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Zusammenfassung

In der vorliegenden Arbeit wird die Ultraschallausbreitung in akustisch anisotropen, ho-
mogerien Werkstoffen mit stengelkristalliner Textur wie austenitischen Plattierungen und
SchweiBverbindungen, austenitischem Guf oder geschweifiten Komponenten aus austeni-
tischem Gufi modelliert.

Wie die in dieser Arbeit referierten metallurgischen Untersuchungen gezeigt haben, konnen
austenitisches SchweiBgut und stengelkristallin erstarrter austenitischer Gufl makrosko-
pisch als polykristallines Medium mit zylindersymmetrischer Textur behandelt werden,
also als Medium mit transversal isotroper Symmetrie, obwohl mikroskopisch die einzelnen
Stengelkristallite kubische Symmetrie aufweisen.

Die Schallausbreitung wird mit Hilfe des Ansatzes ebener Wellen modelliert. Obwohl
bei der Ultraschallpriifung gepulste und begrenzte Schallbiindel verwendet werden, liefert
dieser Ansatz die bei der Ultraschallpriifung beobachteten Wellenarten mit Geschwin-
digkeiten und Polarisationen, Schallbiindelablenkung und Reflexion und Brechung nach
Richtung und Amplitude, so daf} iiber das Modell der ebenen Welle hinausgehende Ansétze
- auch fiir die Behandlung der Ultraschallstreuung an den Korngrenzen - nicht in Betracht
gezogen werden mufiten.

Die Auswerteprogramme zur numerischen Bestimmung von Reflexions- und Brechungsko-
effizienten, Schallstrahlverlaufen und Schwéchungskoeffizienten wurden in FORTRAN 77
mit integrierter Graphikausgabe geschrieben.

Die Ergebnisse dieser Arbeit dienen als Vorgabe fiir Priifanweisungen und Regelwerke,
die besser als bisher an den Priifgegenstand angepafit sind.

Die Wellenmoden

In anisotropen Medien sind generell drei Wellenmoden maglich. Sie ergeben sich aus den
Losungen des mit Hilfe der Christoffel-Gleichung formulierten Eigenwertproblems mit
richtungsabhingigen Phasen- und Gruppengeschwindigkeiten und richtungsabhéangigen
orthonormalen Polarisationen. In Medien mit transversal isotroper Symmetrie sind dies
ein Wellenmode mit iiberwiegend longitudinalem Charakter, einer mit iiberwiegend trans-
versalem Charakter und ein rein transversaler Wellenmode. Deren Phasen- und Gruppen-
geschwindigkeiten mit daraus abgeleiteter Schallbiindelspreizung und deren Polarisatio-
nen als Funktion der Ausbreitungsrichtung fiir beliebige Ausbreitungsrichtungen in Me-
dien mit transversal isotroper Symmetrie wurden dreidimensional berechnet. Der durch
Eigenwert (Phasengeschwindigkeit) und Eigenvektor (Teilchenverschiebungsgeschwindig-
keit, Polarisation) bestimmte Charakter der Ultraschallwelle wird im anisotropen Medium
richtungsabhéngig. Daher bleiben z. B. bei den Transversalwellen die Eigenschaften ‘ho-
rizontal’ und ‘vertikal’ polarisiert generell nicht erhalten und werden nur noch in kristal-
lographisch ausgezeichneten Ausbreitungsrichtungen (z. B. bei Ausbreitung in der Merid-
ianebene) beobachtet.
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Reflexion und Brechung

Reflexions- und Brechungskoeflizienten werden als Energiekoeffizienten fiir die ungestérte
Grenzfliche, fiir die gestorte (rihaltige) Grenzflache und fiir die Grenzfliche mit zahfliis-
siger Zwischenschicht (Prifkopfankopplung) angegeben.

o Da die Polarisation der Ultraschallwelle richtungsabhéngig ist, folgt unmittelbar,
dafl an Grenzflichen zwischen anisotropen Medien im allgemeinen Fall in Reflex-
ion und Brechung immer alle drei Wellenmoden an einen einfallenden Wellenmode
ankoppeln, anders als an Grenzflachen zwischen isotropen Medien. Die Modenwand-
lung zwischen longitudinalen und transversalen Wellen liegt dabei meist unterhalb
von 10% der einfallenden Wellenenergie. Dies ist bei den beiden transversalen Wellen
anders. Abhangig von den Orientierungen der Stengelkristallite (Textur) beidseits
der Grenzflache kann die Modenwandlung 100% der einfallenden Wellenenergie er-
reichen. Die Energieinhalte der beiden erzeugten Transversalwellen verhalten sich
dabei wie die Komponenten der Polarisation der einfallenden Welle in Richtung der
Polarisationen der beiden erzeugten Wellen.

e Wegen der konkaven Anteile der inversen Normalenfliache der quasi-Transversalwelle
gibt es in einigen Positionen der Einschallebene mehrere Sektoren ‘erlaubter’ Wellen-
vektoren, so dafl durch eine einfallende (quasi- oder reine) transversale Welle zwei
quasi-Transversalwellen erzeugt werden konnen. Der Effekt kann in Reflexion und
Brechung auftreten. Die Energiekoeffizienten der erzeugten zweiten quasi - Trans-
versalwelle, die eine andere Phasengeschwindigkeit und eine andere Polarisation hat,
werden angegeben.

e Die Transparenz einer riffhaltigen Grenzfliche nimmt selbst bei einem RiBflichen-
anteil von 75% nicht wesentlich ab. Entsprechend steigt der Anteil reflektierter und
modengewandelter Energie der einfallenden Welle.

e Die Transparenz der viskoelastischen Fliissigkeitsschicht zwischen isotropem und
transversal isotropem Medium (Priifkopfankopplung) unterscheidet sich nicht we-
sentlich vom bekannten Fall der Fliissigkeitsankopplung von Priifképfen auf isotro-
pem Material. Die Steigerung der Viskositat der Fliissigkeitsschicht liefert auch fiir
Transversalwellen eine Durchléssigkeit von 50%, nicht viel weniger, als bei fester
Kopplung erzielt werden wiirde.

Der Effekt des Biindelversatzes wird fiir die Grenzflache zwischen fliissigem Medium und
transversal isotropem Festkorper berechnet. Abgesehen davon, dafl der Rayleigh-Winkel
und die Phasengeschwindigkeit von Rayleigh-Wellen von der Stengelkristallitorientierung
abhangen, ist der berechnete Biindelversatz und die Aufspaltung des reflektierten Biindels
qualitativ dhnlich dem, was fiir den isotropen Fall gefunden wird.

Schallstrahlverfolgung

Es wurde ein numerisches Verfahren entwickelt, das die dreidimensionale Berechnung des
Schallstrahlverlaufs (des Energieflusses) durch die Korngrenzen hindurch erlaubt. We-
gen der Abweichung des Energieflusses von der Richtung des Wellenvektors tritt der
Schallstrahl generell aus der Einschallebene heraus und mufl deshalb dreidimensional
dargestellt werden. Dabei wird ein Schallbiindel durch sieben Strahlen, die vom Schallein-
trittspunkt eines Priifkopfs mit jeweils um ein Grad versetztem Einschallwinkel ausgehen,
simuliert. Es ergibt sich, da§ die quasi-Longitudinalwelle und die reine Transversalwelle
weit weniger durch die Gefiigetextur beeinflufit werden als die quasi-Transversalwelle. Der
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Schallstrahlverlauf der wegen der konkaven Anteile der inversen Normalenflache unter
bestimmten Bedingungen entstehenden zweiten quasi-Transversalwelle wird ebenfalls an-
gegeben.

Ultraschallstreuung

Wie die in dieser Arbeit referierten metallurgischen Untersuchungen gezeigt haben, wird
die Ultraschallstreuung allein durch die Korngrenzen verursacht, die durch die aneinander-
grenzenden Stengelkristallite unterschiedlicher elastischer Eigenschaften entstehen. Zur
dreidimensionalen Berechnung der Ultraschallschwéchung durch Streuung in einem be-
liebig zur Einschallebene orientierten Schweifigut mit stengelkristalliner Textur wurde
von der vereinheitlichten Streutheorie nach Stanke und Kino in der Kellerschen Naherung
ausgegangen; diese wurde auf das transversal isotrope Medium mit beliebiger Orientierung
der Textur erweitert. Dabei wurde die im anisotropen Medium auftretende Polarisations-
abweichung - anders als in friitheren Arbeiten anderer Autoren - nicht vernachlassigt.

Die Streukoeflizienten werden fiir einen austenitischen CrNi-Stahl als Funktion der Aus-
breitungsrichtung und der Frequenz angegeben. Wahrend die Schwéchung der quasi-
Longitudinalwelle und der reinen Transversalwelle bei Ausbreitung in Stengelkristallitrich-
tung verschwindet und monoton anwéchst, wenn die Ausbreitungsrichtung sich bis auf 90°
gur Stengelkristallitrichtung verdndert, hat die Schwéchung der quasi-Transversalwelle
bei etwa 45° einen Maximalwert und verschwindet bei 0° und 90°. Bezogen auf gleiche
Wellenliinge ist die Schwichung der quasi-Transversalwelle geringer als die der beiden
anderen Wellenarten. Es ist also nicht die hohe Schwichung der quasi-Transversalwelle,
die sie fiir die Ultraschallpriifung austenitischer Schweifindhte ungeeignet macht, sondern
die im SchweiBgut entstehende hohe Biindelspreizung und Aufspaltung dieses Wellen-
typs. Die Schwichung aller drei Wellenarten nimmt mit zunehmendem Verhaltnis von
Wellenldnge zu KorngroBe monoton zu und wird im Bereich der stochastischen Streuung
frequenzunabhangig.

In Gegenwart von Ultraschallstreuung veréndert sich die Phasengeschwindigkeit (bis zu ~
7% bei 2 MHz und 100 pm Korngrofie). Ebenso wird Dispersion der Phasengeschwindigkeit
gefunden (bis zu ~ 6% im Bereich bis 5 MHz bei 100 um Korngréfie). Auch die Po-
larisationsabweichung verindert sich. Wahrend die Polarisationsabweichung der reinen
Transversalwelle jedoch unbeeinfluft immer senkrecht zum Wellenvektor bleibt, ergibt
sich fiir quasi-Longitudinalwelle und quasi-Transversalwelle eine Verdnderung der Polari-
sationsabweichung von bis zu 2°.
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Chapter 1

Introduction: Status of research and
technical development

1.1 Structure of austenitic weld metal

Austenitic welds though comprising a variety of weld processes and geometries with weld
thicknesses ranging from 3 mm to over 100 mm, all exhibit a structural macroscopic
texture, which makes the elastic properties to be direction dependent. This physical
property of materials is referred to as ’anisotropy’.

The weld metal macro- and microstructure highly depends on the weld process with its
specific conditions of solidification and on chemical composition which, moreover, deter-
mines metallurgical characteristics of different structural elements of the weld.

Due to recent advances in mathematical modeling of many metallurgical processes such
as solidification phenomena, e. g. Kurz (1992 [20]), and weld phenomena, e. g. Cerjak
et al. (1993-1997 [11]), modeling of the evolution of the grain structure with exact grain
shape in austenitic stainless steel weld metal has been possible by statistical and computer
simulation techniques based upon Monte-Carlo, FEM based cellular automaton and spline
mathematics approaches. The results of simulation and actual micrographs agree fairly
well, provided the welding input parameters and sufficient knowledge on mechanics of
solidification in the weld pool are available.

Grain growth simulation software is available, e. g. Dilthey et al. (1996 [57], 1997 [58]),
Pavlik et al. (1995 [149]), and Gandin et al. (1996 [69]), which works on a similar nu-
merical method as the former, viz. CAFE (Cellular Automaton Finite Element) method.
However, up to now there is no known interface available to integrate with the software
dealing with ultrasound propagation in such simulated structures.

By ’Orientation Imaging Microscopy’ with the Scanning Electron Microscope (Adams et
al. 1993 [39], Field et al. 1996 [65]), the microstructure is mapped directly. For ultrasound
propagation modeling purposes the grain orientation angles are stored in an array and
are utilized to determine the local elastic constants in the weld metal.

On the other hand, anisotropy of polycrystalline materials needs only to be described in
macroscopic terms which result from averaging the microscopic anisotropy of the single
grains. This is the case especially for materials exhibiting a texture, induced during
manufacturing processes such as rolling, or welding. To study ultrasound propagation
in textured materials only the knowledge of the orientation distribution function of the
grains 1s necessary. The orientation distribution function can be derived from

e texture measurements, e. g. by X-ray diffraction methods, as described e. g. by
Bunge (1983 [10]), Roe (1964 [152, 153]), Yalda-Mooshabad (1995 [184])

1



2 CHAPTER 1. STATUS OF RESEARCH AND TECHNICAL DEVELOPMENT

e by observation of micrographs and developing a mathematical relation describing
the orientation distribution. Ogilvy (1985 [139], 1986 [140], 1990 [146]) for her
ultrasound ray-tracing model developed such an empirical relation to determine the
local grain orientation in welds. Though this model does not consider any welding
input parameters and weld pool data, the results using this model agree fairly well
with experimental observations.

In order to model ultrasound propagation and scattering in austenitic textured weld metal
informations on the following items are needed:

1. Overall weld metal texture acting on ultrasound propagation,

2. Structural properties of the weld metal, viz. of the columnar grains and their
boundaries,

3. Metallurgical structural elements, e. g. segregations, poly-phases (e. g. delta fer-
rite), which also might affect propagational and scattering characteristics of ultra-
sound.

For this purpose, both, structural and metallurgical properties, of some most important
weld metal grades: Cr-Ni steels - austenitic and fully austenitic steels -, nickel-based
alloys, and ferritic-austenitic Duplex-steel are compiled. These weld metal grades mainly
differ by their delta-ferrite content, which is the second phase besides the austenitic phase.

The investigations to be reported here have been performed on these weld metal grades
by metallography (Bauer 1999 [46]), by X-ray diffraction (Nolze 1999a [131]), by back-
scattered electron diffraction patterns measured at the scanning electron microscope
(Nolze 1999b [132]), and by scanning acoustic microscopy (Haubold 1999 [74]).

1.1.1 Metallography
1.1.1.1 Macrostructure

According to the number of beads per layer main directions of epitaxial grain growth are
generated extending from weld root and weld fusion face up to the weld crown, figs. 1.1 -
1.3,

The higher the content of a second phase in the weld metal the lesser is the columnar
grain texture: increase in the ferrite-content yields instead a Widmannstétten structure as
shown in fig. 1.4 in the case of CrNi 19 9 weld metal. Due to reheating during welding of
the bead above the dendritic columnar grain structure of the re-heat affected zone (HAZ)
of a bead partially is transformed to equiaxed grain structure. Consequently columnar
grains no longer grow epitaxially through the bead boundaries. Macroscopically this weld
metal structure then appears to be isotropic, because the columnar grains do not extend
out of a bead because of the interrupting HAZs of the beads.

The weld metal of a Duplex steel (figs. 1.5 and 1.6) is characterised by primary ferritic
single-phase solidification. The austenitic phase is generated only after solidification of
the weld metal during cooling down as a second phase within the ferritic matrix.

The precipitation of the austenite takes place at the grain boundaries in the form of
crossing laths. The morphology of the austenitic phase is the acicular Widmannstatten
micro-structure. The columnar structure extending over several beads observed in the
austenitic weld metals is not present in this weld metal.
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Figure 1.1:
Columnar
grain
configuration
of Nickel-based
weld metal
Nicrofer 6025
HT, cross
section,
submerged arc
welding (root:
TIG) (Bauer
1999 [46])

Figure 1.2:
Columnar grain
configuration of
austenitic weld metal
X 6 CrNi 18 11 with
delta ferrite (FN =
0), cross section;
Weld data:
submerged arc
welding, wire
diameter 3 mm,
V-butt weld,
thickness 45 mm,
angle of bevel 1(P
(Bauer 1999 [46])
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Figure 1.3:

X 2 CrN:i 19 9; 6-ferrite 12 - 20%;
cross section; Weld data: root
tungsten inert gas welded (rod
diameter 1,6 mm), filler layers
submerged arc welded (wire diameter 4
mm), V-butt weld thickness 76 mm
(Bauer 1999 [16])

Figure 1.4:

X 2 CrNi 19 9;
d-ferrite 12 - 20%;
longitudinal section in
the welding direction;
transition zone
between the root and
the following bead
above; same weld as
in fig. 1.8 (Bauer
1999 [46])
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Figure 1.5:

High alloy Duplex
weld; cross section;
base metal: ferrite
and austenite

(]~ )-solid solution;
weld metal:
Widmannstatten
structure; Weld data:
tungsten inert gas
welded, circum-
ferential V-butt weld
thickness 35 mm,
included angle 75°
(Bauer 1999 [46])

Figure 1.6:

Duplex weld metal;
cross section; detail at
the fusion face; base
metal: ferrite and
austenite (o /7 )-solid
solution; weld metal:
Widmannstdtten
structure; same weld
as in fig. 1.5 (Bauer

1999 [46])



6 CHAPTER 1. STATUS OF RESEARCH AND TECHNICAL DEVELOPMENT

1.1.1.2 Structural elements

The fully austenitic nickel based weld metal NiCr 19 Nb (Alloy 182) exhibits dendritic
and residual interdendritic melting areas, figs. 1.7 and 1.8.

Figure 1.7:

Nickel based alloy
weld metal NiCr 19
Nb (Alloy 182)
(WSt.-Nr. 2.4648),
cross section;
dendritic
microstructure also at
the bead boundaries,
interdendritic
segregation without
precipitations; Weld
data: manual metal
arc welded, V-butt
weld thickness 30
mm, included angle
90°, parent material
WSt.-Nr. 1.0488
(Bauer 1999 [16])

Figure 1.8:
Enlargement of

fig. 1.7: Transition
from coarse to fine
dendritic structure at
the bead boundary,
obviously due to
reheating during
welding of the bead
above (Bauer 1999

[46])

No carbides or other types of precipitations or intermetallic phases are observed. There-
fore, it has to be expected, that ultrasound scattering in this weld metal type is due to
the columnar grains. Dendritic grains grow simply from the fusion line to the weld crown.
According to the number of beads per layer main directions of epitaxial grain growth are
also generated in this case. The structure is fan-like.

Micro-geometrical features such as distances of dendrites within a grain have been esti-
mated to be maximum 25 pym. Lengths of dendritic grains are observed up to ~ 15 mm.
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However, cross-sections of the grains are irregular and their diameter varies in the range
from 20 pgm to 3 mm.

A nickel based alloy (Nicrofer) having a high carbon content consequently exhibits in-
creased concentration of carbide precipitations in the fully austenitic weld metal matrix
especially in the re-heat affected zones of the beads, figs. 1.9 - 1.11. The carbides

[k

Figure 1.9:

Nickel based alloy
weld metal 'Nicrofer’
6025 HT-alloy 602
CA (WSt.-Nr.
2.4683), cross section;
Weld data: root and
crown tungsten inert
gas welded, filler
layers submerged arc
welded, V-butt weld
thickness 20 mm,
included angle 60°
(Bauer 1999 [{6])

Figure 1.10:
Enlargement of

fig. 1.9: carbide
precipitations at the
bead boundaries and
change of growth
direction at the bead
boundary without
change of
crystallographic
orientation (Bauer

1999 [46])

precipitate along the dendritic structure which can be better observed by this. Further-
more, reheating of beads during welding subsequent layers generate a re-heat affected
zone (HAZ) at the bead boundary exhibiting an even more increased content of carbide
precipitations.

Austenitic weld metal X 6 CrNi 18 11 with delta ferrite (FN = 0) typically consists of an
austenitic matrix with the delta ferrite included. Delta ferrite is distributed irregularly
with reduced concentration at weld root and fusion line, figs. 1.12 and 1.13.

Epitaxial grain growth is observed at the fusion line (fig. 1.13) where the grain structure
of the base metal determines the columnar grain structure of the weld metal comprising
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Figure 1.11:
Enlargement of

fig. 1.9: bead
boundary with carbide
precipitations (black)
in the lower bead
(Bauer 1999 [{6])

Figure 1.12:
Austenitic weld metal
X 6 CrNi 18 11 with
delta ferrite (FN =
0), cross section;
small area of fully
austenitic weld metal
near the fusion line,
austenitic-ferritic
structure in the bulk;
Weld data: submerged
arc welding, wire
diameter 3 mm,
V-butt weld thickness
45 mm, angle of bevel
10° (Bauer 1999 [46])

statistically all orientations. However, during solidification only those grains are selected
at the expense of all others, whose crystallographic axis has the direction perpendicular
to the isotherms of solidification.

Columnar grain growth behaviour (direction and grain sizes) of austenitic weld metal is
not uniform throughout the weld, figs. 1.14 and 1.15. Some grains start at the fusion
line and grow separately up to the weld face, other grains finish their growth owing to
selective grain growth or lead into main branches of grain growth. These main crystal
growth directions vary periodically and may differ by 30° within a bead and sometimes
even more. Preferred growth directions of columnar grains at boundaries of laterally
adjacent beads may differ by 90°. Average values of columnar grain length up to 8 mm
and columnar grain width up to 2 mm have been measured.

Grains of adjacent beads are intergrown in a defined manner in most cases. Hereby all
three crystallographic directions are continued. However, dendritic configuration may be
changed without changing the crystallographic orientation. Depending on the direction of
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Figure 1.13:
Enlargement of

fig. 1.12: primary
austenitic
solidification at the
fusion line, primary
ferritic solidification
with delta ferrite in
the bulk (Bauer 1999

[46])

Figure 1.14:

Austenitic weld metal
X 6 CrNt 18 11 with
delta ferrite (FN =

0), cross section;

same weld as in

fig. 1.12 (Bauer 1999
[46])

the maximum temperature gradient, the rate of crystallisation of the subsidiary branches
may increase and one of these directions may become the main branch (preferred growth
direction). This also can be observed in nickel based weld metal, fig. 1.10, at the bead
boundary.

Ultrasound propagation does not get influenced by such changes of dendritic configuration
at the bead boundaries, because the crystallographic directions @y, d@» and ds remain
unchanged. So, the bead boundaries are not detected by ultrasound, because they do not
constitute an interface and it is only the weld texture, that determines the characteristics
of ultrasound propagation.

Obviously due to higher cooling speed at the bottom of a bead small dendrite diameters
are observed at the bottom of each bead going over to large dendrite diameters in the
upper part of the bead. However, the diameter of the columnar grains is scarcely affected
by this, and accordingly the epitaxial grain growth remains unaffected, figs. 1.15 and 1.16.
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Figure 1.15:
Enlargement of

fig. 1.14: growth
directions of
columnar grains at
boundaries of laterally
adjacent beads can
differ by 9(°; small
dendrite diameters at
the bottom of each
bead and large
dendrite diameters at
the top of the bead
(Bauer 1999 [46])

Figure 1.16:

Enlarged section
perpendicular to the
plane of fig. 1.14:
Cross section through
the dendrites: large
diameter in the upper
part of a bead (left
hand) and small
diameter in the
bottom of the
subsequent bead above
(right hand) (Bauer
1999 [16])

The longitudinal section (fig. 1.17) through the upper part of a bead shows a grain bound-
ary between adjacent columnar grains, which is generated by their different dendrite orien-
tations in the section plane and at an angle to the section plane. As observed in figs. 1.16
and 1.17 the columnar grain is made up of dendrites and residual interdendritic melting
areas exhibiting a distinct segregation structure.

