited, as only quite large, heavy transducers were available, which also required a coupling 

agent. Meanwhile lightweight point contact transducers for compressional and shear waves 

(25 - 150 kHz) have been developed, which can be coupled to a surface by light pressure 

without agents.  
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Data processing and imaging is currently mainly done by Synthetic Aperture Focusing 

Techniques (SAFT). In fact, the term SAFT is used for an entire family of imaging techniques 

in time and frequency domain. Some of them are closely related to seismic imaging 

techniques as Kirchhoff or Stolt migration. Recently, improvements of SAFT, namely phase 

evaluation to characterize reflectors, have been published [4]. However, the capability to 

image vertical, deep, or hidden reflectors is limited. For example the determination of the 

cross section of tendon ducts has not been possible until now. For this reason advanced 

geophysical imaging techniques as one way wave equation imaging were tested for their 

applicability [5]. In this paper we have focused on Reverse Time Migration (RTM) due to its 

known capability to image steep reflectors and to use more information than just direct 

reflections. Within the next sections we will introduce the imaging methods used and 

demonstrate the application of RTM to experimental ultrasonic echo data, which were 

collected on a polyamide and concrete specimen.  

2. Imaging Methods 

2.1 Synthetic Aperture Focusing Technique 

The Synthetic Aperture Focusing Technique (SAFT) algorithm we used in this work operates 

in the time domain and is a diffraction stack, similar to the Kirchhoff depth migration method 

from geophysics. Ultrasonic data is measured on the surface of the test object along a line or a 

2D area by using, in most applications, a zero offset geometry. This means that the receiving 

and transmitting transducer have a fixed distance of only a few centimetres.  

For the processing of the received ultrasonic signals the SAFT algorithm divides the 

subsurface into small image elements. For each element the two way travel time for a specific 

source-receiver configuration is calculated. The corresponding received signal at the 

calculated time is assigned to it in terms of amplitude and phase. For the final image the 

SAFT algorithm superimposes the results of all configurations, thus synthesizing an ultrasonic 

transducer of the size of the total aperture with the ability of variable focusing to each image 

element [6]. 

2.2 Reverse Time Migration 

The RTM method is a wavefield-continuation method in time and uses the full wave equation. 

It was introduced by Mc Mechan [7] and Baysal et al. [8] and is now a standard imaging 

technique in seismic industry. Two of the authors of this paper proved the applicability of 

RTM in non-destructive testing (NDT) to image synthetic ultrasonic data generated with 

polyamide and concrete-like models [9]. Beniwal and Ganguli [10] recently published an 

example for the usage of RTM on focused synthetic and experimental ultrasonic data.  

In contrast to SAFT, RTM uses the entire wavefield including multiple reflections. Thus, it is 

capable of handling multi-pathing and many other complex situations. Steeply dipping 

reflectors and reflectors in areas with strong velocity variations can be imaged by using RTM. 

A major  disadvantage of this technique is the extensive computing power and memory 

capacity required.  

We tested two different RTM implementations in this paper. Both algorithms use a numerical 

solution of the 2D acoustic wave equation. In our measurements we used horizontally 

polarized shear waves which, in the 2D case, do not convert to other types of waves at 

interfaces. Thus, using a 2D acoustic RTM code is kinematically correct. 

For RTM, two independent finite difference simulations are performed by using an estimated 

velocity/density model of the investigated medium followed by the application of an imaging 
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Parameter  

Model size 5200 x 1350 grid points 

Distance between grid poinzs 0.001 m 

Frequency Ricker wavelet  25 kHz 

Time step 1·10
-7

 s 

Recording time 0.0017 s 

Number of sources 32 

Number of receivers varies 

Distance between sources 0.15 m 

Distance between receivers 0.02 m 

Source position no. 1 0.02 m 

Receiver position no. 1 0.031 m 

Velocity and density concrete 2740 m/s and 2400 kg/m
3
 

Velocity and density sand soil 300 m/s and 1800 kg/m
3
 

Thickness of concrete layer 1.25 m 

 
Table 2. Parameters for RTM 

 

Prior to RTM we performed the following processing steps on the ultrasonic measurement 

data: muting electronic crosstalk, time interpolation and bandpass filtering (cut-off 

frequencies: 8 kHz/100 kHz). 

Figure 7 shows the resulting RTM image. The lower boundary of the foundation slab is 

reproduced at the correct depths but showing a low amplitude at the model boundaries. 

 

                      
 
Figure 7. RTM image of the line profile (1: slight dip of the lower boundary of the slab and 2: migration artifacts 

caused by direct waves) 

 

Furthmore, the structure of this boundary shows some roughness and a slight dip in the area 

of the vertical step ("1" in Figure 7). The pile head is reconstructed at the correct position. The 

position of the step is shifted by about 0.1m to the right compared to the construction 

drawings. The pile shaft and pile base could not be imaged. At x = 2.1 m and z = 0.3 m a 

circular reector is visible, caused by a metal bracket. The semi-circular artifacts at the source 

positions ("2" in Figure 7) are caused by direct waves. These arrivals have not been 

suppressed before the application of the migration scheme. 

For the next RTM image (Figure 8) we additionally applied AGC and trace normalization to 

the ultrasonic data. In addition, we stacked the images of shot points no. 7 to 15 only. The 

result clearly illustrates that the vertical edge of the step is reproduced at x = 2.85 m. 

Figure 9 illustrates the image obtained by performing the homogeneous 3D-SAFT 

reconstruction using the Intersaft software [18]. For the imaging process the migration 

velocity was set to 2740 m/s and we used the raw data processed with a band pass filter (cut-

off-frequencies: 8 kHz to 100 kHz).  Furthermore, we eliminated the direct waves and their 
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show noisy signals emanating from the piles. Reasons are, inter alia, the large amount of 

reinforcement, edge effects and multiple reflections at the pile shaft.  

6. Conclusions and Outlook 

The applicability of RTM to image ultrasonic echo data was evaluated based on measured 

data. Experimental data were recorded in two different setups: a homogenous, isotropic 

polyamide specimen and a realistic, inhomogeneous reinforced concrete foundation slab. Both 

tests yielded promising results and showed that RTM is a step forward for the ultrasonic echo 

technique used in NDT. 

With the measurements on a polyamide specimen it was possible to detect a drilled hole in its 

complete perimeter, i.e. also the bottom of the hole. This puts us in a position to measure the 

diameter of the hole and to perform a quantitative determination of the interior geometry of 

the specimen. Here, we achieved an accuracy of the diameter of 4% compared to the real 

value. This would not be possible with SAFT-algorithms. Furthermore, the imaging of the 

location and structure of the lower boundary of the investigated concrete slab could be 

improved with RTM compared to SAFT. By using RTM a vertical border was imaged clearly 

and more flaws were found.  

RTM artifacts have to be analyzed and eliminated. For this task alternatives to the cross-

correlation imaging condition as well as pre-imaging filtering techniques may be used. In 

addition, the algorithm should be expanded to three dimensions and the full elastic wave 

equation. The use of adopted source signals should improve the image quality as well. 

Another topic to be addressed is to how to account for the size of the ultrasonic arrays. The 

RTM codes used in this work assume point sources. Hence, the migration algorithm does not 

calculate the shot and receiver wavefields fully correctly. 
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