Electron-probe microanalysis performed in line-scans (100um scan length, 2um step size,
2pm diameter of the measuring points) at the metallographic specimen of fig. 1.16 revealed
the following (Bauer 1999 [46]): Deltaferrit is contained in the core of the dendrites
appearing as white in the figures. It is surrounded by Cr-enriched (~ +3,5%) and Ni-
reduced (= —3,5%) phase appearing blue, Cr supporting the delta-ferrite formation. The
Cr-enriched phase is surrounded by Ni-enriched (&~ +3,5%) phase appearing yellow, Ni
supporting the austenite formation.

The residual interdendritic melting areas appearing yellow have reduced Cr-content (=
—1%) and enlarged (= +1%) Ni-content, all figures being related to the average concen-
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Figure 1.17:
Longitudinal section
through the dendrites
within two different
columnar grains and
grain boundary
between adjacent
columnar grains,
which is generated by
their different
dendrite orientations;
weld metal X 6 CrNi
18 11 as in fig. 1.12
(Baver 1999 [46])

trations of these alloying elements.

The diameter of the dendrites (defined to be the blue area) is varying between 3 — 4um
at the bead bottom and 30 — 40um in the upper part of the bead.

1.1.2 Crystallography

The crystallographic properties of the columnar grains in the weld metal, viz. the crys-
tallographic directions of the dendrites and residual interdendritic melting areas within
the grain and also the differences between orientations of adjacent grains have been inves-
tigated by X-ray diffraction at a 4-circle-diffractometer (Nolze 1999a [131]) and by back-
scatter electron diffraction (EBSD) at the scanning electron microscope (Nolze 1999b
[132]). Results are reported for X 6 CrNi 18 11 weld metal.

1.1.2.1 X-ray diffraction

To assess the crystal orientation by X-ray diffraction a large grain has been chosen as
displayed in fig. 1.17. This large grain consists of few sub-grains, which have slightly
different orientations. This can be concluded from fig. 1.18, which shows the spatial
intensity distribution of the 220 reflection. Each of the four intensity maxima splits into
few separate peaks due to slightly different oriented diffracting planes. For the lattice
plane {110} four peaks (one in each intensity maximum) correspond to a single grain. It
is evident that the crystal orientation within the grain is uniform but the few adjacent
sub-grains recorded by the X-ray beam have slightly different orientations.

The results are summarized as follows:

1. Within a grain bundles of dendrites are observed. Single dendrites of a such bundle
are mutually skewed by maximum of 1°. These differences could be caused by
segregations, or increased occurrence of crystal imperfections.

2. The bundles of dendrites observed within a grain can be mutually skewed by upto
4°. These differences in growth direction depend on the length of the bundles.
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Figure 1.18:  Pole figure from the 220 reflection as a stereographic projection with 4 dis-
tinct intensity mazima gained at one measuring point of a grain extending through several
beads. The pole figure shows increased intensity for well defined orientations of the sample.
Distribution and arrangement of the intensity mazima allow to separate four single grains.
Measurement was performed without masking with an aperturing lead foil. T, herefore only
one orientation can be attributed to the grain under investigation. The arrangement at
the {011} lattice planes (using 220 reflections) demonstrate, that several nearly similar
oriented single grains are existing (Nolze 1999a [1581]).

3. Within the grain both the dendrites and the residual interdendritic melting areas can
be characterised by the same crystallographic basis vectors @, @, and ;. Especially
the crystallographic orientations of the main elongation and the embranchments of
a dendrite are identical. The observed small deviations of the growth direction (ap-
proximately 1° between neighbouring dendrites and 4° between neighbouring bun-
dles) are supposed to play insignificant role during ultrasonic scattering, as different
densities of dendrite and interdendritic material are supposed be insignificant.

4. Attempts have been made to determine the orientation distribution of the three basis
vectors in adjacent grains within a bead. At 15 points the orientations have been
measured and the basis vectors were estimated. However, it has not been possible
to allocate the intensity maxima to certain orientations exactly. This uncertainty
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of allocation increases with increase in number of grains in the measuring area.
It must be interpreted therefore that only few grains within the bead are equally
oriented. No uniform distribution of crystallographic axes within a bead could be
found throughout.

In fact, there seems to be no mechanism which explains the orientation distribution
of the crystallographic basis vectors @; and ds (the main dendritic growth direction
being defined as d@s) to become anisotropic. Rather it is more probable that during
solidification @; and @, are distributed randomly.

1.1.2.2 Electron diffraction

To assess the crystal orientation at the X 6 CrNi 18 11 specimens in the range of the
dendrite dimensions electron diffraction methods are suitable allowing in combination
with a scanning electron microscope exact localisation of the measuring point. By us-
ing back-scatter electron diffraction (EBSD) crystallographic orientation deviations of
approximately 0,5° may be determined.

Following facts have been determined and resp. confirmed:

1. Orientation of dendrites in grains of austenitic weld metal X 6 CrNi 18 11 has been
determined. X-ray diffraction measurements have shown that within the grain both
the dendrites and the residual interdendritic melting areas can be characterised by
the same crystallographic basis vectors. It could be confirmed that the dendrites
within a grain only exhibit insignificant variations (up to 4°) of dendrite orientation.
Furthermore there have been no indications that the variation of the dendritic axis
[001] is larger than that of both orthogonal basis vectors [100] and [010]. These
properties can therefore be used to define a columnar grain as being an area of
constant dendritic orientation.

2. The observation that at the boundary of adjacent beads a subsidiary branch of the
dendrite may become the main branch without changing the crystallographic orien-
tation and vice versa could be confirmed (fusion line epitaxy at bead boundaries).
The effect depends on the temperature gradient. However, the crystal growth re-
mains epitaxial.

3. Areas observed at the transition between beads have the same orientation as the
bead volume underneath and transfer this orientation to the dendrites growing epi-
taxially above (fusion line epitaxy at bead boundaries).

1.1.3 Acoustic Microscopy

The same polished sections of the a. m. polycrystalline austenitic weld specimens have
been used in metallography and in acoustic microscopy.

Acoustic microscopy reveals the grain structure in so far, as it is acoustically relevant.
Since propagation of ultrasonic waves depend on elastic properties, and since the orien-
tation of the crystal elastic tensor differs from one grain to the next, different grains give
rise to different contrast. In acoustic microscopy surface waves at frequencies between
100 MHz and 1 GHz are used to investigate propagation on the grains and the effect of
grain boundaries. Differences in acoustic impedances between different grains result in
different SAW-velocities (transversal surface waves, sub-surface longitudinal wave).

By comparison of the findings of acoustic microscopy, with findings of metallography, X-
ray diffraction and scanning electron microscopy ultrasonically relevant inhomogeneities,
which give rise or contribute to ultrasonic scattering, can be identified.
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Austenitic CrNi 18 11 and CrNi 19 9 steels and the Nickel based weld metal exhibit
characteristic elongated grains under the acoustic microscope (discriminated by different
grey tints according to different SAW-velocities') which generate the texture, figs. 1.19
to 1.21.

Figure 1.19:

Acoustic micrograph of a X 6 CrNi
18 11 weld metal cross section,
Imm x Ilmm, 1 GHz (Haubold 1999

[74]

Figure 1.20:

Acoustic micrograph of a X 2 CriNi
19 9 weld metal cross section,

Imm x lmm, 1 GHz (Haubold 1999

[74])

The details - presumably grain boundary precipitations, foreign phases and micro-in-
clusions - which can be observed at 1 GHz (figs. 1.19 to 1.21) and which are mainly
arranged according to the general texture of the columnar grains fade away with decreasing
frequency (100 MHz), (figs. 1.22 to 1.24). It is therefore concluded that the columnar grain

1One has to keep in mind, that brightness in an acoustic micrograph is not correlated with absolute
values of sound velocity, only with sound velocity differences.
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Figure 1.21:

Acoustic micrograph of Nickel based
alloy NiCr 19 Nb weld metal,
transverse weld section, lmm X 1lmm,
1 GHz (Haubold 1999 [74])

Fignre 1.22:

Acoustic micrograph of a X 6 CriNi
18 11 weld metal cross seclion,
Imm x Imm, as in fig. 1.19 but

© 100 MHz (Haubold 1999 [74])

structure is the predominant feature of austenitic and Nickel-based weld metal, which
determines sound propagation also at lower frequencies. There has been no evidence
of the effect of other inhomogeneities of the weld structure, e. g. different degrees of
segregations within grains and beads, on ultrasound propagation and scattering.

In contrast to this, the Duplex steel by acoustic microscopy does not reveal such a tex-

ture, although the grain structure is visible, similar to what is observed in metallography
(figs. 1.5 and 1.6), fig. 1.25.

The velocities measured by the V(z)-curves in the weld as well as in the base metal are
not very different. This suggests that the acoustic properties of base and weld metal
are not very different. Therefore, there is no predominant feature, which determines
sound propagation. Consequently, ultrasound attenuation due to macroscopic anisotropy
and scattering is assumed to be low, which indeed has been measured at Duplex steel
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Figure 1.23:

Acoustic micrograph of a X 2 CrNi

19 9 weld metal cross section, with
increased Ni-content, Imm x 1lmm, as
in fig. 1.20 but 100 MHz (Haubold
1999 [74])

Figure 1.24:

Acoustic micrograph of Nickel based
alloy NiCr 19 Nb weld metal,
transverse weld section, 1mm X 1mm,
as in fig. 1.21 but 100 MHz (Haubold
1999 [74])

specimens. Furthermore, no directional dependence of ultrasonic attenuation could be
measured (Ernst 1999 [60]-[62]).
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Figure 1.25:

Acoustic micrograph of the
ferritic-austenitic Duplex steel weld
metal, transverse section with the
fusion line, lmm x 1mm, 1 GHz,
contrast increased by etching (Haubold

1999 [74])
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1.1.4 Conclusions

The results of the investigations on the structure of austenitic weld metal can be condensed
as follows:

1. The columnar grain structure is the predominant feature of austenitic and Nickel-
based weld metal determining both the macroscopic texture and the microstructure.
Columnar grain growth epitaxially extends from weld root and weld fusion face up
to the weld crown. Lengths of dendritic grains are observed up to = 15 mm. Cross-
sections of the grains are irregular and their diameter varies in the range from 20
pm to 3 mm.

2. Within the columnar grain both the dendrites and the residual interdendritic melting
areas can be characterised by the same crystallographic basis vectors d;, @, and as.
Whereas the main dendritic growth direction @; of all columnar grains is anisotropic
this is not the case for the other two orthogonal basis vectors of the columnar grains.
Rather, during solidification the orientations of the basis vectors d@; and @, of the
columnar grains are distributed randomly.

3. All weld metal phases, foreign phases included, are aligned according to the general
texture of the columnar grains. Therefore they seem to enhance the effect of tex-
ture on ultrasound propagation. However, their effect on ultrasound propagation
evanesces at lower frequencies.

4. The weld metal of the ferritic-austenitic Duplex steel does not exhibit a predominant
feature, which determines sound propagation. Accordingly ultrasound attenuation
due to macroscopic anisotropy and scattering is observed to be low.

In order to model ultrasound propagation and scattering in austenitic weld metal also
the weld metal microstructure needs to be modelled taking into account the following
conclusions from the structural investigations:

e The weld metal is polycrystalline. The columnar grains consist of bundles of den-
drites and residual interdendritic melting areas with uniform crystallographic orien-
tation. Lengths of columnar grains are observed up to &2 15 mm. Cross-sections of
the grains are irregular and their diameter varies in the range from 20 pm to 3 mm.

e The grain boundaries are generated by the change of the crystallographic orienta-
tions of adjacent columnar grains. Other metallurgical structural elements, e. g.
segregations, poly-phases (e. g. delta ferrite), scarcely contribute to the propaga-
tional and scattering characteristics of ultrasound.

o Inspite of the fact, that the individual columnar grains have cubic symmetry, due to
the random orientation distribution of the basis vectors @; and @, of the columnar
grains the weld metal as a whole exhibits cylinder-symmetrical texture and therefore
can be treated as a monocrystalline medium with transverse isotropic symmetry.
This class of symmetry corresponds to four independent elastic constants. They
can be obtained as follows:

2w
i N . . ¢
Cmnop = f Qg Qng Aok Al Oijkg (1.1)
0

where the superscript ¢ denotes transverse isotropy and c¢ denotes cubic symmetry.
a(¢) is a direction cosine matrix and ¢ is the angle subtended between the new and
old = axes after rotating the matrix around the z axis.
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where the superscript ¢ denotes transverse isotropy and ¢ denotes cubic symmetry.
a(@) is a direction cosine matrix and ¢ is the angle subtended between the new and
old z axes after rotating the matrix around the z axis.

For determining physical properties such as phase and group velocities, and particle
displacement polarization, the assumption of transverse isotropy is sufficient and
agrees fairly well with the experimental values.

However, as a matter of fact, attenuation by grain boundary scattering is not com-
prised. This needs the extension of the model by the introduction of a spatial
autocorrelation function to describe the geometry of the grains (Stanke 1984 [178])
(s. chapter 4).

e For ray tracing purposes the texture configuration throughout individual welds has
to be fitted by empirical mathematical relations.

1.2 Modelling of ultrasound propagation in austeni-
tic weld metal

Modelling elastic wave propagation in anisotropic materials different approaches are in
use:

e numerical,
e approximate,

e analytical.

1.2.1 Numerical approaches

Finite element and elastodynamic finite integration techniques are the most frequently
used methods to solve elastodynamic propagation problems.

The finite element method (FEM) is mainly applied to a wide variety of geometrical con-
ditions in isotropic materials (Minachi a.0. 1993 [106]). Hereby the physical problem is
not solved directly as differential equation but indirectly by variation of a perturbation
integral using Newton’s and Hooke’s laws and the energy conservation principle. It in-
volves breaking the complex geometry of the continuum into a mesh of “finite elements”.
Fineness of the mesh plays a decisive role on the precision of the results, especially in re-
gions of large stress/strain gradients. Recently a variation of this technique, the so called
P-version FEM, where the polynomial degree of the elements can be varied over a wide
range, has been developed. The accuracy of the results are controlled not only by the
mesh size but also by the degree of the polynomial. This technique uses fewer elements
compared to the traditional FEM (Issa et al. 1992 [92]).

The elastodynamic finite integration technique (EFIT) addresses the problem of elastic
wave propagation by discretizing the integral equations of linear elastodynamics in space
and time (Fellinger 1991 & 95 [63, 64], Marklein 1995 & 97 [104, 105]). The propagation
of an arbitrary elastic perturbation is traced by applying alternately the elastodynamic
field equations to successive space and time steps. This method has been applied to the
study of wave propagation in dissipative and homogeneous anisotropic media.

However, the following inherent limitations of these methods can not be overlooked:



20 CHAPTER 1. STATUS OF RESEARCH AND TECHNICAL DEVELOPMENT

e The methods are computationally intensive requiring often multiprocessor/parallel
computers. In many applications limitation to the two dimensional case due to the
requirement of large computer CPU time is necessary. Analysis of the fully three
dimensional anisotropic solid presently is not possible.

e [rrors may be introduced, which are associated with the artificial model boundaries
necessary for solving a spatially infinite problem on a finite grid.

e Numerical dispersion may occur.

1.2.2 Approximate approaches

Elastodynamic propagation problems are solved on the basis of the Huygens’ principle or
by series development solution of plane waves owing an analytical solution.

The generalized point source synthesis (Spies 1992-96 [171]-[176]) using the concept of
Gaussian wave packets and the synthesis of elastic wave fields by plane waves is based
on the Huygens’ principle. The method being partly analytical and partly numerical
allows calculation of sound propagation in homogeneous anisotropic media much faster
than would be possible with the elastodynamic ansatz [174].

The pulse-integration-method (PIM) also uses the Huygens principle taking into account
the point directional effect of the Huygens point source (Wiistenberg 1974 [183]). The
method applies to isotropic as well as to anisotropic media (Boehm 1992-94 [49]-[51],
Hesselmann 1993 & 94 [77, 78]). Special algorithms have been developed for sound prop-
agation in specimens with curved surfaces which have to be introduced into the modelling
(Schumm 1997 [168]).

Forward ray tracing (Furukawa 1995 [67, 68]) by modeling the soundfield as a bundle of
rays principally also is synthesizing the beam as a series development solution of plane
waves.

1.2.3 Analytical approaches

To achieve an analytical solution of the elastodynamic wave equation the ansatz of a time
harmonic plane wave must be chosen. The approach has been discussed thoroughly in
the textbooks e. g. Federov 1968 [15], Musgrave 1970 [23], Payton 1983 [27], Rosenbaum
1988 [29], Auld 1990 [3], Kline 1992 [18], Neumann 1995 [25]. Experimental evidence
proves that this assumption describes the following features of ultrasound propagation in
anisotropic media correctly (e. g. Neumann et al. 1995 & 99 [25, 127], Gripp 1999 [70]):

e the wave modes propagating

- their (phase- and group-) velocities and

- polarisations
e the beam skewing
and, in case of boundaries, direction (Snells’ law) and amplitude of
e reflected,
e refracted and

e mode converted
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wave modes. Except for diffraction and aperture effects it turns out that the other ap-
proaches do not yield any progress beyond these results.

Some details on the status of research and development which will be starting points of
the present work are reported as follows:

1.2.3.1 Reflection and refraction

Ultrasonic inspection purposes require to study the wave interaction at various types of
interfaces, viz. at the

e perfect interface, e. g. with rigid contact at the smooth solid-solid interface,

e imperfect interface, e. g. the interface being rough, possibly containing a certain
defect distribution,

1.2.3.1.1 Perfect interfaces: Reflection and transmission phenomena discussed in
the a. m. textbooks mostly are restricted to the isotropic case.

The reflection and transmission phenomena at interfaces between two anisotropic mate-
rials are more complicated due to the quasi nature of waves and beam skewing, which
means that - unlike in isotropic materials - the energy flow direction generally does not
coincide with the direction of wave propagation. Further, all the three wave modes couple
at the interface in the case of anisotropic materials. This topics have been treated by
Rokhlin et al. 1986-91 [155]-[158], Munikoti et al. 1991-98 [107]-[117], Neumann et al.
1995-99 [25], [123]-[127].

The problem of ultrasound propagation in multilayered systems, which involves multiple
scattering of waves at interfaces, is addressed by Brekhovskikh 1980-92, [7, 8, 9], Ewing
1957 [14], Nayfeh 1995 [24].

1.2.3.1.2 Imperfect interfaces: In practice not all interfaces are smooth and the
contact is not always 100%, though this assumption is good enough when the wave length
of the ultrasound is much greater compared to the RMS value of the surface roughness
or the dimension of the defect. Nevertheless, the effects of surface roughness and defect
distribution on the propagational characteristics of the sound wave influence reflection and
transmission at interfaces, as at the austenitic weld fusion face, at the cladding interface,
and at columnar grain boundaries, as well as between ultrasonic probe and cladding
surface with a liquid coupling layer inbetween.

The theory of wave scattering from rough surfaces is treated thoroughly by Ogilvy 1991
[26].

For the isotropic case various aspects of an imperfect interface on ultrasound propagation

are discussed in a special issue of the Journal of Nondestructive Evaluation [28], by Huang
et al. 1992&95 [88, 89] and by Rokhlin et al. 1980-93 [154] - [164].

In the spring model based on the quasi static approximation suggested by Baik et al. 1984
[45] the interface is assumed to consist of springs, which are used to join the two semi
spaces. When a traction force is applied to this system, the total displacement is defined as
the sum of the displacement in the absence of a discontinuity (imperfection) and an extra
local deformation in the vicinity of the interface. At sufficiently long wavelengths, the
interface is assumed to be represented by the combination of distributed spring and mass
to correctly reproduce the static deformation. The interfacial stiffness can be evaluated
from the solutions for the extra local displacement which are reported in the literature
for a variety of interfacial conditions (Tada 1973 [33]). The boundary conditions for a
perfect interface are continuity of particle displacement velocity and traction force across
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the interface. These conditions are modified by incorporating the spring model. The
model is valid as long as the wavelength is much larger than the interfacial imperfection.

The interface with distribution of pores and inclusions has been considered by Margetan
1988 [101]. The effect of frequency on reflection and transmission coefficients is discussed
and the results are compared with experimental values.

However, for other types of defects, which are of interest to NDE, suitable static defor-
mation solutions are not available. An example for this is the case of transverse wave
reflection from an interface containing a distribution of oblate spheroidal inclusions.
Ultrasonic reflection from imperfect interfaces is analyzed in the time domain in the
presence of defects by Rose et al. 1992 [165]. The case of an anisotropic layer sandwiched
between two anisotropic solids is analyzed by Huang et al. 1992 [88]. First and second
order asymptotic boundary conditions are introduced to model this case.

1.2.3.2 The bounded beam

The ultrasound being emitted by a finite sized transducer a bounded beam is generated.
The concept of the bounded beam can be easily understood as a summation of an infinite
number of plane waves. This concept allows understanding of the Schoch effect (1952
[166]), which means that at an interface between water and solid the ultrasound beam
gets displaced at incidence angles around the Rayleigh angle.

Expressions for the displacement of the ultrasound beam for the water/metal interface
are found in [166]. The unified theory developed by Bertoni et al. 1973 [47] and Ngoc et
al. 1980-82 [128]-[130] removed the limitations in the Schoch’s theory so that it is valid
for large beam widths in isotropic media.

The case of nonspecular reflection of beams from liquid-(isotropic) solid interfaces are
analysed by Zeroug et al. 1992 [185]. Equations are developed not only for the case of
the plane surface but also for cylindrically curved layered geometries, and simultaneous
excitation of multiple leaky waves. The ultrasound beam is assumed to be quasi-Gaussian.
By the use of the complex source point (CSP) method the reflection problems are solved
rigorously by wavenumber spectral decomposition.

1.2.3.3 Ray tracing

Generally the texture of austenitic welds is not unidirectional. The ultrasound in such
a structure does not normally travel in straight lines but due to local changes in elastic
properties, the energy flow direction of the beam gets skewed. Therefore the total map
of the beam path is curved. The path depends on the local anisotropy. The process of
iteratively “tracing” the energy flow direction at very small distances of sound travel e
and mapping the path is known as ray tracing. This subject is not new in geophysical
application. A thorough monograph on this subject is presented by Cerveny 1977 [12].
This method has also been applied to wave propagation in austenitic welds using both
two-dimensionally (i. e. restricted to the incidence plane) geometric ray acoustics (Silk
1981 [170], Ogilvy 1985-92 [137]-[147], Stansfield 1987 [179], Champigny 1987 [55], Harker
1990-91 [72, 73], Nouailhas 1990-91 [134]-[136], Munikoti et al. 1994-95 [114, 25], Spies
1995-96 [173, 176]) and wave-mechanical acoustics (Klaholz et al. 1995 [94, 95], Marklein
1994-97 [103, 104, 105]).

By evaluating weld specimen micrographs it is possible to empirically simulate the mi-
crostructure by an empirical mathematical expression. Such an empirical relation to de-
scribe the local grain orientation as a function of weld specimen parameters is developed
by Ogilvy 1985-92 [137]-[147]. The whole weld is approximated to be a polycrystalline
medium with transverse isotropic symmetry.
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Indeed, there are hints that the results of ray tracing by geometric ray acoustics using
this microstructure model agree fairly well (qualitatively) with experimental results (see
chapter 3) and results of ray tracing by wave-mechanical acoustics (Marklein 1997 [105])
inspite of the following restricting presumptions that have been made:

e The ultrasound in practice is a finite sized beam, whereas in ray tracing, a single
ray is assumed.

Weld parameters such as weld pool temperature and local thermal gradients which
influences the grain growth direction, are not considered.

Grain geometry is not incorporated in the model.

Effect of frequency is not incorporated in the model.
e Multiple reflections at grain boundaries are neglected.

Therefore, the attenuation of the wave due to the total of scattering processes at grain
boundaries cannot be accounted for.

1.2.3.4 Pulse propagation

The ultrasound beam has not only a finite size, but is also a time dependent pulse.
Norris (1987 [133]) and Spies (1992 [171]) have developed the theory for pulse propagation
in anisotropic materials. They define the pulse as a harmonically modulated Gaussian
envelope. The spreading, pulse form changes, the reflection and transmission at planar
and curved interfaces are discussed.

1.2.3.5 Scattering of ultrasound in polycrystalline materials

A stochastic model for ultrasound wave propagation has been published 50 years ago by
Lifshits and Parkhomovski [99]. Based on this work a unified stochastic theory has been
proposed by Stanke and Kino [177, 178]. They incorporated the second order Keller’s
approximation (1964 [93]), which has been the development of equations for wave prop-
agation assuming the process to be stochastic. This unified theory is valid for all ranges
of frequency viz., Rayleigh, stochastic and geometric regions. However, the theory was
applied to evaluate the attenuation coefficients in the case of polycrystalline materials
without any texture or other macroscopic anisotropy.

This theory was extended to textured materials. Most extensive work on this subject can
be found in the publications of Ahmed and Thompson 1984-95 [40]-[43], and Hirsekorn
1982-88 [79]-[85]. However, the texture direction was assumed to be in the plane of
incidence, whereas it is known that in the direction of welding a texture inclination of up
to 20° is occurring.

Turner (1999 [181]) recently has discussed -the ultrasonic scattering in heterogeneous
anisotropic media (the heterogeneity being caused by and being proportional to the
anisotropy of the grains) including Green’s function for anisotropic media. His theory,
however, is limited to the Rayleigh and stochastic regions and does not cover the geometric
region of ultrasonic scattering.

1.3 The motivation for the present work

There is a strong incentive to perform reliable ultrasonic inspection of austenitic and
nickel-based alloy welds both during manufacture and in-service similarly as it is usually
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done for ferritic steel welds to detect and classify defects which could cause weld failure,
e. g. [37]. This means that quality control and inservice inspection of welded austenitic
stainless steel components and plant with ultrasound need

1. testing and defect assessment techniques adapted to the anisotropy problem,
2. codes and regulations specifying

e the ultrasonic inspection procedure,
e the rules for evaluating the ultrasonic indications, and

e the defect acceptance/rejection criteria.

During more than two decades ultrasonic testing techniques for inspection of anisotropic
materials have been developed based on experience and heuristic arguments enabling
detection of defects with similar amount of reliability as during inspection of isotropic
materials (e. g. Neumann 1995 [25]).

However, defect assessment by ultrasound has two purposes
e monitoring weld quality by detection of defects
e ensuring the absence of critical defects.

Since austenitic weld metal is anisotropic and polycrystalline, critical defects up to now
had been difficult to discriminate by ultrasound. This is because the characteristics of
the ultrasonic echoes not only depend on the properties of the reflecting flaw but also
on the weld metal’s elastic properties. The anisotropic elastic properties give rise to the
following problems, which interfere with straightforward defect assessment:

e In anisotropic media the propagational characteristic of the beam is direction depen-
dent, since the energy flow direction (group velocity) and the wave vector direction
(phase velocity) generally do not coincide. Besides beam skewing this leads to beam
spreading, which is quantified by the beam spreading factor defined as the second
derivative of the circular frequency with respect to the wave vector, i. e. the ra-
tio between a small change in group velocity for a corresponding change in phase
velocity.

e When ultrasound is incident at an interface between two anisotropic media (adja-
cent columnar grains), generally three reflected and three transmitted waves couple,
giving rise to reflected and transmitted ultrasonic signals which are measured as ul-
trasonic scattering amplitudes. In addition, excitation of inhomogeneous waves may
occur.

In contrast to that in the case of isotropic media, where the transverse waves are
degenerated, from the usual waves used for non-destructive testing only the longitu-
dinal and the vertically polarized transverse wave couple at interfaces, whereas the
horizontally polarized transverse wave decouples. Consequently, less complication
of coupling and mode conversion is associated with reflection and refraction in the
isotropic medium.

The practical test situation described in the following example demonstrates a typical
pitfall during ultrasound inspection of anisotropic austenitic steel welds [38]: As presented
in fig. 1.26, the austenitic weld is interrogated from the parent metal side with a 45° SEL
transducer®. The reflected signal can give misleading information, viz. that the ultrasound

2Longitudinal wave transmitter-receiver transducer
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Weld metal

Figure 1.26: Typical ezample of the pseudo
defect signal during austenitic stainless
steel weld inspection; SEL: longitudinal
wave transmitter-receiver transducer; af-

ter [38]

Pseudo
defect

is reflected from a pseudo (non-ezisting) defect situated at point B, whereas in reality the
ultrasound is totally reflected at the weld fusion face and reflected back from the bottom
face of the parent metal. This is due to the fact that the weld fusion face is the interface
between isotropic base (parent) metal and anisotropic weld metal and the ultrasound
incident at such an interface as a matter of fact undergoes reflection and transmission.
The ultrasound transmitted into the anisotropic weld metal suffers beam splitting, beam
skewing etc.. As described in section 1.1.1 grain orientations are not uniform throughout
the weld. Therefore adjacent grains have different orientations and hence the wave in
the weld metal at the interface between every pair of grains undergoes reflection and
transmission, beam skewing etc., which would affect the sound path. The sound path
turns out to be curved. The practical consequence of this is that the ultrasound beam
might not intercept the defect which would lead to wrong interpretation of the result.
The problems to be addressed concerning the study of reflection and transmission phe-
nomena at interfaces as a matter of fact are not restricted to the grain boundary scattering
but also concern:

1. the efficiency with which ultrasound can be injected into (and received from) the
anisotropic medium,

2. the efficiency with which ultrasound is reflected by the different types of defects
within the anisotropic medium,

-To develop reliable testing and defect assessment techniques for quality control and inser-

vice inspection of welded austenitic stainless steel components and plant the knowledge
of the energy flow directions in the poly-crystalline, anisotropic medium, of the energy
reflection and refraction coefficients at interfaces, and of the energy scattering coefficients
is needed.

Therefore the aim of the present work has been two fold:

e to understand the wave propagational characteristics in anisotropic materials

e to build the knowledge base, which would help in developing reliable methods for
ultrasonic inspection of austenitic steel welds and in refining/improvising the present
NDT codes and regulations.

Normally in NDT of structures, ultrasound examination is supplemented with several
other NDT techniques to enable a more reliable report of the quality and reliability of
the material. If the results of these different techniques contradict each other due to
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the typical inspection problems discussed above, the decision making regarding quality,
reliabiality and serviceability of the tested component would be very difficult.

Therefore in the inspection of anisotropic materials, lack of a-priori knowledge about the
wave propagational behaviour in anisotropic materials might lead to unrealiable results
and in inspection of structures used in nuclear, aero-space industries and other critical
structures it might even lead to loss of human lives.

1.4 Objectives of the present work

In this work the characteristics of ultrasound propagation in the anisotropic medium
shall be analyzed in order to develop ultrasonic defect assessment techniques and guide-
lines which are based on the physical insight into the sound propagation and scattering
mechanisms.

1. As considered and justified in section 1.2.3 for wave propagation the plane wave
ansatz is chosen. The eigenvalue problem which is represented by the Christoffel
equation will be solved for the infinite space with transverse isotropic symmetry
yielding phase and group velocities, and polarizations of the three wave modes:
quasi-longitudinal, quasi-transversal, and pure transversal.

2. Reflection and transmission for the three wave modes at an interface between two
general anisotropic media will be analyzed. The important features such as mode
conversion of waves, and excitation of a secondary branch of the quasi transverse
wave will be investigated.

2.1 In the first step, a perfect (defect free) boundary will be considered. The
boundary conditions in this case are that particle displacement velocity and
traction forces are continuous.

2.2 In the second step, the boundary conditions will be modified to incorporate
the quasi static model, which allows to study imperfections contained in the
interface. The imperfection considered will be the circular shaped crack.

2.3 In the third step, the case of a viscous layer between an isotropic material
and anisotropic weld and the effect of viscosity on reflection and transmission
will be dealt with. This is important from the point of view of ultrasonic
examination of welds, where the transducer is placed on the specimen with a
couplant between the transducer and the anisotropic weld. In the literature this
case has been analysed for isotropic materials but not for anisotropic materials.

2.4 Lastly, the bounded beam reflection at an interface between water and aniso-
tropic weld metal will be investigated. Though the plane wave assumption
is sufficient for many applications, it is appropriate to consider the case of
bounded beam incidence at an interface, since ultrasound is generated from
a finite sized transducer and the plane wave does not exist in reality. The
bounded beam is achieved simply by integrating an infinite number of plane
waves over the transducer dimension. The so called Schoch displacement (1952
[166]) is observed when the ultrasound is incident around the Rayleigh angle
at an interface between fluid and solid.

Again, in the literature this case has been studied for isotropic material, where
reflectance and transmission functions are quite simple compared to anisotropic
material, where the texture direction plays an important role in the interaction
of waves at an interface.
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The reflection and transmission energy coefficients will be calculated as a function
of incidence angle, frequency and texture direction in all cases.

3. Due to epitaxial grain growth extending from weld root and weld fusion face up to
the weld crown austenitic welds show texture. The texture orientation determines
the energy flow direction. The wave can be assumed to have crossed an "interface’,
when the ultrasound travels from a region of one grain orientation to the other with
a different grain orientation. Due to the local refraction at the assumed interface,
the energy flow direction changes. Proceeding in the direction of energy flow in
small steps finally the trace of the ultrasonic ray is achieved simply by mapping all
the local changes of beam directions due to the local anisotropy. This iterative ray
tracing procedure serves to analyze the sound path in anisotropic media.

In isotropic materials, the ultrasound would travel in straight lines because the
energy flow direction coincides with the wave vector direction.

The ray tracing will be presented three-dimensionally for the three wave modes, viz.
quasi longitudinal, quasi transverse and pure transverse waves as a function of:

e incidence angle
e transducer position

e texture

The theoretical predictions will be compared with two-dimensional calculations
(Marklein 1997 [105]).

4. In the above models considered, the whole weld specimen has been assumed to be
a monocrystalline medium with transverse isotropic symmetry. Attenuation due to
multiple reflections at grain boundaries has been neglected. The stochastic model
based on Keller’s approximation which incorporates attenuation due to multiple
reflections at grain boundaries will be introduced in the form of the unified theory
proposed by Stanke and Kino (1984 [177, 178]). They, however, applied the theory to
textureless materials. This was extended by Ahmed et al. (1984 [40]), and Hirsekorn
(1986 [84]) to materials with texture but the texture direction was confined to the
meridian plane.

The theory now will be further extended to the more general case in welds, where the
columnar grains are not only tilted in the plane of sound propagation but also out of
it ("lay-back’), which is observed up to 20° in the welding direction. Moreover, the
grain shape can be equiaxial or elongated, depending on the metallurgical conditions.

The attenuation coeficients, phase velocities, and particle displacement polariza-
tions will be calculated as a function of

e incidence angle

e lay-back angle

e wave number

The theoretical predictions will be compared with experimental studies (Neumann
et al. 1999 [127]).
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Chapter 2

Reflection and transmission at an interface
between general anisotropic materials

2.1 Outline of the inspection problem

Fig. 2.1 shows a typical example of the ultrasound propagation during inspection of an

austenitic stainless steel weld .

Transducer

BT TG
' \ \ \ Weldbead /  Cladding

Base metal { ‘
(ferritic) / \

Figure 2.1: Typical ezample of the ultrasound
propagation during inspection of an austenitic
stainless steel weld

An ultrasonic pulse is emitted from a finite sized piezo-electric transducer. The finite
size of the transducer moreover would result in a bounded ultrasonic beam. The cladding
of the specimen under test being anisotropic, the ultrasound travels from the isotropic
transducer wedge material (perspex) to the anisotropic austenitic cladding which are
coupled by a thin layer of couplant material. Therefore the following two interfaces have

to be considered:

e perspex - couplant material,

e couplant - cladding.

The ultrasound energy flow direction in the cladding generally does not coincide with the
wave vector direction due to its anisotropy.

_ The next interface is

e cladding - isotropic ferritic base material.

In isotropic material the directions of energy flow and wave vector coincide.
Finally, the beam propagates through the interface

29
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e isotropic base material - anisotropic weld metal.

Again due to anisotropy, the beam gets skewed and recurring beam skewing results in a
curved beam path.

Moreover, the beam gets attenuated by scattering, as multiple reflections and mode con-
versions occur at grain boundaries.

Thus the effects of interfaces during wave propagation in anisotropic materials are treated
in this chapter (Munikoti 1991-99 [107, 108, 110, 115, 118, 125]).

As considered and justified in section 1.2.3 the subject matter of this chapter is limited
to time-harmonic plane wave propagation in the bulk of the medium and at different
types of interfaces. Except for diffraction and aperture effects it has been discussed (see
section 1.2.3) that in normal ultrasonic testing bounded beam and pulse propagation can
be dealt with by the analytical time-harmonic plane wave approach and that the other
approaches discussed in sections 1.2.1 and 1.2.2 principally do not offer any improvements
in the results of plane wave modeling.

2.2 The Christoffel equation

2.2.1 Mathematical formalism and transformation properties

The particle displacement u of a plane wave is defined as follows:
u=Apexpr(kl-r—wt) (2.1)

with

A = Particle displacement amplitude
p = particle displacement direction

1 = unit wave vector;

k =Fk1; k is the wave number

r = Cartesian coordinates: z, y, z.

By considering Newton’s law and Hooke’s law, the Christoffel equation can be derived as

[3]:

/ﬂi FU v =p LUQ U; (22)
1_‘1;3' = liK CKL le (23)

where

Ckr' is the stiffness constant matrix referred to the crystallographic system;
K L=T sl

6,J=1---3;

1The relation between stiffness constant matrix in full and abbreviated matrix notation is:

Crr = Ciju
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v = particle displacement velocity (v = 1) and

LD 00 k1
—tklg=—k|0 L 0 L, O {

0 0 &, I, L

1, 0 0]

01, 0

0 0 I,

—’élej:—ik 0 lz ly

[, '
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l; 1, I, are the components of the wave vector direction along the z, y and z axes of the
reference coordinate system.

Figure 2.2: Reference coordinate system
showing the wave vector and its compo-
nents

The general Christoffel’s equation (2.2) is not restricted to any particular coordinate
system, but it is necessary that 1 and Cj; be referred to the same coordinate system.
Often, it is required to keep the laboratory (reference) coordinate system constant and
rotate the crystallographic coordinate system, or the other way around. For example, in
austenitic welds, the grains could be tilted both in the direction of welding and in the plane
perpendicular to it due to local thermal gradients. This means that, the crystallographic
Z axis which represents the columnar grain is located in 3 dimensional space with respect
to the reference laboratory coordinate system. Then the elastic constants should be
transformed to the reference coordinate system®. A general rotation of coordinates can
be performed by applying successive rotations about different coordinate axes as shown
in fig. 2.3.

The stiffness constants transformation law in abbreviated notation (see the footnote on
the previous page) is given by Bond 1943, Auld 1990 [52, 3]:

2Elastic constants are always given with respect to the crystallographic system
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X,X Figure 2.3: General convention used in the ro-
tation of coordinates around different axes

Chx = Mu1 Myy Crs (2.4)

where the 6 x 6 matrix M is explicitly given in [52, 3]. The M matrix consists of elements
of the unit rotation matrix. The new elastic constants Cf are then substituted in the
equation (2.3).

Now, the Christoffel equation (2.2) can be recast as:

[nl'?Q th —.[) w2 (S”J [’Uj} = 1) (25)
The elements of the Christoffel equation are functions only of the

e plane wave propagation direction,

e stiffness constants of the medium.

The angular dependence of phase velocity and the associated energy flow direction (group
velocity direction) is due to the anisotropy of the material (which can be in turn attributed
to the microstructure described in section 1.1) but not due to dispersion (k(w)). It may
also be noted that, in many engineering materials, the phase velocity is constant for a
given wave vector direction at long wave lengths but depends strongly on the frequency at
short wavelengths, especially when the wavelength is of the order of the distance between
molecules®.

For nontrivial solutions of the Christoffel equation (2.5) the sufficient condition is

|k‘2 Fij —,OUJ2 623‘ = (26)

3In ultrasound testing of austenitic steels, the ultrasonic frequencies of the transducers used lie in the
range from 1 - 5 MHz, viz. the length of longitudinal waves is A = 6 — 1.2 mm and of transverse waves
~ 3 — 0.6 mm.

Further, it can be argued that the signal from the transducer travels with the signal velocity which
could differ from the group velocity. However, in the materials of interest absorption and dispersion is
negligible in the frequency ranges of ND'T of austenitic steels. Therefore, signal and group velocities do
not differ from each other (e. g. Brillouin 1960 [6]).
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2.2.2 Slowness surface (Eigenvalues)

Unless explicitly stated, the following results are presented for materials with transverse
isotropic symmetry.

Equation (2.5) represents an eigenvalue problem with three solutions. The three eigenval-
ues of (2.5) correspond to the phase velocities and the associated orthonormal eigenvectors
to the particle displacement velocities (polarizations) of three wave types. One of the wave
types has mainly longitudinal character (termed ”quasi longitudinal” (qL)), one mainly
transverse character (termed ”quasi transverse” (qT1)) and one ”pure transverse” (T2)
character. The term ”quasi” indicates that the polarization direction deviates from the
k-vector direction in the case of the qL-wave and from the direction perpendicular to the
k-vector direction in the case of the qT1-wave. For a given direction of the wave vector,
the three polarization vectors are orthogonal to each other.

Considering the equation (2.6) the first term in the equation is proportional to k?, whereas
the second term is proportional to w?. This relation can be expressed in terms of the va-
riable %, which is nothing else but the inverse of the phase velocity. It is called slowness.
The introduction of this ratio reveals that the velocity (slowness) is only a function of
the wave vector direction and is independent of frequency. Representing the slowness as
a function of the wave vector direction a three sheeted surface in k-space is obtained.
In contrast to the case of isotropic materials, the slowness surface shows non-spherical
profiles, fig. 2.4.

339"___...;_::...,._:

Figure 2.4: Menridian section of
the cylinder-symmetric three-sheeted
slowness surface (Munikoti et al.
1996 [126]); stiffness constant ma-
i i T - ‘ triz (2.64) of X 6 CrNi 18 11
- b X austenitic weld metal; gl = quasi
/ : longitudinal wave, qT1 = quast
transverse wave, T2 = pure trans-
verse wave; © = angle between wave
vector and Z-azis; k-vectors (sim-
ple arrows) and group velocity direc-
tions (double lined arrows perpendi-
g E e cular to the slowness surfaces) of the
210° ™ i b L LA AB0P qL, qT'1, and T2 waves indicated for

180° some angles © as examples

300°

2.2.3 Polarization (Eigenvectors)

For each phase velocity exists a corresponding eigenvector or particle displacement velocity
(polarization) vector v,.

Consider the equation (2.5) which could be expanded as:
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Qg Qoo (g

[911 Qp Qi3
iz oz (a3

| Fy} -0 (2.7)

where

w 2

Qi = [Cimnlmln — p (E)qL 6:i)-[v;] (2.8)
w 2

Qij = [Cimjnﬂmln =0 (E)qu 6ij].['l)j] (29)
w2

Qij = [Cimjntmln = (E)TQ 61-3-}.['05,-] (210)

where % is the phase velocity, and subscripts ¢L, ¢7'1 and T2 represent the three wave
types.
In the equations (2.8, 2.9 and 2.10) consider any two rows for each of the wave types gL,

qT1 and T2:

Q110 + vy + Q30 = 0 (2.11)
D120z + Qaavy + Qazv, = 0 (2.12)

The y and z components v, and v, are expressed as a function of v,. This yields:

i Q128215 — Qo34 .
Y Q12003 — Qo3 *
Q11090 — Q%

U, = Vg 2.4
012 — s (Bele]

or
Was
v = — VU 2].5
Yy ng ( )
Wss
y = 2.16
4 WIS Vg ( )
with
1
Wi = Efiklfjmngkmﬂln (2.17)

€k 15 the permutation tensor with the property:

1 ¢ 4,k1:123, 231, 312
€kl = a - ?,[C,ll:;f, k:l,l:b
- eyl

1 ko 1:132, 213 321

? 3
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The eigenvectors then could be written as:

v v W) waln.)] (2.18)
The eigenvectors are then normalized
v
vl

The polarization directions vary as a function of the wave vector angle which is a feature
of anisotropy, while in isotropic material polarizations are invariant.

The selection criteria for the eigenvectors for the transverse isotropic symmetry encoun-
tered in austenitic weld metal are as follows (fig. 2.5):

Figure 2.5: Orientation of orthogonal
particle displacement polarizations (‘trihe-
dral’) quasi longitudinal (gL), quasi trans-
verse (qT1), and pure transverse (T2)
with respect to the k-vector, plane of prop-
agation zz, weld direction y, and texture Z
(Munikoti et al. 1993 & 1996 [113, 126])

1. In most of the engineering materials including the material considered here (X 6
CrNi 18 11), the longitudinal wave phase velocity has the highest magnitude. This
means that the largest of the three eigenvalues corresponds to the longitudinal
wave phase velocity. This eigenvalue is substituted in the equation (2.8) and the
eigenvectors are determined. The relation between the eigenvector and the wave
vector would be as follows:

l-v#0 (2.19)
where 11s the direction of the wave vector and v is the particle displacement velocity.

Equation (2.19) implies, that the eigenvector does not generally coincide with the
wave vector direction except along the symmetry axes. Therefore, this wave type is
termed as quasi longitudinal wave (qL).

2. The eigenvectors corresponding to the two transverse waves lie in a plane perpen-
dicular to the eigenvector of the qL. wave and correspondingly are associated with
the smaller eigenvalues. Further distinction between the two transverse waves can
be made as follows:
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e In the general case the eigenvector of the qL. wave does not coincide with the
the crystallographic 7Z axis. If the eigenvector corresponding to one of the
transverse waves is contained in the plane formed by the crystallographic axis
7 and the eigenvector of the qL wave, then the eigenvalue corresponding to
that eigenvector is termed as quasi transverse wave (qT1):

1xv#0 (2.20)

This again implies that the eigenvector is not perpendicular to the wave vector
except along the symmetry axes.

e The other transverse wave is termed as pure transverse wave (T2), because for
this wave type the following relation is valid:

Ixv=0 (2.21)

This implies that the eigenvector is always perpendicular to the wave vector
direction.

In the case of materials with other crystal symmetries, for example cubic symmetry,
both the transverse waves generally are not perpendicular to the wave vector, i. e. all
eigenvalues correspond to phase velocities of quasi waves. Then the quasi-transverse
waves are sorted according to their magnitudes of phase velocity, viz. slow and fast quasi
transverse waves and their corresponding polarizations qT1 and qT2, respectively, are
defined. Only in certain specific planes with higher symmetry in-plane quasi-transverse
and anti-plane pure transverse waves exist, so that the wave types can be sorted according
to their polarizations as before.

Since polarization determines mode coupling at interfaces it is concluded that

e in the case of an interface between two isotropic materials, the horizontally polar-
ized wave (Ty) does not couple with the other two waves, viz. with the vertically
polarized shear wave (T7/) and the longitudinal wave (L) and vice versa,

e in the case of an interface between two anisotropic materials, always all three wave
modes couple.

In the following examples polarization deviations (with respect to the wave vector direc-
tion) as a function of the incidence angle are shown. For this purpose a material with
transverse isotropic symmetry is considered. The plane of wave incidence is assumed to
be z,z. The crystallographic columnar grain axis Z is arbitrarily rotated around the X
and Y axes by angles ¥ (layback) and @ (columnar grain angle) respectively, so that the
columnar grain is oriented in 3D space of the laboratory coordinate system z,y, 2. The
stiffness constants are transformed to the reference coordinate system using the relation
described in section 2.4. Then the normalized eigenvectors for the three wave types which
are evaluated using the equations (2.8), (2.9), (2.10) are plotted as a function of the k-
vector direction in the case of layback angle ¥ = —10° and grain tilt angle ® = —20° as
parameters.

If the columnar grain direction is not contained in the plane of wave propagation, the
particle displacement polarizations are neither restricted to the plane of propagation nor
perpendicular to it, fig. 2.6.
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Figure 2.6: Polarization direc-
tions of the three wave modes as
a function of the wave vector di-
rection in the range —90° < @ <
90°; plane of wave incidence x, z;
crystallographic columnar grain
aris Z; composite rotation of the
crystallographic system: ¥ =
—10° around the X azis and
® = —20° around the Y axis;
the eigenvectors are evaluated us-
ing equations (2.8, 2.9 and 2.10);
(Munikoti et al. 1992 & 1993
[109, 111, 112)).
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The directions of polarizations rather vary in the three dimensional space as a function
of the k vector direction. Therefore the character of the waves which is described by
the particle displacement polarizations is changed. In particular the character of the
transverse waves, viz. vertically and horizontally polarized in the meridian plane generally
is not maintained.

Following details can be gathered from fig. 2.6:

1. The properties of the T2 wave are as follows:

e The polarization direction of the transverse wave T2 is invariant, i.e. always
perpendicular to the columnar grain direction Z.

e It is always perpendicular to the k vector. Therefore T2 has been defined as a
pure wave.

e The polarization of the T2 wave varies as a function of the k vector direction in
the plane transverse to it. This means that it is not perpendicular to the plane
of sound propagation and therefore T2 is generally not horizontally polarized.

2. The polarization direction of the transverse wave ¢T'1 is not in the plane of sound
propagation and therefore qT1 generally is no longer vertically polarized.

3. Increasing tilt of the columnar grain direction Z relative to the plane of wave prop-
agation causes the transverse wave polarizations to change their 'roles’:

3.1 If the grain tilt reaches 90°, the polarization of the pure transverse wave T2
is contained in the plane of wave propagation, therefore being now vertically
polarized, though as before perpendicular to k vector and columnar grain di-
rection Z.

3.2 If the grain tilt reaches 90°, the polarization of the now pure transverse wave T1
becomes independent of the wave vector direction, and will be perpendicular
to the plane of wave propagation, i. e. horizontally polarized.

2.2.4 Group velocity

The velocity of energy transport in the lossless medium coincides with the group velocity®.
Generally in anisotropic material the group velocity direction deviates from the direction
of the wave vector. The practical consequence of this beam skewing is that in ultrasonic
testing of anisotropic specimens the transducer has to be offset to effectively intercept the
beam.

The group velocity which is defined as the velocity of modulation on a wave, is obtained
by partially differentiating the circular frequency w with respect to the wave vector:

Ow

ngﬁ

(2.22)

Since the characteristic determinant of the Christoffel matrix is an implicit function of
the circular frequency and the wave vector the equation (2.2) is implicitly differentiated:

|k? Tij(n) — pw? 6| =0 (2.23)

“Throughout this report the terminology group velocity direction and energy flow direction is used
interchangeably. See appendix A for analytical proof of this.
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A function fdenotes equation (2.23) as:

(2.24)
@k kys k2), ks, Ky, kz) =0 (2.25)
Differentiating with respect to &, results in:
df af  Ow Of
=(0= i 2.2
ik == ok T 9k, ow (2.26)
Rearranging the above result yields:
(2.27)
Ow ;,:I

This is the expression for the z component of the group velocity.

Similarly the other components, viz. the y— and z— components of the group velocity

dw Sw - :
ok, and 5=, respectively, are obtained.

In the engineering materials considered here, the group velocity is greater than or equal
to the phase velocities, and never smaller.

In the following examples, fig. 2.7, a similar presentation as in fig. 2.6 is shown to un-
derstand the beam skewing as a function of the incidence angle. Arbitrarily, the crystal-
lographic system is rotated around the X axis by ¥ = —10° and around the Y axis by
® = —20°. The resulting Z direction corresponds to the columnar grain direction. The
stiffness constants are transformed to the reference coordinate system (section 2.4). The
group velocity is then evaluated using implicit differentiation as described in equation
(2.23).

It can be seen from fig. 2.7 that for all three wave modes the energy flow direction is not
contained in the plane of wave incidence, but in 3D space, which is again dependent on
the angle of incidence.
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Figure 2.7: Group velocity direc-
tions of the three wave modes as
a function of the wave vector di-
rection in the range —90° < @ <
90°; plane of wave incidence x, z;
crystallographic columnar grain
azis Z; composite rotation of the
crystallographic system: ¥ =
—10° around the X azis and ® =
—20° around the Y axis (Mu-
nikoti 1994 [114]).
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2.2.5 Beam spreading

The second derivative of frequency with respect to the wave vector is defined as the beam
spreading factor:
0w
ok?
This factor gives the information about the spreading of the beam due to anisotropy. The
higher the beam spreading, the higher is the energy scattered and the energy density of
the main beam is reduced. These factors are calculated for austenitic stainless steel weld
metal and compared with that of the beam spreading factor for isotropic material which
is 1 as the direction of energy velocity and phase velocity coincide, fig. 2.8.
It can be inferred from fig. 2.8, that in the range of incidence angles relevant for ultrasonic
weld testing

(2.29)

e the divergence of a quasi longitudinal beam is predominantly reduced,
e on the contrast the divergence of a quasi transverse beam is predominantly increased,

e the divergence of a pure transverse beam is least affected compared to the other
wave types.
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Figure 2.8:  Beam spreading factors
for different columnar grain orientations:
0°—90°; the crystallographic system is ro-
tated first around Y by the angle ® and
subsequently around X by the angle U with
the same magnitude (Munikoti 1995 cited
in [25]).
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2.3 Reflection and transmission coefficients at per-
fect interfaces

A schematic diagram describing the reflection and transmission phenomena at an interface
between two anisotropic materials, which is the general case, is shown in Fig. 2.9.

qTi

5 Figure 2.9: Scheme of reflection and trans-
qT2 mission between two anisotropic materials

For the problem under consideration it is assumed that interfaces are
e in rigid contact,
e planar,
e smooth.

The boundary conditions are continuity of particle displacement velocity and traction
forces across the interface®:

v=v (2.30)

T s = T'» 5" (2.31)

Using the equation (2.1), the boundary conditions (2.30) can be more explicitly written
as follows:

In geoscience literature these boundary conditions which are used for calculation of reflection and
transmission coefficients are referred to as Knott’s equations (Knott 1899 [96])
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Arv® 4 A o) + A 0 + 4300 = A VD + A v + A T (232)
A; 'U?S?] + A 'Ul(g) + A U;g) + A,a vé,g) = Ay '0’1(101) + Ap U’(D)yg + Ag v’;%) (2:33)
A; Uig) + A US) + A9 uﬁ? + Aa ’ugg) = s U’S}) + A 'U’ggj + Ay 'u’i? (2.34)
AT+ A TO + Ap T + Aps T = An T + A TS5 + A 'V (2.35)
ArTD + A T + Avy TS + Ay T, = Ay T8 + Ap T + A TS (2.36)
ATO + A T + A T+ A T = An T + A T+ A T, (2.37)

where vg), Vg1, Uz, Vgy and v’ Ecol), Vg9, v’g? are the components of the particle displacement

velocities along the x direction for incident, reflected and transmitted waves, respectively,
of the reference coordinate system at z = 0.

o (0) 0 0y (0 0) — (0) ,.0(0) (0} |
Similarly vy,", vy1, vy2, vy3 and v’él),v’;z),v’ya and v;(,{ ) Uz, Uz, v,3 and _U’zl ,v’ﬁ),?}’zgz) are
the corresponding components along the y and z directions of the reference coordinate

system.
The traction force components of incident, reflected, and transmitted waves are:

). T(U) T(O) T(O) T!(o) TI(O) TI(U)

I 22l 3 wg25 283 Zals 222 223

i@

z

T(0) T(G)T(O) T(U) TI(O) TJ(O) Tr(O)

Tz gzl T xa2 “xzdl azle 227 rz3

T(Oj T(O) T{O) T(O} T.'(U) Tf(o} Tr’(o)

vzt Tyzlr Tyzly Lyzds yelie= yeds = yzd

Ap, Ay, Apay Ars, A, Ap, Ayg are the amplitudes of incident, reflected and transmitted
waves, respectively.
Referring to Auld 1990 [3] Hooke’s law can be written

T[:C[_] SJ (238)

with [, J =1---6 and the strain-displacement relation

SJ = Vj,'c Uy (239]

The symmetric gradient operator has a matrix representation, e. g. Auld 1990 [3]:

- 8 -
az 0 0
0 e 0
0 0 £
Vo = 0 & 7 (2.40)
F dz 0y
§ o o
5y ar 0.
T:m." Tm: T$y sz ng
Tyn” = Ty:c Tyy Tyz n;’} (2 41)
Tzn" Tz:c sz Tzz ?1?
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where T,,~ is the traction force vector and n" is the boundary normal vector.
The stress matrix in abbreviated subscript notation is

sz sz T;nz Tl Tﬁ T5
T= [T Ty Towl = |T6 T T (2.42)
T2 Tyz Tzz TS T4 TS

The exponentials arising in the equations (2.32 - 2.37) must be true for all values of
x at 2 = 0 and therefore must be equal. This means that the transverse components
(components of the wave vector along the interface) of reflected and transmitted waves
must be equal to that of the incidenct wave. This leads to the following relation:

E = B withr=1:3 (2.43)
H = B withi=1:5:3 (2.44)
kl = K, withr=1.--3 (2.45)
I t : _

k, = k, witht=1---3 (2.46)

where k, and k, are the components of the wave vector along the interface. The subscript
I denotes the incident, r denotes the reflected, and ¢ denotes the transmitted waves,
respectively.

This is analogue to Snell’s law in optics®.

k.= Vi -sin @y cos ¢ (2.47)

PI

k, = Vi . sin 0 sin ¢y (2.48)

prI

where V,, is the phase velocity of the incident wave. The wave vector is oriented in 3D
space by rotating first around y axis by an angle §; and and next around z axis by an
angle ¢; of the reference coordinate axes.

k, and k, are then the input parameters in the Christoffel’s equation. Therefore, the
unknown perpendicular components, viz. k, of all reflected and transmitted waves can be
determined by substituting (2.47) and (2.48) into the Christoffel equation, a sixth degree
equation in k, is obtained:

kbt ke kite kB teskitegk,+er=0 (2.49)

Here the ¢; - - - ¢; are the coeflicients described in Appendix B.

There is no analytical solution to the equation (2.49) except for special cases, when the
wave propagation takes place in a meridian plane, i. e. when the plane of propagation
is restricted to a particular plane e. g. XZ, Y Z etc.. The procedure to determine the
reflection and transmission coefficients is as follows:

e The polynomial (2.49) is solved numerically to determine the six roots as there is
no analytical solution to it. '

8This also is demonstrated by applying the Fermat’s principle as shown in Appendix C
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e An incident wave can excite three reflected and three transmitted wave modes. The
polynomial (2.49) yields six roots for each medium. Each pair of roots corresponds to
quasi longitudinal (pure longitudinal), quasi transverse (vertically polarized trans-
verse), and pure transverse waves (horizontally polarized transverse).

e These roots are substituted in the Christoffel matrix and the corresponding Group
velocity directions are determined as explained in section (2.2.4).

e Out of the six roots determined, only three solutions for each medium are sufficient
to satisfy the boundary conditions (2.30, 2.31). The three valid roots are selected
based on the group velocity direction (or energy flow direction):

— For an incident wave, the group velocity vector should be directed towards the
interface

— for reflected and transmitted waves the energy flow direction should point away
from the interface (Henneke 1972 [76]).

e The roots of the equation (2.49) whose group velocity directions meet the above
requirement are chosen.

Since the group velocity direction (energy flow direction) decides the valid roots, the
critical angle in the anisotropic case can then be redefined as that angle of incidence for
which the energy flow direction for reflected or transmitted waves is 90°. The wave-vector
k therefore can have an angle with the normal to the boundary greater than, less than,
or equal to 90°.

The roots of the polynomial are generally complex. The following three cases arise:

1. Real roots (imaginary parts are zero) mean, the waves are propagating.

2. Purely imaginary roots correspond to evanescent waves, whose amplitude decays in
the direction perpendicular to wave propagation.

3. Complex roots represent inhomogeneous waves, where a real part corresponds to a
propagating wave and an imaginary part represents a wave with amplitude decay
in the direction perpendicular to wave propagation.

2.3.1 Reflection and transmission coefficients as amplitude ra-
tios

After selecting the valid roots, their corresponding group velocity directions, the polar-
ization directions, the boundary conditions described in the equations (2.32 - 2.37) can
be conveniently expressed as a 6 x 6 matrix. The six unknown amplitudes corresponding
to the 6 waves (three reflected and three transmitted) can be determined as ratios of
reflected to incident and transmitted to incident waves, respectively:

711 ] (Va1 Uz Va3 Uy Vo Vg | | Vst |

Tar Uyl Uya U3 ”;1 '01;;2 'Ugl,fs UyT

Tar| _ Uz1 V22 (F%! U.Izl ) ‘UZ;S . Uzt (2 50)
bir| | Tenn Toze Lo T‘;_'z'_'{ ;zz ;33 Ta1 .
tz[ Tyzl Tyz? Tyz3 ngﬂzl T;;uzQ T;ZB TL’ZI

_tSI_ _T:rzl Tmz? Tez3 Ta,;zl T:::z2 ;:23_ ..Tmz‘r
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Pir = ’;’; ..~ are the reflection coefficients (amplitude ratios of reflected waves to inci-
dent waves) and the ¢;; = %*-1—1 ... are the transmission coefficients (amplitude ratios of

transmitted waves to incident waves).

As stated above, generally at an interface three reflected and three transmitted waves can
be excited when ultrasound is obliquely incident at an interface. Here vy1, vy, - -+ are the
particle displacement velocity components for the reflected wave 1 etc. and vy, vy, -+
the particle displacement velocity components for the transmitted wave 1 etc. while
T,21,Tyz1 - - - are the corresponding traction force components.

The subscripts z/ in the right most matrix correspond to the respective components for
incident waves which are the input parameters.

2.3.2 Reflection and transmission coefficients as energy ratios

Since the energy flow direction generally does not coincide with the wave vector direc-
tion, energy coefficients would be more meaningful to characterize wave propagation in
anisotropic media.

By calculating the balance of the time averaged energy flux density of all wave modes
through the surface element of the boundary the energy conservation relation is obtained,
s. fig. 2.10.

Consider the equation A.15 in Appendix A (time averaged energy flux density). The right
hand side of the equation A.18 represents the energy velocity vector (group velocity) which
can be substituted in the equation A.15:

|
E; = 5,42 pw? Vy, (2.51)

where V, is nothing but the vector pointing the energy flow direction (group velocity
vector), A is the amplitude and p is the density of the medium.

Now the reflection and transmission energy coefficients can be determined based on the
equation 2.51, which is more meaningful in the case of anisotropic materials, as the di-
rections of wave velocity vector and energy flow generally do not coincide.

2

Ag, 7 Aay
—Aa,
Aa,
X
AEDE Figure 2.10: Scheme of the energy balance of
Aay incident, reflected and transmitted ultrasound
beams at an interface between two anisotropic
materials; Aar, Aap -+ Aapz, Aagy -+ - Aayg are
“—Aa, the beam cross sectional areas of incident, re-
- Aay flected and transmitted waves, respectively.

Consider the energy balance at an interface between two anisotropic materials where the
energy reflected and transmitted per unit cross sectional area (fig. 2.10) can be formulated
as:
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p1| Ve | A%t Aar = p1|Vy,, |A%r1Aars + 1|V, ol A% + At + p1|Ve,s| A% rsAdyrs
+p2| Vo | A% Ay + ,02|Vgt2|z42tzﬁflaz =} ﬁ2|%t3\442t3/—\@t3 (2.52)

where the |Vjs| are group velocities for incident wave (subscript I), reflected waves (sub-
script rl1..r3) and transmitted waves (subscript t1..t3), respectively.

Aar, Aap -+ Aays, Aag - - - Aagg are the beam cross sectional areas of incident, reflected
and transmitted waves, respectively.

p1, po are the densities of first and second medium, respectively.

Referring to the fig. 2.10 one obtains:

Aa; = Aacos b (2.53)
Aa,y = Aa cos b (2.54)
Aa,s = Aa cos 8, (2.55)
Aar3 = Aa cos g (2.56)
Aay = Aa cosly (2.57)
Aawp = Aa cos O (2.58)
Aags = Aa cos O (2.59)

where the 0r, 0,1, 09, 6,3, 041, 010, 043 are the angles of the group velocities of incident, re-
flected and transmitted wave beams made with the z direction of the reference coordinate
system. Substituting the equations (2.53 -2.59) in (2.52), Aa can be eliminated.

Dividing the equation 2.52 by py |V,| A% cosf; and rearranging yields the energy
conservation relation:

|Vl A% cos g + V| A%a cosbig + |V, 5] A2 cosByy
= +
|V, A% cos@
P2 [Vau| A%a cos Oy + pa [Vy,e| A% €080 + pa [Vys| A%s cos by
pr [Vyy| A%p cost

1

(2.60)

The |Vy,|cosf; - -- are the corresponding group velocity components in the direction per-
pendicular to the interface, viz. z and

A2T1 - A2r3
A?; A2,
and ) )
A Aw
A?; A?;

are the squares of amplitude ratios determined by equation (2.50). The expression (2.60)
can then be concisely written as:

n

Z 7%21 %Eiz) i - t?{ Vg(,"?z) 25

=1 (2.61)
& I
i=1 ‘/g(az} j:]_ %(,z) pI
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where V, , is the component of group velocity perpendicular to the interface. The symbols
are:

i = Denoting of the reflected wave modes

j = Denoting of the transmitted wave modes
n = Number of reflected wave modes
m = Number of transmitted wave modes

pr. pi; p; = Densities of the appertaining media
In equation (2.61) the energy reflection coefficients are

2 V(i]
Hyy = —T“II/ = (2.62)
g,z
and the energy transmission coefficients are
2. B2
T = 20 (2.63)

Vq(,fr) Pr

2.3.3 Numerical results

The stiffness constant matrix for transverse isotropy’ as measured on X 6 CrNi 18 11
austenitic weld metal (Neumann 1995 [25]) is as follows:

[2.4110 0.9692 1.3803 0 0 0
2.6275 1.3803 0 0 0
N 24012 0 0 0
il fY
Cra=[10"—] | syar. 11229 0 0 (2.64)
11229 0
I 0.7209|

By rotating the adjacent media separately first around the z, X-axis by the angle ¥ (corre-
sponding to the columnar grain layback) and secondly around the crystallographic Y -axis
by the angle @ (corresponding to the columnar grain tilt against the crystallographic
Y Z-plane), fig 2.11, different crystallographic orientations in the adjacent media are gen-
erated. The incidence angle (between k-vector and z-axis of the laboratory coordinate
system) is denominated by ©.

The ultrasonic waves are incident from medium 1 to the interface. Each of three wave
modes incident from medium 1 yields three reflected wave modes and three wave modes
transmitted into medium 2. Inhomogeneous waves, which also can be excited, see sec-
tion 2.3, page 46, are indicated-in the figures.

"The reason for modeling the columnar grained structure as transverse isotropic has been substantiated
in section 1.1.4.
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Figure 2.11: Definition of colum-
nar grain (Z) layback angle ¥ and
columnar grain tilt ® against the
crystallographic Y Z-plane
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In the above table and corresponding plots, the legend of type “rq q” has the following

meaning:

e the first letter r (or t) denotes the energy reflection (or transmission) coefficient.

o The first term gL (or L, Tv, Th, qT1, T2) of the subscript denotes the type of wave
for which the energy coefficient is calculated.
qL: quasi longitudinal wave,
qT1: quasi transverse wave,
T2: pure transverse wave,
L: pure longitudinal wave,
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Tv: vertically polarized transverse wave
Th: horizontally polarized transverse wave.

e The second term qL (or L, Tv, Th, qT1, T2) of the subscript denotes the type of
the incident wave.

Many variations of crystallographic orientations of medium 1 and medium 2 to one another
are possible, so that generally the incidence plane is not the meridian plane, neither in
medium 1 nor in medium 2. Representative examples of interfaces have been selected.

Reflection and transmission energy coefficients are calculated® at the interfaces between:

1. Fine grained (isotropic) base material and columnar grained (transverse isotropic)
austenitic weld metal, corresponding to the weld fusion face and the cladding inter-
face (Munikoti et al. 1991-99 [107, 108, 110, 115, 118, 125, 126]).

2. Two transverse isotropic austenitic weld metal areas, corresponding e. g. to the
interface between adjacent columnar grain bundles (Munikoti 1999 [118]).

2.3.3.1 Interface between isotropic and transverse isotropic media

Weld fusion face and cladding interface play an important role during ultrasonic testing
of welded austenitic components (s. fig. 2.1) and, therefore, transparency of this type of
interface is investigated comprehensively.

The columnar grains of the weld metal grow epitaxially at the fusion face (s. sec-
tion 1.1.1.2). Therefore, the grain orientation of the base metal determines the columnar
grain orientation of the weld metal at the fusion face. This comprises all orientations, viz.
layback angle ¥ and tilt angle ® in the range of —90° and 90°.

Figs. 2.12 - 2.14 display reflection and transmission at the interface between isotropic
base metal and transverse isotropic weld metal with incidence from the base metal. In
the figs. 2.12 - 2.14 ¥ is variable while ® is parameter taking the value ® = 0° in these
three examples. The complete set of energy reflection and transmission coefficients is
given in appendix D, figs. D.1 - D.31.

2.3.3.1.1 Longitudinal waves It can be observed that the transparency of the fusion
face is fairly high and is approximately independent of the columnar grain orientation
(grain angle and layback angle) (see fig .2.12, f).

Coupling of reflected and refracted wave modes to the incident wave principally is a matter
of polarisation. Coupling only occurs, when the waves have co-planar particle displace-
ment polarisation components. This can be estimated from fig. 2.6. Mode conversion of
the incident longitudinal wave energy only marginally exceeds 10%, generally it is much
lower (see figs. 2.12, a-d ).

8The computer codes to evaluate equations (2.62) and (2.63) in the general case, where the meridian
plane is not the incidence plane, are written in FORTRAN 77 with graphics integrated.
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Figure 2.12: Reflection and transmission energy coefficients of the three waves at the
interface between tsotropic and transverse isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Longitudinal (L) wave incidence from
the isotropic base metal. Columnar grain tilt angle ® = 0°
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Figure 2.13: Reflection and transmission energy coefficients of the three waves at the
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the incidence angle © and the layback angle ¥. Transverse vertically polarized (Tv)
wave incidence from the isotropic base metal. Columnar grain tilt angle ® = 0°
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Figure 2.14: Reflection and transmission energy coefficients of the three waves at the
interface between isotropic and transverse isotropic media (fusion face) as a function of
the incidence angle © and the layback angle V. Transverse horizontally polarized
(Th) wave incidence from the isotropic base metal. Columnar grain tilt angle ® = 0°
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2.3.3.1.2 Transverse waves Mode conversion of transverse waves into longitudinal
waves generally also does not exceed 10%.

The transparency of the fusion face also is not largely influenced by the columnar grain
angle.

However, transverse waves exhibit mutual mode conversion at the fusion face, which
depends on the columnar layback angle and can reach upto 100% (see Figs. 2.13 b, d and
2.14 b, d). The energy of the transmitted transverse waves depends on the polarization
of the incident transverse wave, because only modes with (at least partially) identical
polarizations couple to the incident wave.

The tables summarize transverse wave coupling at the weld fusion face and cladding
interface as dependent on the columnar grain direction of the weld metal with respect to
the incidence plane:

e Vertically (in-plane) and horizontally (anti-plane) polarised transverse waves are
incident from the isotropic face.

Incident wave mode Coupling wave modes in weld metal

from isotropic base metal Columnar grains

parallel | tilted | perpendicular
to the incidence plane

Ty anti-plane T2 T2 4+ qT1 qT1
Tv in-plane qTl | qT1 4+ T2 T2

Conventional ultrasonic probes generate either vertically polarised transverse waves
or horizontally polarised transverse waves. These waves incident from the isotropic
face are split at the fusion face. In the anisotropic medium only two orthogonally
polarised transverse waves, qT1 and T2, exist. In the case the columnar grains are
tilted relative to the plane of incidence, this decreases considerably the transverse
waves’ energy during examination of austenitic welds and cladded components. Both
the transverse waves do not superpose due to different refraction angles.

In the symmetry planes parallel (meridian plane) resp. perpendicular to the colum-
nar grain direction only one of the both transverse waves is excited.

e Both transverse waves are incident from the anisotropic face.

Incident wave mode from anisotropic weld metal Coupling
Columnar grains in the weld metal Wexe mo@e
parallel |  tilted - | perpendicular 1 180tropic
to the incidence plane base metal
T2 | anti-plane Tg
out-of-plane Ty 4T = T
in-plane Tv
qT1 | in-plane Tw
out-of-plane P o= T
anti-plane Tru
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In the isotropic base material, however, the both transmitted components, Ty and
Ty, are degenerated and therefore form a resulting transverse wave T with polar-
ization according to the intensities of both superposed components.

2.3.3.2 Interface between two transverse isotropic media

The interfaces chosen as examples from all possible variations are as follows:

e Special cases: The columnar grain direction Z of the transverse isotropic medium 1
is contained in the incidence plane (meridian plane). Under ideal conditions this sit-
uation is met during longitudinal flaw testing of welds. Orientations of the columnar
grains in the meridian plane are chosen to be

o perpendicular to the interface

o parallel to the interface.

The selected columnar grain directions Z of the transverse isotropic medium 2 may
deviate from the meridian plane and are chosen as follows:
Layback angle ¥ = 0°; 22.5°; 45°; 67.5%; 90°
Grain angle @ = 67.5°

The energy reflection and transmission coeflicients are given in appendix D, sec-
tion D.3, figs. D.32 - D.40.

e General case: The incidence plane is not the meridian plane, neither in medium 1 nor
in medium 2. The selected columnar grain directions Z of the transverse isotropic
medium 1 are

Layback angle ¥ = —22.5°
Grain angle ® = 0°; —67.5°; 90°

The selected columnar grain directions Z of the transverse isotropic medium 2 are
Layback angle ¥ = 0°; 22.5°; 45°; 67.5°; 90°
Grain angle @ = 67.5°

The energy reflection and transmission coefficients are given in appendix D, section D.4,
figs. D.41 - D.51.

2.3.3.2.1 Longitudinal waves The transparency of the interfaces made up by adja-
cent different crystallographic orientations is fairly high and is approximately independent
of the columnar grain orientation (grain angle and layback angle). Mode conversion of
the incident energy only at certain points exceeds 10%, generally it is much lower.

2.3.3.2.2 Transverse waves Mode conversion of transverse waves into longitudinal
waves also is low.

However, direction dependent mutual mode conversion of transverse waves can reach 100%
as before (s. paragraph 2.3.3.1.2).

At boundaries between two general transverse isotropic media with different grain orienta-
tions, when the propagation plane is not the meridian plane but an arbitrary plane, always
both transverse wave modes couple simultaneously - with complementary energy distribu-
tion -, both with considerable energy, figs. D.41 - D.51, because the particle displacement
polarization direction of the incident wave is not restricted by any crystallographic sym-
metry conditions.
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Whereas the grain angle, which denotes the tilt of the columnar grains in the incidence
plane, does not influence the transverse wave mode conversion at large scales, it is the
layback angle denoting the tilt of the columnar grains out of the incidence plane, which
governs the transverse wave mode conversion. In austenitic stainless steel weld testing
with layback angles in the welding direction up to ~ 20° and even more between adjacent
dendritic bundles, large transverse wave mode conversion rates are to be predicted even
in the low angle range, attenuating considerably the transverse wave actually used for
testing.

In the special case where the columnar grains are contained in the meridian plane, i. e.
no layback of the columnar grains in the incident plane, ( medium 1) (figs. D.32 - D.40),
mutual mode conversion of the transverse waves in medium 2 is similar to what is ob-
served at the fusion face at wave incidence from the isotropic face. The table summarizes
transverse wave coupling in this special case, where with increasing layback angle ¥ one
transverse wave monotonously increases while the other one complementarily decreases
to the same extent:

Incident wave mode from medium 1 | Coupling wave modes in medium 2
Columnar grains, both perpendicular Columnar grains

and parallel to the interface parallel | oblique | perpendicular
and contained in the meridian plane to the incidence plane
T2 =Ty anti-plane T2 T2 + qT1 qT1
qT1 =qTvy in-plane qT1 gqT1 + T2 T2

2.3.3.3 Splitting of the slowness surface domain of permissible wave vector
angles of the quasi transverse wave

Due to the concave parts of the slowness surface of the quasi transverse wave in the
transverse isotropic as well as in the cubic symmetry of austenite (see e. g. fig. 2.4) for
certain incidence planes the slowness surface splits into disjoint sectors of “permissible”
wavevectors. -

This is because the existence criterion for reflected and transmitted ultrasonic waves is,
that their energy flow direction (group velocity) vectors should be real and point away from
the boundary, thus defining the sectors of the slowness surface containing the permissible
wavevectors (Henneke 1972 [76]). The remaining sectors of the slowness surface contain
“forbidden” wavevectors, because reflected and transmitted sound rays would be directed
towards the interface: such rays do not exist.

This splitting phenomenon occurs both in transmission and reflection, when upon inci-
dence of the quasi transverse wave qI'1 and also of the pure transverse wave T2 the wave
vector of the mode converted quasi-longitudinal wave qL reaches its critical angle. The
incident energy then is redistributed and a qT1(2) wave is transmitted instead of the gL
wave (see figs. D.9, D.14, D.25, D.31, D.35, D.39, D.37, D.45, D.48 of appendix D), the
phase velocity having continuously decreased as a function of the incidence angle © from
the value of the qL. wave to the value of the quasi-transverse qT1(2) wave.

2.3.4 Energy balance of the waves at an interface and reciprocity
relation

The reciprocity relations for the energy flow transformation coefficients (e. g. Tan 1977
[180], Rokhlin et al. 1986 [155])
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TWave;;Wavel(el = 62) = TWave: Waves (@2 —% @1) (2'65)
tWavegWavel (81 —F 63) = tWavelVVaﬂes(@B — @1) (266)

(with notation according to the table on page 50) can be used to check the validity of
the reflection and transmission energy coefficients given in section 2.3.3. These equations
mean that the part of the energy flow from the incident wave to the mode converted
reflected or transmitted wave is equal to the energy flow in the inverted case, viz. when
the former mode converted wave now is incident, the same part of the energy flow is mode
converted to the former incident wave, which is now reflected or transmitted.

As an example the following cases are considered:

e A quasi longitudinal wave (gL) is incident at an angle ©; and a quasi transverse
wave (qT1) is reflected at an angle ©, fig. 2.15

e A quasi transverse wave (qT1) is incident at an angle ©3 and a quasi longitudinal
wave (gL) is reflected at an angle ©, fig. 2.16

qL

‘/‘—b

qTi

Figure 2.15: Incident quasi longitudinal wave and

Interface )
reflected quasi transverse wave

gL
&
T1
0, i
_ Figure 2.16: Incident quasi transverse wave and
nteriace reflected quasi longitudinal wave

The columnar grains of the medium the wave is incident from are assumed to coincide
with the z axis of the laboratory coordinate system. In the second medium, the columnar
grains are rotated around the laboratory y axis by an angle of 20°.

In the first case, a quasi longitudinal is incident at an interface and the energy coefficient
associated with the reflected quasi transverse (qT1) wave is plotted as a function of the
incidence angle (fig. 2.17). The energy coefficient of qT1 is observed at the point where
the incidence angle of qL is 80.7°. The energy amplitude of qT1 is 0.067 (A in fig. 2.17)
and the corresponding reflection angle of qT1 is 29.9°.
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Incident angle cidence of a quasi longitudinal wave

Now, in the second case (fig. 2.18), the quasi transverse is incident at an interface and the
energy coefficient for the reflected quasi longitudinal wave (qL) is plotted as a function
of the incidence angle. The energy coefficient of the reflected qL is observed at the point
where the incidence angle of qT1 is 29.9°. The energy amplitude of gL has the same
magnitude as in the first case, viz. 0.067 (B in fig. 2.18) and the corresponding reflected
angle of qL is 80.7°.

0.07 7 B
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0.03 1
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i Figure 2.18: Reflection energy coefficient of
T T T LR 1 . . . .
0° 10° 20° 30° 40° 50° e0° 70° 80° 90° a quasi longitudinal wave (rqLqT1) upon in-
Incident angle cidence of a quasi transverse wave (q1'1)

Reflection energy coefficient rqLaT1

This relation holds true for all the reflected and transmitted waves.

2.4 Reflection and transmission at imperfect interfa-
ces

2.4.1 Theoretical procedure

As already discussed in section 1.2.3.1 surface roughness and defect distribution at inter-
faces influence reflection and transmission of the sound wave. Such interfaces can be the
austenitic weld fusion face, the cladding interface, and columnar grain boundaries, as well
as the layered system consisting of ultrasonic probe and cladding surface or weld metal
(during transverse flaw testing) with a liquid coupling layer in between.

Consider a material with a perfect interface (free from disbonds, cracks, pores etc.). When
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a static tensile force is applied to such a material, displacements on either of the interfaces
would occur. Let the displacement at a far point on each side of the interface be 22
Now, for the same static tensile load, consider the material with imperfect interface, viz.
interface with some types of defects. Because of the local deformations at the vicinity of
the interface due to the defects, the displacement at the far point would be higher than
if the interface were to be perfect.

Let this displacement be represented by %ﬂu The total displacement on each side of the

interface would be 22ert2im  Thg displacement due to the presence of imperfections at the
interface is dependent upon the type of defects, viz. volumetric defects, cracks etc., and it
could be positive or negative depending on the geometry of the defects and the material’s
elastic constants (Baik et al. 1984 [45]). The imperfect interface can be replaced by
an equivalent system, where it can be assumed, that the materials on either side of the

interface have been connected with springs with stiffness per unit-area x, fig. 2.19.

static tensile

static tensile force
force
. distributed springs
Do e| — of mass mand
stiffnesses k Figure 2.19: Imperfect in-
terface (containing flaws)
replaced by an equivalent
static tensile spring model, the quasi
force static tensile static model by Baik et al.
force 1984 [45]

This stiffness x of the spring is assumed to reproduce the increased displacement due
to imperfections at the interface A;,. This spring model, which is based on heuristic
argument, is the quasi static approximation (QSM) suggested by Baik et al. 1984 [45],
Margetan et al. 1988 [101] and others [28].

A more rigorous approach has been given by Pecorari et. al., [150], where the QSM has
been developed from the first principles and applied to an interface with a distribution
of cracks. The authors Wang, Huang, Rokhlin, Schoenberg and others [28], [88], [89],
[158], [159], [160], [161], [162], [163] and [164] adopt other approaches, where the elastic
field vectors on either side of the interface are connected by the transfer matrix, which
contains the properties of the interface. Under this so-called ‘thin interface approximation’
the matrix elements are asymptotically expanded. If the coupling terms arising in the
expansion are neglected, the equations (2.67 - 2.72) are also obtained.

The validity of the QSM theory (equations (2.67 - 2.72)) is subject to following conditions:

e Ultrasonic wavelength A > thickness of the layer between two semi spaces, which
usually is the case in non-destructive evaluation applications. Therefore, QSM is
valid in low frequency applications.

e Mass and inertial parameters of the interface have to be assumed for volumetric
defects (pores, inclusions) otherwise they could be neglected (e. g. cracks).
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e The contact area does not change during the stress cycle due to only small stresses
associated with the ultrasound wave. Otherwise, this would imply non-linearity.

e The frequency of the incident wave w is small compared to the eigenfrequency of
the spring interface, 1. e. w K %{

The jumps in the displacement due to imperfections at the interface can be modeled as
linearly proportional to the magnitudes of the stress components across the interface. The
boundary conditions (2.30) and (2.31) can then be modified as follows (Baik et al. 1984
[45]):

3 3
1
iy (UCEI + Z ('Uw'r - vfct)) == 5 (TZEI + Z (Tzﬂir + TZ-’Et)) (267)
rit=1 ri=1
: 1
2 (”y: + Z (vy, — U&’t)) = 3 (sz + Z (Tey, + Ty, ) (2.68)
Tii=1 rit=1
- 1
rit=1 =1

3
w
Loy + Z vwr — Loay) = 7 (umf + Z (vg, + vm)) (2.70)

rii=l
3

-m w
Toy, + Z 2y, zy: == 9 (Uw + Z (vy, + 'Uyt)) (2.71)

ri=1

TZZ" + Z zzr zzc = 9 (UZI 5+ Z (Uzr + Uzt) (2'72)

=1

where x; and ky are the transverse interfacial stiffnesses and x3° is the extensional (lon-
gitudinal) interfacial stiffness, w is the frequency of the incident wave. In other words,
interfacial spring forces are much greater than the inertial force, viz. the external force
is transferred unaltered at the interface. The equations (2.70 - 2.72) which represent the
equilibrium condition (Newton’s law), relate the net force on a segment of the distributed

spring interface to the acceleration of its center of mass (Margetan [102]). The center
of mass of the spring is assumed to be located at the center of the two interfaces: “g“’,
where u and u’ are the particle displacements of the incident and transmitted waves,

respectively.

82 (u+u )
ot?
5 WA
2

F]_:m

= —muw

(2.73)

where m is the mass of the spring; w is the frequency of the incident wave and u and u’
have the forms as described in the equation (2.1)

(2.74)

% is a diagonal matrix due to the assumed symmetry
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The force F; has to balance the traction forces exerted on the opposite sides of the
interface, viz. the vector sum of the traction forces:

,u+u
2

where T and T’ are the traction forces on both sides of the boundary, viz. the wave is
incident from and transmitted to, respectively. Nota bene the equation (2.75) is equivalent
to the equations (2.70 - 2.72).

In this work a non-volumetric defect is considered and, therefore, the mass parameter is
m = 0, which means continuity of traction forces at the interface.

These generalized boundary conditions (2.67)-(2.72) include the perfect interfaces as well
as the imperfect interfaces. Whereas in the case of perfect interfaces the boundary con-
ditions (2.67)-(2.72) are reduced to equations (2.30) and (2.31) by proper selection of the
values for the k1, o, K3 (see the following table), in the case of imperfect interfaces the
interfacial stiffnesses representing disbond structures can take a large variety of values.
Furthermore, by equations (2.67) - (2.69) a frequency dependence of the reflection and
transmission coefficients is introduced due to the partial differentials of the particle dis-
placement velocities contained in the traction force components Tj.

T-T=-muw (2.75)

2.4.1.1 Imperfect interfacial topography

The imperfect interfacial topography considered as an example for disbond structures
contains non-interacting circular material separations (Margetan et al. 1988 [101], Nagy
1991-97 [119] - [122]) (fig. 2.20) with diameter d such as microcracks (ultrasonic wavelength
A > d) or a viscoelastic layer, which both are presumed to be thin (A > thickness).

O
w
O

s ?

The area fraction of the interface plane, which is composed of these discontinuities, is
given by

Figure 2.20: Model of the disbond structure in the form of circu-
lar cracks in the interface. s = centre-to-centre distance of adja-
cent circular cracks, w = width of the perfect ligament (Margetan

1988 [101])

O
O
O

(s —w)?
452
where s is the centre-to-centre distance of adjacent discontinuities and w is the width of

the perfect ligament.
The interfacial stiffness constants in the table are calculated from the estimation of stiff-

nesses in the quasi-static spring model of solid state bonding given by Margetan 1988
[101].

A= (2.76)

2.4.1.2 Viscoelastic layers

Viscoelastic layers in the form of viscous couplants are used to bring about transmission
of transverse ultrasonic wave energy into the specimen. In the case of ultrasonic test-
ing welded austenitic components, the viscoelastic layer is between the isotropic wedge
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material of the transducer, typically perspex, and the austenitic weld metal or austenitic
cladding.

Due to damping losses in the viscoelastic layer there is some decaying of the ultrasonic
waves in the layer, which is characterized by the penetration depth ¢ or the thickness of
the ‘hydrodynamic boundary layer’ (Landau, Lifschitz 1981 [21], Rokhlin et al. 1986 &
1991 [157, 158])

where. v is the kinematic viscosity of the viscous fluid and w is the circular frequency.
When the thickness of the hydrodynamic boundary layer ¢ is smaller than the thickness
of the interface layer, shear stresses are not transmitted substantially. Therefore the
transparency of the viscoelastic layer increases with kinematic viscosity v and decreases
with increase in frequency w.

Transverse (ky, k) and longitudinal (ks) interfacial stiffnesses are defined as (Nagy 1992
[121]):

Ki, Ky = — (2.77)

Ky = —2— (2.78)

where G is the bulk modulus, p' is the shear viscosity coefficient (' =1 w v p'), p' is the
density, and h is the layer thickness. The complex structure of the interfacial stiffnesses
of the viscoelastic couplants accounts for the losses in the couplant due to viscosity.

Two couplants have been introduced to the calculations

e Clycerine'® with a shear viscosity coefficient at room temperature
pl = 1.2 Ns/m?,

e High viscosity couplant Gel 3000 (Grade 60)'" with a shear viscosity coefficient at
room temperature g/ = 600 Ns/m?,

which are assumed to be used between isotropic perspex (wedge material of the ultrasonic
probe) and austenitic stainless steel weld metal®?.

10Phase velocity: 1.980 mm/us; density: 1.260 g/cm?

11Phase velocity: 1.3 .... 1.4 mm/us; density: 0.931 g/cm?, Sonotech, Inc., 774 Marine Drive, Belling-
ham, WA 98225, USA

12The elastic constants of perspex, as calculated from the data in Krautkramer 1986 [19], are ¢;; =
8.794422, 1 = 3.968458, cqq = 2.412982 - 10° N/m? and the density is p = 1.18 10®kg/m®. The elastic
constants for the anisotropic (transverse isotropic) weld metal are given by the stiffness constant matrix
on page 49.
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Type of interface Interfacial stiffness [10° N/m?] |
Perfect interface (s. section 2.3):
Rigid interface K1, Ko, K3 = 00
Traction free surface K1, Ko, kg =0
Solid/fluid (slip) interface K1, ke =0, K3 = 00
Imperfect interface:
Solid imperfect interface K1, kg = 0.40
with  circular microcracks ks = 0.47

(Margetan 1988 [101])
Crack area fraction A = 0.75,

f=5 MHz

Thin viscoelastic layers at room tem-
perature, h = 50pum, f = 2 MHz

Glycerine K1, k2 = ¢ 0.0003
k3 = 0.0988 + 2 0.0004
Gel 3000 (Grade 60) K1, ko = 0.1508

k3 = 0.0339 + 2 0.2011

The solution to the equations (2.67)-(2.72) is described in section 2.3.

2.4.2 Numerical results and discussion
2.4.2.1 Solid imperfect interface between two anisotropic materials

Energy reflection and transmission coefficients at a solid imperfect interface with circular
microcracks between two transverse isotropic materials as characterized in the table above
are calculated, appendix E.1, figs. E.1 - E.6.

2.4.2.1.1 Longitudinal waves Comparing figs. D.42 and E.2 it can be observed
that the transparency of the interfaces is still fairly high, though the crack area fraction
comprises 75% of the interface. However, in contrast to the solid perfect interface a larger
portion of the incident energy is reflected, mainly in the range below 45° incident angle
©. This portion increases with frequency, and may be used to characterize the interface.
Similarly it is observed that a larger portion of the incident longitudinal wave energy is
mode converted to the quasi transverse wave qT1, which reaches 15% at incidence angles
larger than 45°, both, in reflection and refraction, while mode conversion to the pure
transverse wave T2 generally does not exceed 1%.

2.4.2.1.2 'Transverse waves Comparing figs. D.46 and E.4 the same observation is
made as with longitudinal waves: a larger portion of the incident energy is reflected,
mainly in the range below 45° incident angle ©. This portion also is increasing with
frequency.
Also mode conversion during reflection is increasing and, furthermore, increases with
frequency.
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2.4.2.2 Thin viscoelastic layers between isotropic and anisotropic materials

Figs. B.7 - E.24 in appendix E.2 show the transparency of the coupling layer between ultra-
sonic probe and austenitic material in the case of a columnar grain tilts ® = 0° and 67.5°
and varying layback angle (Munikoti 1992 [108]). Basically the echo transparencies are
similar to those obtained during coupling on isotropic material. The columnar grain di-
rection in the weld metal relative to the coupling surface only has little influence on the
echo transparency.

Generally, as a matter of fact, transverse waves do not pass a fluid coupling layer due to
its vanishing viscosity. However, the viscosity of glycerine and even fresh water, though
very small, is not zero. Therefore transverse waves are transmitted at a corresponding low
level into the weld metal, e. g. figs. E.11 and E.18. The high viscosity couplant Gel 3000
provides transparency up to 50% for transverse waves, whereas solid coupling between
perspex and weld metal only yields slightly increased transparency, e. g. fig. E.16.

2.5 Bounded beam displacement during reflection at
the liquid-anisotropic solid interface

When an ultrasound beam is incident onto a liquid-isotropic solid interface at an angle
around the Rayleigh angle the following effects occur (Schoch 1952 [166], Bertoni et al.
1973 [47], Ngoc et al. 1980-82 [128, 129, 130]):

1. lateral displacement of the reflected beam relative to its position predicted by geo-
metrical acoustics,

2. splitting of the reflected beam, both partial beams being anti-phase,

3. a weak leaky wave field on one side of the reflected beam, opposite to the incident
beam in the plane of incidence.

What happens, when such a beam is incident at an interface between fluid and anisotropic
solid, is investigated here.

The amplitude field of a sound beam with finite lateral dimensions can be expressed as a

sum of infinite plane waves using the Fourier integral transform pair (Bertoni et al. 1973
[47]).
A beam with Gaussian amplitude profile f(z) is described as

@) = fo exp(~) (250

where w is the half beam waist at the amplitude f;"
The area under the curve of such a gaussian function is:

xZ

Area = foo fo exp(——) dz (2.81)

w?
This can be reduced to a standard Dawson’s integral:
e o]

Area = fow / exp (—y2) dy = fow+/m (2.82)

—00
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Now, fo can be so chosen, that the area under the curve would be unity, viz.

1

Xy
Zy z
‘-ﬁ\
®
Figure 2.21:  Reference co-
ordinale systems: x, and z
X are the coordinates referred to

the pulse and x and z is the
main coordinate system

A

Therefore, the equation 2.80 can be re-defined as:

f(ay) = — exp (—‘("“—2) (2:83)

Referring to the fig. 2.21, the following transformations are used:

Ty =05 1608 0 (2.84)
Z; =% sind (2.85)
w = wg cos § (2.86)

The beam is assumed to be well collimated, viz. S§ > 1. Further, in the vicinity of
the waist, the field can be well approximated by appending the plane wave variation
exp (¢ k z,) to the equation 2.83 [48]. The equations (2.84) can be substituted in the
equation (2.83), which yields the particle displacement velocity Vs, having a profile de-
scribed by the equation 2.83 characterized along the coordinate z transverse to the beam
axis at z =0 by

1 2
el ) = T exp (*5{)2 + Bk :c) (2.87)

where k; = k sinf; is the wave number along the interface and the component of the
beam.

The Fourier transform of equation (2.87) is:

F(ky) = ——exp (—“’—‘M) (2.88)

~ cosb; 4
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Assuming the incident wave to be contained in the z,z plane, where 2 is the boundary
normal to the interface z,y, one obtains the Fourier integral transform pair

VimalX, B) = % f_oo F(ky) exp (2 (k-1)) dk,

B k)= f_oo Vine(7,0) exp(—1 k; z) dz (2.89)

o0}

where vine(, 2) is the particle displacement velocity of the field of the incident beam and
F(k;) is the Fourier integral of the incident field at z = 0.

The Fourier integral (2.89) denotes the superposition of an infinite number of plane waves
incident from water onto an austenitic weld with different amplitudes F'(k,) but all having
the same wavelength. However, their incidence angles are perturbed around the main
beam incidence angle 6;,.. Reflected and transmitted beam profiles can be obtained by
integrating over individual reflected or transmitted plane waves, respectively, which are
dependent on the corresponding coefficients.

Rewriting equation (2.89) at an interface (z = 0) one obtains

Wl 2, 10) = - /m (k) F(ky) exp(e ky x) dky (2.90)

27 J oo

Unlike in isotropic materials, in anisotropic austenitic weld metal three wave modes are
excited, one quasi longitudinal, one quasi transverse, and one pure transverse wave. The
reflectance or transmittance function, r(k;) or t(k.) is nothing but the reflection coefficient
(or transmission coefficient) expressed as amplitude ratio between reflected (or transmit-
ted) amplitude to that of the incident wave, with the transverse wave component (k;)
as a variable. This function can be derived from the equation 2.50. This function, how-
ever, for anisotropic material is lot more complicated than for isotropic material because
of particle displacement deviation and consequently energy flow skewing as discussed in
section 2.2.4 “Group vélocity”.

The integral (2.90) is solved numerically using the Gauss-quadrature relation for 64 points
(Stroud et al. 1966 [32]).

At the boundary between solid and liquid half-spaces Rayleigh waves always exist (e. g.
Viktorov 1967 [35]). But in anisotropic materials, the excitation of Rayleigh wave depends
on the columnar grain orientation of the weld metal at the interface. Under certain
conditions, the Rayleigh wave may not exist at all. Further, in anisotropic media the
structure and properties of Rayleigh waves are more complicated than in isotropic media,
there is no analytical expression for the phase velocity of Rayleigh waves and for the
Rayleigh angle. Generally it is difficult to utilize Rayleigh waves for detecting surface or
sub-surface defects in anisotropic materials due to the fact that the Rayleigh angle which
is a function of grain orientation is difficult to determine. Nevertheless, the Rayleigh
angle can be determined by varying the incidence angle around the supposed angle as
demonstrated in fig. 2.22, which shows the particle displacement velocity (amplitude)
vine(2,0), equation (2.90), at incidence angles varying around the Rayleigh angle.
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Figure 2.22:  Beam displacement: Profiles of the reflected longitudinal wave field due to
a Gaussian beam incident at the water - austenitic weld metal interface. Incidence angle
varying around the Rayleigh angle; grain tilt angle ® = 20° and layback angle ¥ = 10%;
ultrasonic frequency = 2 MHz; transducer diameter = 15 mm



Chapter 3

Ray Tracing

3.1 Scheme of ray tracing

According to the results of the investigations on the structure of austenitic weld metal
(section 1.1.4) for ultrasonic ray tracing in austenitic weld metal it is assumed that the
weld metal can be modeled to be transverse isotropic. However, one has to take into
account that the texture of the weld metal is not unidirectional.

The characteristic feature of the texture of different types of weld microstructure is mo-
deled by the empirical relation given by Ogilvy 1985-90 [139]-[146]

(3.1)

FI— (iT' (D + z tan a’))

||

with (s. fig. 3.1)

-

-

: Figure 3.1: Reference coordinate system and defi-
nition of parameters used to describe the tezture of

oyl M the weld
¢ = Columnar grain angle measured with respect to the reference z-axis
D = Half width of the gap between root faces
T'" = Measure of the slope of the columnar grain axis at the fusion faces
o = Angle of bevel
1 = Measure of the change of the grain orientation as a function of the distance z

from the weld centre line, 0 <9 <1

The ultrasound travels through the columnar grains each oriented differently than its
adjacent neighbours. A fictitious grain boundary is assumed between every pair of grains
for a given ray position. This is represented by the local coordinate system. The elastic
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constants on both sides of the medium are transformed to this local coordinate system
as described in the section 2.4. The boundary conditions (2.30, 2.31) are solved yielding
the amplitude coefficients. The directions of energy flow (the group velocity directions)
of the different wave types are calculated for each medium using the equation (2.22).
The group velocity direction of the refracted ray of the wave type, for which the ray is
traced, is stored in an array. This process is iteratively repeated for the wave type under
consideration till the ray leaves the weld metal. The stored energy flow direction paths
(group velocity direction) are mapped. Whereas this model satisfactorily predicts the
sound path, the reflection and transmission coefficients calculated are of less significance,
since the number of grain boundaries involved in the iterative process is fictitious.

Referring to fig. 3.2 the scheme of the ray-tracing procedure is as follows:

Z)ah

Figure 3.2: Scheme of the ray tracing procedure

e A is the position of the grain with Z., as the columnar grain direction determined
by the empirical relation (3.1).

e B is the position of the grain at the end of the step with size € in the group velocity
direction® with the corresponding grain orientation Z.,. It is assumed that the step
crosses a grain boundary at § denoted by C.

o After calculating the columnar grain orientations at positions A and B by equa-
tion (3.1) and determining the fictitious grain boundary crossed, the elastic con-
stants are transformed (at point C between points A and B) to the local boundary

l¢ is chosen to be small enough, so that smaller values do not influence the beam path
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coordinate system (2],., Yjpes Z10c) from the adjacent columnar grain crystallographic
coordinate systems (X¢py, Yery,Zery) Using the Bond matrix method (1943 [52]) as
described by Auld 1990 [3]. z},.. V.. is the interface. yj,, lies in the plane L to the
paper plane and is not shown.

e The components of the wave vectors tangential to the boundary in both media have
to be equal and contained in the plane of incidence, see equation (2.43). Conse-
quently, the components of all wave vectors perpendicular to the boundary generally
differ.

e Since the 2~ and y-components of the wave vectors K are the input parameters,
the Christoffel equation can be written as a polynomial of sixth degree with the
zcomponent as the variable. This is solved numerically which yields six solutions
for each medium, see section 2.3.

e The valid roots are determined by the group velocity directions as described in
section 2.3.

e The group velocity direction of the refracted wave of interest is selected. Another
step with size € is taken in this direction from the position C.

e D is the position at the end of the step with size € in the group velocity direction
in the adjacent grain with local texture orientation Z..,. Again it is assumed that
the step crosses a grain boundary at ;.

e The iteration is continued as shown in fig. 3.2 till the wave leaves the weld specimen
and the stored group velocity directions are plotted?.

3.2 Results and Discussion

Results for quasi longitudinal, quasi transverse and pure transverse waves (Munikoti et
al. 1994-99 [114, 116, 118, 126]) are presented for different

e incidence angles
e transducer positions

e microstructures (textures).

To simulate a beam, seven rays are assumed to be generated at the probe index point.
The divergence of the rays increases (decreases) by one degree steps with respect to the
central ray direction.

Since the energy flow direction (direction of group velocity) is skewed with respect to the
wave vector direction, ray paths in the figures are three dimensional in nature. For the
sake of simplicity, two dimensional projections (side view and top view) are shown.

Beam paths of quasi longitudinal and pure transverse waves (fig. 3.3 and figs. F.1 - F.3 in
Appendix F) are generally more straightforward than the paths of quasi transverse waves.
However, it can be observed that beam paths are generally highly sensitive to the weld
texture.

“The ray tracing code is written in FORTRAN 77 with graphics integrated. Efforts are underway to
implement this software to a robotic inspection system, UltraSIM [66], of FORCE Institute, Denmark.
This is a P-Scan based 3D robotic system for automated ultrasonic inspection of complex objects.
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This is due to the form of the slowness surfaces. The slowness surface of the quasi
transverse wave exhibits concave and convex areas with cusps which results in largely
varying group velocity (energy flow) directions and ray splitting.

When the quasi transverse wave is incident obliquely at the parent-weld metal interface,
for a particular angle of incidence, the transmitted quasi longitudinal wave may not
be propagating (evanescent). Then, due to the energy balance criterion discussed in
the chapter 2 (section 2.3.2) the incident energy would be redistributed to the other
propagating waves. Under these conditions there are two quasi transverse waves and
one pure transverse wave propagating. The two quasi transverse waves, however, have
different phase velocities, polarization directions and energy contents, fig. 3.4.

At every iterative step, there could be two quasi transverse waves branches, one with
higher energy than the other. In this work both the possible rays have been traced. If
the ray paths of both the quasi transverse waves are not significantly apart, then at the
receiving end of the transducer, both the waves could interfere making it experimentally
difficult to identify the waves, see fig. 3.3 and figs. F.1 - F.3.

Although the ray tracing model neglects some of the more complex conditions of sound
propagation in anisotropic weld metal, such as

e in practice ultrasound is emitted from an emitter of finite dimension as a pulse,
whereas the model considered assumes a plane wave consisting of a single ray,

e the grain boundaries are considered to be planar and smooth,

e the individual grain geometry is not considered, instead the whole weld metal is
assumed to be a polycrystalline material with transverse isotropic symmetry®,

the prediction of the precise ray path in the weld metal depends very much on the weld
model itself. Since an empirical formula is used to determine the texture orientation which
does not consider the actual weld parameters and solidification mechanics, it might not
exactly represent the actual micrograph. Therefore only the ray path trend can be pre-
dicted which is only a qualitative information. Nevertheless this qualitative information
is in good agreement with the corresponding theoretical predictions of sound propagation
direction by the elastodynamic finite integration technique (EFIT) (Marklein et al. 1995
& 1997 [104, 105]).

3The reason for modeling the columnar grained structure of the weld metal as transverse isotropic has
been substantiated in section 1.1.4
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Figure 3.4: Graphical construction to
demonstrate the excitation of two re-
fracted quasi transverse waves at the
boundary between adjacent austenite
grains with different crystallographic
orientations (grain tilt in the plane
of incidence and grain layback is as-
sumed), e. g. Auld 1990, Neumann
1995 [3, 25]. Continuity of the compo-
nents of the coplanar slowness vectors
ban of incident (from medium 1), re-
flected (not shown here), and refracted
waves (into medium 2) tangential to
the boundary directly yields the inter-
sections (B - G) with the slowness sur-
faces of both adjacent media determin-
ing slowness vectors 5 and group ve-
locity 'V, directions of reflected and re-
fracted waves. Due to V, = g—ﬁ the
group velocity 1s perpendicular to the
slowness surface. However, reflected
and refracted waves only propagate, if
their group wvelocities are bent away
from the boundary, Henneke 1972 [76]
(D and G in the case of the quasi trans-
verse wave). In the present case there
18 no intersection with the qL-slowness
surface in medium 2, the gqL-wave ts
evanescent. Besides the two refracted
gT1-waves (with permissible sectors of
the slowness surface shaded) the T2-
wave (intersection F, however, wave
vector and group velocity direction not
shown here) also is excited by the qT'1-
wave, see section D.4.



Chapter 4

Scattering of ultrasound

4.1 Theoretical background

As pointed out in chapter 3 the ray tracing model satisfactorily predicts the sound path
(energy flow direction), whereas the scattering coefficients calculated are of no significance,
since the numerous (fictitious) grain boundaries involved in the iterative process do not
represent a realistic weld. Additionally to predict attenuation of the sound beam due to
multiple scattering at grain boundaries other models are needed. Sound attenuation by
scattering as a function of texture direction and frequency is treated in this chapter.

As described in section 1.1, the weld metal consists of grains having discrete shape
and crystalline structure, macroscopically exhibiting transverse isotropic property. Since
in anisotropic materials the elastic properties are functions of the direction within the
medium, the wave propagation in such materials shows “anisotropic” character viz., quasi
nature of waves, associated polarization, and beam skewing as described in chapter 2.
Furthermore, an ultrasonic wave traveling in such an inhomogeneous medium undergoes
multiple reflection, transmission, and mode conversion (subsumed as scattering) at grain
boundaries and, therefore, the ultrasound beam gets attenuated. Grain scattering depends
on:

1. elastic anisotropy of the grains,
2. geometric features of the grains,

3. grain boundaries.

Therefore these properties have to be incorporated in the theoretical modeling.

In materials without texture the crystallographic axes of the grains are randomly oriented,
so that statistically all directions are equally probable. Modeling of such material can
be achieved, e. g., by assuming spherically shaped grains. But the case, which will
be discussed here, is the material with texture, where not all crystallographic axes are
randomly oriented. Texture can be induced by columnar grain growth in austenitic weld
metal, see section 1.1, or during rolling and other similar manufacturing processes.

The unified model on elastic wave propagation in polycrystalline materials as proposed
by Stanke and Kino 1984 [177, 178] will be used and extended to austenitic weld metal,
an anisotropic, polycrystalline material with cylinder-symmetric texture.
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4.2 Theory

4.2.1 The stochastic wave equation

The particle displacement of the field u; = pr exp (—@ Er) associated with the prop-

agation of an plane elastic wave through a polycrystalline medium is governed by the
stochastic wave equation given by Stanke and Kino:

{rik —p ;—; (5%] [ve] = 0 (4.1)

where

Ty = [ ikl T € <Afjm> — {<Afjmn,&£pkl> = <L\fjmn> <A§pkl>} X

/ Gno(T) {W(r) et ﬁ}

:F Ty
v U snp

f =81
B =k —

The wave propagation is assumed to be along the z direction of the reference coordinate
axis. Then the indices j,! = 3, viz. the components of the unit wave vector = {0,0,1}.
Therefore the equation 4.1 can be written as:

Lip = Gfsm +€ <A§3k3> — g {<A§3mnA§pk3> - <A§3mn> <Aipk:3>} 7 Imfm? (4'2)

el ™ 27 .
Tronp = / / / Gmo(r) {W (x) e *P} , r¥sin0d pdbdr (4.3)
o Jo Jo

where 72 sin 6 is the volume element of the spherically shaped grain.

The definitions of the terms in the stochastic wave equation (4.1) are given explicitly in
appendix G.

The task is to determine & (wavenumber) and « (attenuation coefficient).

The solution to the Christoffel equation (2.2) has been treated in section 2.2. The eigen-
values of the matrix correspond to the phase velocities and the eigenvectors to the particle
displacement velocities. For a given crystal system, there are three real eigenvalues and
corresponding eigenvectors. In the case of the modified Christoffel equation (4.1) the
eigenvalues are complex, the real part of which corresponds to the phase velocities and
the imaginary part to the attenuation of the waves. Also, the eigenvectors are complex
describing elliptical polarization (Fedorov 1968 [15]).

The first term of I';; in equation (4.1) represents the Voigt’s average elastic constants
describing the elastic isotropy condition.

The second term which is a first order term in & represents the one-point averages. At
this stage, the solutions to equation (4.1) do not yet predict attenuation, but treat the
material as a mono-crystal with transverse isotropic symmetry.
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The second order term in ¢ includes the effects of frequency and grain shape (equiaxial
or elongated) which yields attenuation by scattering.

The volume integral involving steady state Green’s function (equation 4.3) contains the
inverse autocorrelation function W (r), which describes the grain shape. If the grains are
equiaxed, e. g. are spherically shaped grains, having all the same average grain diameter

to height ratio: ¢ — 1, then W (r) is replaced by W (r)'.
On the other hand, when the grains are elongated in the growth direction, forming colum-

nar grains as discussed in section 1.1, so that % # 1, a “shape function” has been developed
empirically by Ahmed et al. 1984 [40] and Hirsekorn 1988 [86]:

W(r) _ 6_%\/;‘[(%)21} cos? @ (4.4)

— 1 the correlation function for equiaxed grains is got

el

It can be easily seen that as
back.

4.2.2 Method of solution to the stochastic wave equation
To solve the equation (4.1) the following assumptions are made:

e The grains have cubic symmetry, which can be expressed as:

Cijit = Ch2(04j0m) + Cua (0ixj1t + 6:65k) + A @i Qnj Gn Ay

A= C; — Cha — 2 U4y is the anisotropy factor.
The transformation matrix (or rotation matrix) a = a;; is given in appendix G.

The medium is single phased and polycrystalline. The polycrystalline medium how-
ever, exhibits a texture behaving macroscopically transversely isotropic. Therefore,
the weld metal in the calculations is treated to have transverse isotropic'symmetry.

e The anisotropy of the weld metal is treated as perturbation of the isotropic material
status in the second order approximation. The perturbation parameter £, which
specifies the level of the microscopic inhomogeneities in elastic constants, is small,
viz. € < 1. This is the fundamental assumption for Keller’s approximation. It is in
principle arbitrary since only the product &€ A;;;,; appears in the stochastic equation.
It has been defined as root mean square variation in the propagation constant of
the dominant mode, Stanke 1983 [177]:

& <[§R(ﬁt(1]3)2— k0]2> (4.5)

(subscript ¢ can be qL, qT1 or T2) or in terms of effective elastic constants

((Crsx) - C3,T)

0 2
CIJ

1
2N_
&~

(4.6)

1d corresponds to the average cord or segment length L, measured by the interrupted segment method
according to DIN 50601
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where R(5;) are the wave numbers of the type of wave under consideration in the
presence of scattering and kg is the wave number of the corresponding wave in the
absence of scattering, i. e. in isotropic material.

¢ is considered for the indices 7, J = 3, which means that wave propagation is in the
z-direction, and for the layback angle ¥ = 0°, which means that wave propagation
is in the meridian plane.

Using equation (G.3) together with equation (G.11), equation (4.6) yields:

o 1A% (4449 4 2840 cos2 @ + cos4 ® + 2600 cos6 ® + 2475 cos8 D)
4 102400 C9,°

€ (4.7)

where @ is the columnar grain tilt angle in the meridian plane. The function (4.7)
is evaluated for the grain tilt angle range 0° < @ < 90°, fig. 4.1.

0.14
0.12 *
0.10 4
0.08
0.06

0.04 -

Perturbation parameter ¢

0.02 - Figure 4.1: Perturbation parameter ¢ as a

function of the columnar grain tilt angle in

0 T the meridian plane, corresponding to the di-

0° 15° 30° 45° 60° 75° 90° rection of wave propagation in the meridian
Grain tilt angle @ plane

It can be concluded that the condition £ < 1 is fulfilled.

e The Green’s function for isotropic media, as given by Lifshits and Parkhomovski
[99], Gubernatis 1977 [71], Mura 1987 [22], has beeen used.

The texture of the weld metal may exhibit layback (by the angle ¥ with respect to the
z-axis of the laboratory system x,y, z) in the direction of welding and bending (by the
angle ®) in the direction perpendicular to it. Therefore the grain axis Z is generally not
contained in the plane of ultrasound incidence.

Since the weld metal texture has transverse isotropic symmetry the associated (complex)
eigenvalues of equation (4.1), which includes attenuation by scattering, are also rotational
symmetric, it therefore would have been principally sufficient to calculate the (complex)
eigenvalues and (complex) eigenvectors in the meridian plane. However, to determine
attenuation for an arbitrarily oriented columnar grain texture (described by the angles ¥
and @) it is more convenient to solve equation (4.1) three-dimensionally.
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Only normal incidence of sound is assumed. However, varying ® and ¥, this is no loss of
generality since all directions of propagation are covered by this.

It has to be emphasized moreover, that no restrictive assumptions are made with respect
to the polarization direction of waves, viz. polarization deviation is taken into account
stringently.

4.2.2.1 Symbolic evaluation

In the stochastic wave equation (4.1) the indices j, [ = 3, which mean the direction of
propagation, are assumed to be in the direction of the z axis of the laboratory coordinate
system.

The one-point averages and the two-point averages along with the integral containing
Green’s function are evaluated symbolically®.

4.2.2.1.1 One point averages: The term <A§jkl> in equation (4.1) is evaluated with
indices 7, I =3,¢, k—1:-:3.

4.2.2.1.2 Two point averages: The term

(<A13m”A0pkl> <A1§Jmn> <Aopk£>) Imonp

in equation 4.1, where I,on, is the Green’s integral (4.3), is evaluated with the indices
j,l*?;z—}l -3 and m,n,o0,p — 1---3.

From the total of the two point averages the indices m,n, o, p of the 21 non-zero terms
are:

Indices for m,n,o,p
T111]8 [1,221]15]3,1,1,3
2222| 9 |2,1,1,2]16]3,3,1,1
121,210 221,117 3,223
2,1,21(111,1,33|18| 33,22
131312 1,3,31]193,1,3,1
2323132233 | 203232
11,22 |14:|2,83,2 | 21 | 3,333

=1 S| G = | WD =

4.2.2.1.3 Green’s integral: The procedure to evaluate Green’s integral (4.3) in the
equation (4.1) is shown in the flow chart fig. 4.2.

Green’s integral Ip,ony is evaluated for the following indices:

T = T2z (4.8)

Ii2e = Iponr (4.9)

1133 = In233 (4.10)

Io12 = Tgo1 = iz = Ioin (4.11)
Lis1s = Iissy = Iosos = Toazz = Iz = Isiat = Iso03 = Jaop (4.12)
Is311 = Isz20 (4.13)

3333 (4.14)

2The commercially available software Mathematica 3.0 [36] is used.
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fio),, U704 Froa,
0 rli 0 ¥ 0
No [ ric)ar
A4 0
Partially integrate till
it reduces to type @
£,0) |:+Jf @ dr &
0
Yes Store the results
B ¥ after evaluation
Store the terms
AN
L

Evaluate contents of B:
rglm j‘:'] (’) i r‘gt() 'f’} (I)
+
contents of A

Figure 4.2: Flow chart for evaluating Green’s integral

Due to the symmetry of the Green’s function this task gets reduced to evaluation of seven
integrals.

The symbolic computation of the Green’s integral is as follows:

1. First it is integrated with respect to the polar angles § and ¢ and then the r-integral
is evaluated.

The types of terms found after the angle integration are as follows, fig. 4.2:

e Type 1: Terms free of the term r in the denominator. This type has the form

/ "), / i)

where f(r) is of type exp(—ar) sinbr, fﬁoo exp(—ar) cosbr

/""f(?")
g

o Type 3: Terms containing [° £ where the order of singularity n = 7.
¥, gJlo & g y

e Type 2: Terms of the type
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4. The remaining terms of Green’s integral are evaluated by taking the limits:

lim(f(r))[e°

The sum of the results of type 1, 2 and 3 yields the required complex transcendental
equation in symbolic form.

The standard integrals arising in the evaluation of Green’s integral are given in appendix G
(Gradshteyn 1965 [16] ).

However, the symbolic computation has been possible only for the case of equiaxed grains.
In the case of elongated grains, where the inverse autocorrelation function (4.4) has to
be used, the evaluation process has to be reversed, viz. ‘r’-integration is carried out in
the first step. The resulting expression must be evaluated numerically. All the standard
integrals arising in evaluating this case are given in appendix G.

4.2.2.2 Numerical evaluation

From symbolic computation of the stochastic wave equation a [3 x 3]-matrix is obtained as
a function of the complex propagation constant 3;. The resulting characteristic equation,
a univariant complex transcendental equation, is solved numerically*. To find the zeros
of the equation Miiller’s method in addition to a method based on inverse quadratic
interpolation is applied (Engeln-Miillges et al. 1987 [13], collected algorithms from CACM
[54]). The zeros located in the vicinity of the wavenumber in the absence of scattering are
determined. A valid root is selected such that the difference between the wave number
with scattering and without scattering is minimum. Further, in case of transverse waves,
for the valid roots, polarization directions (eigenvectors) are determined. Based on the
polarization directions the roots are assigned.

4.3 Results and discussion

4.3.1 Attenuation

Attenuation coefficients® have been calculated (Munikoti et al. 1998-99 [117, 118]) as a
function of

e wave vector to Z-direction of the crystallographic system X, Y, Z, which is generally
composed of layback in the welding direction by an angle ¥ and grain tilt in the
perpendicular plane by an angle @,

e frequency,

el

e grain shape parameter

3Reportedly some standard definite integrals (not used in this work) are printed wrongly. The
correct forms can be found at hitp://www.mathsource.com/Content/Publications/Other/0205-557

4The computer code for evaluation is written in FORTRAN 77 which uses mathematical routines from
the commercially available “International Mathematical Society Library” (IMSL).

SMaterial elastic constants have been chosen for an austenitic CrNi 18 12 stainless steel as given by
Bradfield 1964 [53]: C11 = 2.16, C12 = 1.45, and Cas = 1.29 [10'N/m?].

d corresponds to the cross-section of the grain, also in the case of elongated grains
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Figure 4.3: Attenuation co-
efficients of the three wave
modes qL, ¢T1, T2 as a
function of the grain orien-
tation.

Grain shape: equiazed,
grain size d = 100 um,
Frequency: 2 MHz
(Munikoti et al. 1998-99
[117, 118])
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Figure 4.4: Attenuation co-
efficients of the three wave
modes qL, ¢qT1, T2 as a
function of the grain orien-
tation.

Grain shape: equiazed,
grain size d = 800 ym,
Frequency: 2 MHz
(Munikoti et al. 1998-99
[117, 118])
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4.3.1.1 Dependence on propagation direction

The attenuation coefficients of the three wave modes as a function of the wave vector to
Z-direction of the crystallographic system X, Y, Z are shown in figs. 4.3 and 4.4.
Attenuation of the quasi longitudinal wave has been measured in the meridian plane
of columnar grained austenitic cast X 5 CrNi 18 10 and Ni-based weld metal NiCr 19
Nb (Ernst et al. 1999 [60] - [62], Seldis 1999 [169], Panetta et al. 1998 [148]). The
meridian plane is characterized by the layback angle = 0°. Taking into account, that
according to metallurgical investigations of these specimens (s. section 1.1.1) the average
grain size is measured in the range between 0.5 mm and 3 mm, the agreement between
measured attenuation coefficients (fig. 4.5) and theoretical predictions (figs. 4.3 and 4.4.)
is satisfying.
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Figure 4.5: Attenuation coefficients of

the quasi-longitudinal wave qL as a
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The measured attenuation coefficient deviates from the theoretical prediction at low wave
vector to grain angles ©. This is due to deviations of the columnar grains in the austenitic
weld specimens from parallel alignment which yields already theoretically attenuation
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larger than zero.

Whereas for quasi-longitudinal and pure transverse waves attenuation theoretically va-
nishes when propagating in the columnar grain direction and reaches a maximum when
propagating perpendicular to the columnar grain direction for the quasi transverse wave
maximum attenuation is occurrs at about 45° and both, at normal incidence and at 90°,
no attenuation is predicted.

Moreover, it is noteworthy that attenuation of the quasi transverse wave is comparatively
lesser than for quasi longitudinal and pure transverse waves. This has also been experi-
mentally validated (e. g. Neumann 1995 [25]). Therefore it is not attenuation that renders
the quasi transverse wave inappropriate for austenitic weld testing. It is rather because
of the beam splitting this wave type undergoes in austenitic weld metal, s. chapters 2
and 3.

Certain observations concerning coherence of wave vector and polarization on the one
hand and attenuation on the other hand are summarized in table 4.1.

- Attenuation
tivi
¢ f; e Wave mode
texture qlL qT1 1=
k| pl Min Table 4.1:  Dependence of attenuation on
k|| pL | —— | Min Min wave vector (k) and polarization direction

Munikoti et al. 1998-
TR (p) (Munikoti et al. 1998-99 [117, 118])

kL p|| | —— | Min | ——
k< p< | Interm. | Max | Interm.

4.3.1.2 Dependence on frequency

The unified theory yields unique results of calculation of attenuation for all frequency
ranges, viz. subdividing analysis of attenuation into Rayleigh region, stochastic region,
and geometric region is no longer necessary.

The grain tilt in the example of figs. 4.6 and 4.7 is restricted to the meridian plane,
which is the propagation plane (grain angle ® varying between 0° and 90°). However, the
frequency dependence of the attenuation coefficient can be calculated for each grain tilt
composed of the grain angle ® in the ¥ Z-plane and the layback angle ¥ in the X Z-plane,
see also section 4.2.2. As an example for this an incidence plane with a layback angle
¥ = 20° being typical for austenitic welds has been chosen, fig. 4.8.

The figs. 4.6 - 4.8 are incorporating the three frequency regions of ultrasonic scattering
(e. g. Hecht 1986 [75]):

>l

e Rayleigh region: 0.02 < £ < 0.2

e stochastic region: % 2 1
o ?% > 1

Generally, attenuation by scattering reaches a high level with % increasing, becomes inde-
d

3 in the stochastic region though on a high level and decreases in the geometric

pendent on
region.
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Figure 4.6: Attenuation co-
efficients of the three wave
modes qL, qT'1, T2 in the
meridian plane as a func-
tion of frequency and grain
angle.

Grain shape: equiazed,
grain size d = 100 pm,
(Munikoti et al. 1998-99
(117, 118)).
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Figure 4.7: Attenuation co-
efficients of the three wave
modes qL, qT1, T2 in the
meridian plane as a func-
tion of frequency and grain
angle.

Grain shape: equiazed,
grain size d =500 pm
(Munikoti et al.  1998-99
[117, 118]).
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Figure 4.8: Attenuation co-
efficients of the three wave
modes gL, qT'1, T2 in an
arbitrary plane (Layback
angle ¥ = 20°) as a func-
tion of frequency and grain
angle.

Grain shape: equiazed,
grain size d =100 um
(Munikoti et al. 1998-99
/117, 118]).
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Related to the same wavelength attenuation of the pure transverse wave with increasing
frequency reaches a level of attenuation, which is three times higher than those of the
both other waves. This confirms once more that it is not attenuation that renders the
quasi-transverse wave inappropriate for austenitic weld testing but beam splitting this
wave type undergoes in austenitic weld metal, s. chapters 2 and 3.

4.3.2 Phase velocity variation due to scattering

In the presence of ultrasound scattering the phase velocity varies. The normalized phase
velocity variation, which is the phase velocity variation in the presence of scattering with
respect to the phase velocity in the absence of scattering, is presented in fig. 4.9 as a
function of the columnar grain orientation.

It turns out that the phase velocity variation of scattered waves does not differ greatly
from that of the phase velocity in the medium without scattering, viz. by maximum 0.5%
(at 2 MHz ultrasound frequency). This could be analytically explained as described in
appendix H.

Furthermore, in the presence of ultrasound scattering dispersion of phase velocity occurs,
fig. 4.10. It reaches up to 4%.
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4.3.3 Polarization deviation in the presence of scattering

As discussed in section 2.2.3, the quasi character of the waves in anisotropic media is due
to the polarization deviation with respect to the wave vector direction. In the presence of
attenuation due to ultrasound scattering the polarization deviation is changed. Fig. 4.11
shows this extra deviation as a function of the columnar grain orientation.

Figure 4.11: Polarization
deviation Osqr of the quasi
longitudinal (qL) and the
quasi  transverse  (qT1)
waves due to ultrasound
scattering as a function of
the colummnar grain orienta-
tion. Frequency = 2 MHz,
Grain  shape: equiazed,
grain size d = 100um
(Munikoti et al. 1998-99
[117, 118]).

Whereas the polarization of the pure transverse (T2) wave remains unaffected by scat-
tering which is always perpendicular to the wave vector, the other waves (qL and qT1)
exhibit an extra (same) deviation up to 2°.



Chapter 5

Conclusion

5.1 Contributions

In this work the propagation behaviour of ultrasound in austenitic weld metal has been
analyzed by the time-harmonic plane wave approach. Bounded beam and pulse propa-
gation as occurring in ultrasonic testing can be sufficiently dealt with by this approach.
More sophisticated approaches principally do not offer any improvements in the results of
plane wave modeling except for diffraction and aperture effects and, therefore, the subject
matter of this work has been limited to plane wave propagation in the bulk of the medium
and at different types of interfaces.

Inspite of the fact, that the individual columnar grains of the weld metal have cubic sym-
metry, the austenitic weld metal as a whole exhibits cylinder-symmetrical texture, as sub-
stantiated by metallurgical examination, and therefore has been treated as an anisotropic
poly-crystalline medium with transverse isotropic symmetry.

5.1.1 Wave modes

Generally three wave types occur in anisotropic materials. In media with transverse
isotropic symmetry these are one with predominantly longitudinal character, one with
predominantly transverse character, and one pure transverse wave. They are found as
solutions of the eigenvalue problem represented by the Christoffel equation for the infinite
space yielding direction-dependent phase and group velocities, and direction-dependent
polarizations of the three wave modes, all of which have been calculated for ultrasound
propagation in three-dimensional space:

e Generally in anisotropic materials the group velocity direction deviates from the
direction of the wave vector. The practical consequence of this is beam skewing, so
that in ultrasonic testing of anisotropic specimens the transducer has to be offset
to effectively intercept the beam. Furthermore, an ultrasonic beam entering the
anisotropic medium spreads due to the effect of beam skewing. It has been shown,
that in the range of incidence angles relevant for ultrasonic weld testing

- the divergence of a quasi longitudinal beam is predominantly reduced,

- on the contrast the divergence of a quasi transverse beam is predominantly
increased, '

- the divergence of a pure transverse beam is least affected compared to the other
wave types.

93
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e The particle displacement polarizations form an orthogonal trihedral. If the colum-
nar grain direction is not contained in the plane of wave propagation, the particle
displacement polarizations are neither restricted to the plane of propagation nor
perpendicular to it, respectively. The directions of polarizations rather vary in the
three dimensional space as a function of the wave vector direction. Therefore the
character of the waves which is described by the particle displacement polarizations
is changed. In particular the character of the transverse waves, viz. vertically and
horizontally polarized in the meridian plane, generally is not maintained.

Following details have been shown:

1. The properties of the T2 wave are as follows:

— The polarization direction of the transverse wave T2 is invariant, i.e. al-
ways perpendicular to the columnar grain direction Z.

— It is always perpendicular to the k vector. Therefore T2 has been defined
as a pure wave.

— The polarization of the T2 wave varies as a function of the k vector direc-
tion in the plane transverse to it. This means that it is not perpendicular
to the plane of sound propagation and therefore T2 is generally not hori-
zontally polarized.

2. The polarization direction of the transverse wave qT1 is not in the plane of
sound propagation and therefore qT1 generally is no longer vertically polarized.

3. Increasing tilt of the columnar grain direction Z relative to the plane of wave
propagation causes the transverse wave polarizations to change their 'roles’:

3.1 If the grain tilt reaches 90°, the polarization of the pure transverse wave
T2 is contained in the plane of wave propagation, therefore being now ver-
tically polarized, though as before perpendicular to k vector and columnar
grain direction Z.

3.2 If the grain tilt reaches 90°, the polarization of the now pure transverse
wave T1 becomes independent of the wave vector direction, and will be
perpendicular to the plane of wave propagation, i. e. horizontally polarized.

Since polarization determines mode coupling at interfaces it can be concluded that

— in the case of an interface between two isotropic materials, the horizontally
polarized wave (Ty) does not couple with the other two waves, viz. with the
vertically polarized shear wave (Ty) and the longitudinal wave (L) and vice
versa,

— in the case of an interface between two anisotropic materials, always all three
wave modes couple.

5.1.2 Reflection and transmission

Plane wave reflection and transmission between two generally anisotropic materials has
been analyzed. The analysis was divided into three sections:

e Reflection and transmission at perfect interfaces, which is a defect free rigid contact
interface,

e Reflection and transmission at imperfect interfaces including the thin viscoelastic
layer between perspex and anisotropic medium (i. e. the coupling of the ultrasonic
transducer to the anisotropic weld and cladding metal),



5.1 CONTRIBUTIONS 95

e Reflection of bounded beams at an interface between fluid and anisotropic solid.

At the interfaces columnar grain orientations in the anisotropic weld metal were chosen as
encountered in typical non-destructive testing problems. The computer codes to calculate
reflection and transmission energy coefficients are written in FORTRAN 77 with graphics
integrated. The types of interfaces considered were:

e Isotropic base metal - anisotropic weld metal, representing the weld fusion
face and the cladding interface.

The transparency of the perfect interface for all three wave modes is fairly high
and approximately independent of the columnar grain orientation. Mode conversion
only marginally exceeds 10%, generally it is much lower. However, transverse waves
exhibit mutual mode conversion at the fusion face, which depends on the columnar
layback angle and can reach up to 100%. The energy of the transmitted transverse
waves depends on the polarization of the incident transverse wave, because only
modes with (at least partially) identical polarizations couple to the incident wave.

Conventional ultrasonic probes generate either vertically polarized transverse waves
or horizontally polarized transverse waves. These waves incident from the isotropic
face are split at the fusion face. In the anisotropic medium only two orthogonally
polarized transverse waves, qT1 and T2, exist. In the case that the columnar grains
are tilted relative to the plane of incidence, this decreases the energy of transverse
waves considerably during examination of austenitic welds and cladded components.
Both the transverse waves do not superpose due to different refraction angles.

In the isotropic base material, however, the both transmitted components, Ty and
Ty, are degenerated and therefore form a resulting transverse wave T with polar-
ization according to the intensities of both superposed components.

e Anisotropic base metal - anisotropic weld metal, represent the weld fusion
face in welded austenitic cast components and the interface between adjacent colum-
nar grain bundles.

Again for all three wave modes the transparency of the perfect interfaces made up
by adjacent different crystallographic orientations is fairly high and is approximately
independent of the columnar grain orientation. Mode conversion of the incident
energy exceeds 10% only at certain points, generally it is much lower.

However, direction dependent mutual mode conversion of transverse waves can reach
100% as before.

At boundaries between two general transverse isotropic media with different grain
orientations, when the propagation plane is not the meridian plane but an arbitrary
plane, always both transverse wave modes couple simultaneously - with complemen-
tary energy distributions in reflection and transmission -, both with considerable en-
ergy, because the particle displacement polarization direction of the incident wave
is not restricted by any crystallographic symmetry conditions.

Whereas the grain angle, which denotes the tilt of the columnar grains n the inci-
dence plane, does not influence the transverse wave mode conversion at large scales,
it is the layback angle denoting the tilt of the columnar grains out of the incidence
plane, which governs the transverse wave mode conversion. In austenitic stainless
steel weld testing with layback angles in the welding direction up to & 20° and even
more between adjacent dendritic bundles, large transverse wave mode conversion
rates are to be predicted even in the low angle range, attenuating considerably the
transverse wave actually used for testing.



96 CHAPTER 5. CONCLUSION

In the special case where the columnar grains are contained in the meridian plane,
i. e. no layback of the columnar grains in the incident plane, ( medium 1), mutual
mode conversion of the transverse waves in medium 2 is similar to what is observed
at the fusion face at wave incidence from the isotropic face.

Also the transparency of solid imperfect interfaces for all wave modes is still
fairly high, though the crack area fraction comprises 75% of the interface. However,
in contrast to the solid perfect interface a larger portion of the incident energy is
reflected, mainly in the range below 45° incident angle ©. In this region reflection
increases with frequency, and may be used to characterize the interface.

Similarly it is observed that a larger portion of the incident wave energy, quasi
longitudinal and quasi transverse, is mode converted reaching 15% at incidence
angles larger than 45°, both, in reflection and refraction. However, mode conversion
to the pure transverse wave T2 generally does not exceed 1%.

e The transparency of thin viscoelastic layers between isotropic and anisotropic
materials, which represents the coupling layer between ultrasonic probe and austenitic
material, basically is similar to that obtained during coupling on isotropic material.
The columnar grain direction in the weld metal relative to the coupling surface only
has little influence on the echo transparency.

Generally, as a matter of fact, transverse waves do not pass through a fluid cou-
pling layer due to its vanishing viscosity. However, the viscosity of glycerine and
even fresh water, though very small, is not zero. Therefore transverse waves are
transmitted at a corresponding low level into the weld metal. High viscosity cou-
plants provide transparencies up to 50% for transverse waves, whereas solid coupling
between perspex and weld metal only yields slightly increased transparency.

Splitting of the slowness surface domain of permissible wave vector angles of
the quasi transverse wave: Due to the concave parts of the slowness surface of the
quasi transverse wave in anisotropic austenite for certain incidence planes the slowness
surface splits into disjoint sectors of “permissible” wave vectors.

This is because the existence criterion for reflected and transmitted ultrasonic waves is,
that their energy flow direction (group velocity) vectors should be real and point away from
the boundary, thus defining the sectors of the slowness surface containing the permissible
wave vectors. The remaining sectors of the slowness surface contain “forbidden” wave
vectors, because reflected and transmitted sound rays would be directed towards the
interface: such rays do not exist.

This splitting phenomenon occurs both in transmission and reflection, when upon inci-
dence of the quasi transverse wave qT1 and also of the pure transverse wave T2 the wave
vector of the mode converted quasi-longitudinal wave qL reaches its critical angle. The
incident energy then is redistributed and a second qT1(2) wave is transmitted instead of
the qL. wave, the phase velocity having continuously decreased as a function of the inci-
dence angle © from the value of the gL wave to the value of the quasi-transverse qT1(2)
wave. Both qT1 waves have almost the same phase and group velocities with slightly
different polarization directions. This poses special problems in testing of materials with
transverse waves, making them less suitable for inspection.

The Schoch-effect, viz. the lateral displacement and splitting of an reflected ultra-
sound beam upon incidence of a beam onto a liquid-solid interface at an angle around
the Rayleigh angle has been calculated for a beam with Gaussian profile for the liquid-
anisotropic solid. Apart from the effect that the Rayleigh angle and the phase velocity
of Rayleigh waves vary with the columnar grain orientation, lateral displacement of the
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reflected beam relative to its position predicted by geometrical acoustics and splitting of
the reflected beam are observed qualitatively similar to the isotropic case.

5.1.3 Ray tracing

Determining the columnar grain distribution by an empirical function, interfaces could
be defined between neighbouring grain boundaries. A numerical procedure has been
developed describing the transmission of ultrasound as it propagates through numerous
grain boundaries and the energy flow direction associated with the wave of interest. Since
the energy flow direction (direction of group velocity) is skewed with respect to the wave
vector direction, ray paths generally are three dimensional in nature. The procedure
developed allows to trace the most probable paths of ultrasound in anisotropic weld
metal three dimensionally. The ray tracing code is written in FORTRAN 77 with graphics
integrated.

Results for quasi longitudinal, quasi transverse and pure transverse waves are presented
for different incidence angles, transducer positions, and microstructures (textures). To
simulate a beam, seven rays are assumed to be generated at the probe index point. The
divergence of the rays increases (decreases) by one degree steps with respect to the central
ray direction.

Beam paths of quasi longitudinal and pure transverse waves are generally more straight-
forward than the paths of quasi transverse waves. However, it can be observed that beam
paths are generally highly sensitive to the weld texture. This is due to the form of the
slowness surfaces. The slowness surface of the quasi transverse wave exhibits concave
and convex areas with cusps which results in largely varying group velocity (energy flow)
directions and ray splitting.

When the quasi transverse wave is incident obliquely at the parent-weld metal interface,
for a particular angle of incidence, the transmitted quasi longitudinal wave may not be
propagating (evanescent). Then, due to the energy balance criterion the incident energy
would be redistributed to the other propagating waves. Under these conditions there are
two quasi transverse waves and one pure transverse wave propagating. The two quasi
transverse waves, however, have different phase velocities, polarization directions and
energy contents.

At every iterative step, there could be two quasi transverse waves branches, one with
higher energy than the other. In this work both the possible rays have been traced. If
the ray paths of both the quasi transverse waves are not significantly apart, then at the
receiving end of the transducer, both the waves could interfere making it experimentally
difficult to identify them.

5.1.4 Scattering of ultrasound

By assuming the weld metal to be mono-crystalline with transverse isotropic symmetry,
the attenuation which is inherent in such materials can not be accounted for. The weld
metal, therefore, has been assumed to be an anisotropic, polycrystalline material with
cylinder-symmetric texture (transverse isotropy). Such material exhibits grain scattering
depending on elastic anisotropy and geometric features of the grains and on the grain
boundaries. To determine attenuation for an arbitrarily oriented columnar grain texture
three-dimensionally the unified theory on elastic wave propagation in polycrystalline ma-
terials as proposed by Stanke and Kino in the Keller’s approximation for equiaxed grains
has been extended to austenitic weld metal. No restrictive assumptions are made with
respect to the polarization direction of waves, viz. polarization deviation is taken into
account stringently.
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Attenuation coefficients in an austenitic CrNi 18 12 stainless steel have been calculated as
a function of the wave vector to Z-direction of the crystallographic system X,Y, Z, and as
a function of frequency. The computer code for evaluation of reflection and transmission
energy coefficients is written in FORTRAN 77 which uses mathematical routines from the
commercially available “International Mathematical Society Library” (IMSL).

Whereas for quasi-longitudinal and pure transverse waves attenuation theoretically va-
nishes when propagating in the columnar grain direction and reaches a maximum when
propagating perpendicular to the columnar grain direction, for the quasi transverse wave
maximum attenuation occurs at about 45° and, both, at normal incidence and at 90°, no
attenuation is predicted.

Generally, attenuation by scattering reaches a high level with the grain size to wavelength
ratio increasing and becomes independent on this ratio in the stochastic region though
on a high level.

Attenuation of the quasi transverse wave is lesser than for quasi longitudinal and pure
transverse waves related to the same wavelength. With increasing frequency the pure
transverse wave reaches a level of attenuation, which is three times higher than those of
the both other waves. Therefore it is not attenuation that renders the quasi transverse
wave inappropriate for austenitic weld testing. It is rather because of the beam splitting
this wave type undergoes in austenitic weld metal.

In the presence of ultrasound scattering the phase velocity varies by a maximum of 7%
at 2 MHz and 100 pm grain size. Also dispersion of phase velocity occurs, which reaches
6% in the range up to 5 MHz at 100 pm grain size. Furthermore, in the presence of
ultrasound scattering the polarization deviation is changed. Whereas the polarization of
the pure transverse (T2) wave remains unaffected by scattering being always perpendicular
to the wave vector, the other waves (qL and qT1) exhibit an extra deviation up to 2°.

5.2 Areas for continued research

5.2.1 Modeling

The theory of scattering in spherical grains has been extended to ellipsoidal grains using
the correlation function (4.4) suggested by Ahmed, see section 4.2.1. The necessary
mathematical programming has been done and is in final stages of implementation.

5.2.2 Software

For the present work ultrasound propagation softwares have been developed which use a
macroscopic material model based on the result from averaging the microscopic anisotropy
of the single grains. However, since grain growth simulation software is available, which
uses the welding input parameters and weld pool data, as well as the data of *Orientation
Imaging Microscopy’ (s. section 1.1), it would be worthwhile to integrate this simula-
tion software with the software dealing with ultrasound propagation in such simulated
structures in order to validate the predictions of ray tracing.

5.2.3 Experimental validation

Measurements of the attenuation of the three wave modes in real materials comprising
the full scale of industrially relevant stainless steels (austenitic stainless CrNi-steels, fully
austenitic stainless steels with increased Ni-content, Nickel based-alloys, and Duplex steels
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(Ferritic-austenitic steels)) can determine how generally useful the plane wave ansatz and
the present material model is. The theoretically predicted attenuation of quasi longitu-
dinal waves could be already verified (see section 4.3.1.1). The experience gained hereby
showed that any procedure that does not fully account for the anisotropic nature of the
material is bound to yield disputable results: if energy losses due to mode conversion, due
to beam skewing and beam spreading, which are characteristic for the anisotropic nature
of the media considered in this work, are not taken into account, apparent attenuation
due to these effects adds to the scattering-induced attenuation.

It is this apparent attenuation that renders measurement and evaluation of scattering-
induced attenuation of shear waves in austenitic steel samples more difficult, because it
may reduce the amplitude of the reflected signal to the noise level.

Experimental ray tracing also can determine how useful the plane wave ansatz and the
present material model is. This needs a series of weld metal specimens, which allow to
measure contour maps of the sound field distribution at increasing sound path lengths.
Specimens of an austenitic stainless CrNi-weld are already available.
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Appendix A

Equivalence of group and energy velocities

As defined in (2.1), the plane wave is of the form
ur = A py, exp (kr —wt)
= A py cos ¢,

where (k.r — w t) = ¢, is the phase.

Uy = A ppw sing
Now, according to Hooke’s law
T%j = Cz'jmﬂ Smn
1 (0w Ouy
Su==-\5—+35—
B=5 (au; + P
Substituting the equation A.4 in the equation A.3 yields

1 Oy, Oy,
P 5 = g |
4 g M (&un t My,

(A.5)

In equation A.5, k,[ are dummy indices, therefore they have to be summed up according

to Einstein’s summation convention. Therefore, the equation A.5 can be written as

Oy,
where
ou
™ = —k,, pp Sin
au’n pn ¢
|
Eyin = 3P w?

=5 A? w? p? sin qﬁi

Al

(A.6)

(A7)

(A.8)



A2 APPENDIX A: EQUIVALENCE OF GROUP AND ENERGY VELOCITIES

The kinetic energy Ej;, and the potential energy E,, for a plane wave is equal (Federov
1968, Kline 1992 [15, 18]). This can be shown as follows:

The equation of motion is given by

0?u
b = Gl e A9
Substituting the equation A.1 in A.9 yields
pw?p;= G &5 Bin U (A.10)
The expression for the potential energy is
1
Byop = 3 T Su
1
== 5 Cijmn Smn S]cl (A-ll)

Using the relation derived in the equations A.5, A.7, and A.10, the expression for the
potential energy simplifies to

Epot = ijmn kz ]‘Cm Pj Pn sin® ¢

A? pw? p,? sin? ¢ (A.12)

The expressions A.12 and A.8 are equal, which means, that for the plane wave kinetic
and potential energies are equal. The total energy is Eyp = 2 Epiy = 2 Epyy.

The time average (taken per one stress cycle) of the energy density is

1 27
Eip = — / A? pw? u?, sin® ¢ do
27 Jy

= %AZ‘ p w? (A.13)

Now the energy flux density vector is given by:

Substituting the equations A.2 and A.6 in A.14 yields

E; = A w Cijun km Dy p;sin® ¢ (A.15)

Performing time averaging of the energy flux density vector over one stress cycle the
equation A.15 yields

27
Ei = 51—/ A% w Cij'm,ﬂ K Pn Dj Sin2 ¢ d’ds (A]‘G)
m™Jo

1
= ~§A2 w Oijmn km Pn pj (Al?)



A: EQUIVALENCE OF GROUP AND ENERGY VELOCITIES A3

Now, dividing the equation A.16 by A.13 yields the energy velocity vector:

oA g 4
Ve — _z = C’.',]mﬂ m Pn p_’,’ (A18)
Eiot pw

The Christoffel equation can be written as
poi = Ciji ki oy vy (A.19)

The group velocity as defined before can be obtained as a partial derivative of w with
respect to k.

Expressing the equation A.10 as a function of frequency yields

C:'I imn
w? = “;) kj km Dn pi (4.20)
ow?  Cy; i
Ok, a;mn ky Bing B Brt—00 K, G50 s B (A.21)
Ci' n Cz mn
= ZIT bp pi+ 2 e D g (A.22)
P P
ow 2C;
2 — = arr km n Mi A2
w ok, Pn P (A.23)
Ow Oiqmn km Pn Pi
—_— = A2
= Lo (A24)

It can be seen that the equation (A.24) is equivalent to (A.18). Therefore, for plane
waves in lossless media, the direction of energy flow is equivalent to the direction of group
velocity.
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Appendix B

The transverse components of reflected and

transmitted waves

The following procedure is adopted to determine the transverse components of reflected

and transmitted waves. The Christoffel’s matrix is split into three (3 x 3) matrices.

The first matrix A consists of terms containing K2, K and K - K;,. That means that all

the terms are independent of K.

The second matrix B consists of terms containing K, - K,, K, - K, and finally the third
matrix D consists of terms connected only with K7.

€a Ca

e (B

Cs5  C45
D= |cys cy

C35 C34

€4
]
A

€B
cﬁ]
B

C35
C34

C33

(B.1)
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with

g = 011K§+665K5+2-015Kw-Ky
Ba = ceKz+cnK, +2 ek, K,
Y4 = cssK2+ 044K5 + 2 sl s Ky
6a = c16K2+ casK] + (c12 + cos) Ko - Ky
ea = cisK2+ cisK] + (o1 + cs6) Kz - K,y
Ca = cseK2+ 624K§ + (co5 + ca6) Ky - Ky

ap = 2- (CSGKy + ClEKm)
B = 2-(coaKy+ cssKy)
Y8 = 2-(csaKy+ cs5Ky)
op = (cas+ cos) Ky + (14 + cs6) Ko
€ = (ca5+ca6) Ky + (c13 + cs5) K
(g = (caa+cos)Ky+ (cag + cas) Ky

The characteristic sixth degree polynomial in K, Q (K), is as follows:

Q (K, K;) = | A1 Ax A3
+ [|A1A2Bs| + |A1BaAs| + |B1 A2 As|] K,
+ [|A1A2Ds| + |A; B Bs| + |A1 Do A3
+  |BiAyBs| + |BiByAs| + | D1 A2 As|] K
+ [|A1B2D3| + |A1 DyBs| + | By Ay D3| + | B By Bs|
+ |BiDaAs| + |D1AyBs| + | Dy By As|| K2
+ [[A1DyD3| + |B1 By D3| + | By Dy B3
+  |D1AsDy| + | Dy By Bs| + | Dy Dy As] K
+ [|BiDyDs| + |D1ByDs| + | Dy DyBs|| K
+ |DDyDs| KE = 0 (B.2)



Appendix C

Acoustic analogue to Snell’s law

Fig. C.1 shows a ray of an acoustic plane wave travelling from the point A at an angle 01
to the point O at the interface in a distance dy. The point A is at a horizontal distance s,
from the point O at the interface. The wave gets refracted at the point O by an angle 0.
The horizontal distance OB is s;. The total horizontal distance from A to B is s = s; +55.

Figure C.1: Acoustic equivalent to Snell’s law

The total time taken for the wave to travel (AOB) is the sum of the time taken to travel
from A to O (¢;) and from O to B (t2).

dl d2
t=tl4t2 =" 4+ — (C.1)
Voo Vi

where V,,,V,, are the corresponding phase velocities for medium 1 and 2 respectively.

. \/s§+a2+\/s—512 (©.2)
Vo Vg

From the Fermat’s principle follows

ﬁw[)# \/:921’4—@2_'_\/5—312
Os1 Vi, Voo
_ S1 _ §— 51 (C3)
Va2 + 8% Vi, B+ 55— 512 Vp, '

AT



A8 APPENDIX C: ACOUSTIC ANALOGUE TO SNELL’S LAW

From fig. C.1 it can be read

s1 =a tan®, (C4)
s=a tanf; +b tanb, (C.5)

-

Substituting the transformations (C.4) and (C.5) in the equation (C.3) yields:

V’Pl Sil’lgg = ‘/?,2 sin 92 (06)
Vo _ Vi
sinfy sinfs

Expressions C.6 and C.7 are equivalent to Snell’s law.



Appendix D

Reflection and transmission energy
coefficients at perfect interfaces

D.1 Interface between isotropic and transverse iso-
tropic media (fusion face): Wave incidence from
the isotropic base metal

A9
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Figure D.1: Reflection and transmission enerqy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Longitudinal (L) wave incidence from the
isotropic base metal. Columnar grain tilt angle ® = 22, 5°
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Figure D.2:  Reflection and transmission energy coefficients of the three waves at the
interface between isotropic and transverse isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Longitudinal (L) wave incidence from
the isotropic base metal. Columnar grain tilt angle ® = 45°
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Figure D.3: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Longitudinal (L) wave incidence from the
isotropic base metal. Columnar grain tilt angle ® = 67, 5°
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Figure D.4: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Longitudinal (L) wave incidence from the
isotropic base metal. Columnar grain tilt angle @ = 90°
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Figure D.6: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
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Figure D.7: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle U. Transverse vertically polarized (Tv)

wave incidence from the isotropic base metal. Columnar grain tilt angle ® = 67,5°
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Figure D.8: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Transverse vertically polarized (Tv)
wave incidence from the isotropic base metal. Columnar grain tilt angle ® = 90°
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Figure D.10: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Transverse horizontally polarized (Th)
wave incidence from the isotropic base metal. Columnar grain tilt angle ® = 22,5°
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Figure D.12: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Transverse horizontally polarized (Th)
wave incidence from the isotropic base metal. Columnar grain tilt angle ® = 67,5°
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Figure D.13: Reflection and transmission energy coefficients of the three waves at the in-
terface between isotropic and transverse isotropic media (fusion face) as a function of the
incidence angle © and the layback angle V. Transverse horizontally polarized (Th)
wave ncidence from the isotropic base metal. Columnar grain tilt angle ® = 90°
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Figure D.14: Energy transmission coefficients of the second branch of the quasi transverse
wave qT1(2) at the interface between isotropic and transverse isotropic media (fusion face)
as a function of the incidence angle © and the layback angle ¥. Transverse horizontally
polarized (Th) wave incidence from the isotropic base metal. Columnar grain tilt angle
® :a) 0°;b) 67,5%¢) 90°
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D.2 Interface between transverse isotropic and iso-
tropic media (fusion face): Wave incidence from
the anisotropic weld metal
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Figure D.15: Reflection and transmission energy coefficients of the three waves at the in-
terface between transverse isotropic and isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Quasi longitudinal (qL) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 0°
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Figure D.16: Reflection and transmission energy coefficients of the three waves at the in-
terface between transverse isotropic and isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Quasi longitudinal (qL) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 22, 5°



D.2: FusioN FACE: WAVE INCIDENCE FROM WELD METAL A27

0.05

—0.02 =@

0.01 0.05

1

P e
el H e S
AT

R | P =1
\ *T“'— = = N
| = - B
{ l - 0.75 ~0.75
i ! - =

I - =
| : - 0.5 Fo0.5
1 | = -
| | = L
: 1 - 0.25 025
I : | I - N—— L
! - R R ot L
I - -
]
| P P
9 90
0 A5 0"45 45 0_45

v v
e) z-axis: TqrqL f) z-axis: tr,r

Figure D.17: Reflection and transmission energy coefficients of the three waves at the in-
terface between transverse isotropic and isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Quasi longitudinal (qL) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 45°
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Figure D.18: Refilection and transmission energy coefficients of the three waves at the in-
terface between transverse isotropic and isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Quasi longitudinal (qL) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 67, 5°
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Figure D.19: Reflection and transmission energy coefficients of the three waves at the in-
terface between transverse isotropic and isotropic media (fusion face) as a function of the
incidence angle © and the layback angle ¥. Quasi longitudinal (qL) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 90°
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Figure D.20: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Quasi transverse (qT1) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 0°
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Figure D.21: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Quasi transverse (qT1) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle © = 22,5°
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Figure D.22: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle U. Quasi transverse (qT1) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 45°
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Figure D.23: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Quasi transverse (qT1) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 67, 5°
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Figure D.24: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle V. Quasi transverse (qT1) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 90°
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Figure D.25: Energy reflection coefficients of the second branch of the quasi transverse
wave qT1(2) at the interface between transverse isotropic and isotropic media (fusion
face) as a function of the incidence angle © and the layback angle ¥. Quasi transverse
(qT1) wave incidence from the anisotropic weld metal. Columnar grain tilt angle P :
a) 0°;b) 67,5°% c) 90°



A.36 APPENDIX D: ENERGY COEFFICIENTS AT PERFECT INTERFACES

Q.75
0.5

0.25

[TT T I T T T T T TTT]

Bl e
i 1 T ey,
/// : //
(:““——_%k_ - -1 1
| i -— 7 C
! -0.75 0.75
, -
0.5 0.5
). ) ) - 0.25 0.25
i : N
I / 8
20
0- 0-
% \
¢) z-axis: Troro
ST s
A0 TETEE T 0.01 0.01
I
I
]
J 0-
v o v
6) z-axis: TqLT?2 f) z-axis: trra

Figure D.26: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle U. pure transverse (T2) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 0°
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Figure D.27: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Pure transverse (T2) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 22,5°
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Figure D.28: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle U. Pure transverse (T2) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 45°
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Figure D.29: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Pure transverse (T2) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 67,5°
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Figure D.30: Reflection and transmission energy coefficients of the three waves at the
interface between transverse isotropic and isotropic media (fusion face) as a function of
the incidence angle © and the layback angle ¥. Pure transverse (T2) wave incidence
from the anisotropic weld metal. Columnar grain tilt angle ® = 90°
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Figure D.31: Energy reflection coefficients of the second branch of the quasi transverse
wave ¢qT1(2) at the interface between transverse isotropic and isotropic media (fusion
face) as a function of the incidence angle © and the layback angle ¥. Pure transverse

(T2) wave incidence from the anisotropic weld metal. Columnar grain till angle © :
a) 0°,b) 67,5°% ¢c) 90°
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D.3 Interface between two transverse isotropic me-
dia; Special case: Ultrasound propagation in the
meridian plane
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Figure D.32: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Quasi longitudinal (qL) wave incidence in
the meridian plane from medium 1. Medium 1: Columnar grains perpendicular to the
interface. Medium 2: Columnar grain tilt angle ® = 67,5°.
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Figure D.33: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Quasi longitudinal (qL) wave incidence in the
meridian plane from medium 1. Medium 1: Columnar grains parallel to the interface.

Medium 2: Columnar grain tilt angle ® = 67, 5°.
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Figure D.34: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle U of medium 2. Quasi transverse (qT1) wave incidence in
the meridian plane from medium 1. Medium 1: Columnar grains perpendicular to the
interface. Medium 2: Columnar grain till angle ® = 67, 5°.
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Figure D.35: Reflection and transmission energy coefficients of the second branch of the
quasi transverse wave qT1(2) at the interface between two transverse isotropic media as a
function of the incidence angle © and the layback angle ¥ of medium 2. Quasi transverse
(aT1) wave incidence in the meridian plane from medium 1. Medium 1: Columnar grains
perpendicular to the interface. Medium 2: Columnar grain tilt angle ® = 67, 5°.
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Figure D.36: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Quasi transverse (qT1) wave incidence in the
meridian plane from medium 1. Medium 1: Columnar grains parallel to the interface.
Medium 2: Columnar grain tilt angle ® = 67, 5°.
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Figure D.37: Reflection and transmission energy coefficients of the second branch of the
quasi transverse wave qT1(2) at the interface between two transverse isotropic media as a
function of the incidence angle © and the layback angle ¥ of medium 2. Quasi transverse
(aT1) wave incidence in the meridian plane from medium 1. Medium 1: Columnar grains
parallel to the interface. Medium 2: Columnar grain tilt angle ® = 67, 5°.
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Figure D.38: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Pure transverse (T2) wave incidence in the
meridian plane from medium 1. Medium 1: Columnar grains perpendicular to the inter-
face. Medium 2: Columnar grain tilt angle = 67,5°.
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Figure D.39: Reflection and transmission energy coefficients of the second branch of the
quasi transverse wave ¢T1(2) at the interface between two transverse isotropic media as a
function of the incidence angle © and the layback angle ¥ of medium 2. Pure transverse
(T2) wave incidence in the meridian plane from medium 1. Medium 1: Columnar grains
perpendicular to the interface. Medium 2: Columnar grain tilt angle ® = 67, 5°.
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Figure D.40: Reflection and transmission energy coefficients of the three waves at the in-
terface between two transverse isotropic media as a function of the incidence angle © and
the layback angle ¥ of medium 2. Pure transverse (T2) wave incidence in the meridian
plane from medium 1. Medium 1: Columnar grains parallel to the interface. Medium 2:
Columnar grain tilt angle ® = 67, 5°.
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D.4 Interface between two transverse isotropic me-
dia; General case: Ultrasound propagation in an
arbitrary plane



D.4: GENERAL INTERFACE: PROPAGATION IN AN ARBITRARY PLANE A.53

L L L Sy

|
I
!
!
1
|
I
1

I

!

!

N
T

'

s — 4
- Lt
/ ! ,\ﬂi—ovs
! -
i/ ~0.5
, -
1‘ -0.25
L4l F
P
5%
e L -

e) z-axis: Tqrqr f) z-axis: tqrqL

Figure D.41: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle U of medium 2. Quasi longitudinal (qL) wave incidence from
medium 1. Medium 1: Grain angle ® = 0°; layback angle ¥ = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°.
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Figure D.42: Energy reflection and transmission coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle U of medium 2. Quasi longitudinal (qL) wave incidence from
medium 1. Medium 1: Grain angle ® = —67,5°; layback angle ¥V = —22,5°. Medium 2:
Columnar grain till angle ® = 67, 5°.



D.4: (GENERAL INTERFACE: PROPAGATION IN AN ARBITRARY PLANE A.B5

1 1
0.75 0.75
0.5 0.5
0.25 0.25

e) z-axis: Tqrqr

Figure D.43: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Quasi longitudinal (qL) wave incidence from
medium 1. Medium 1: Grain angle ® = 90°; layback angle ¥ = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°.
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Figure D.44: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Quasi transverse (qT1) wave incidence from
medium 1. Medwum 1: Grain angle ® = 0°; layback angle ¥ = —22 5°. Medium 2:
Columnar grain tilt angle ® = 67,5°.
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Figure D.45: Energy reflection and transmission coefficients of the second branch of the
quasi transverse wave ¢T'1(2) at the interface between two transverse isotropic media as a
function of the incidence angle © and the layback angle ¥ of medium 2. Quasi transverse
(qT1) wave incidence from medium 1. Medium 1: Grain angle ® = 0°; layback angle
U = —22 5°. Medium 2: Columnar grain tilt angle ® = 67,5°.
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Figure D.46: Lnergy reflection and transmission coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle ¥ of medium 2. Quasi transverse (qT1) wave incidence from
medium 1. Medium 1: Grain angle ® = —67,5°; layback angle U = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°.
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Figure D.47: Reflection and transmission energy coefficients of the three waves at the
interface between two transverse isotropic media as a function of the incidence angle ©
and the layback angle U of medium 2. Quasi transverse (qT1) wave incidence from
medium 1. Medium 1: Grain angle ® = 90°; layback angle ¥ = —22,5°. Medium 2:

Columnar grain tilt angle ® = 67,5°.
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Figure D.48: Energy reflection and transmission coefficients of the second branch of the
quasi transverse wave qT1(2) at the interface between two transverse isotropic media as a
function of the incidence angle © and the layback angle U of medium 2. Quasi transverse
(aT1) wave incidence from medium 1. Medium 1: Grain angle ® = 90°; layback angle
¥ = —22,5°. Medium 2: Columnar grain tilt angle ® = 67,5°.
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Figure D.49: Reflection and transmission energy coefficients of the three waves at the in-
terface between two transverse isotropic media as o function of the incidence angle © and
the layback angle U of medium 2. Pure transverse (T2) wave incidence from medium 1.
Medium 1: Grain angle ® = 0°; layback angle ¥ = —22,5°. Medium 2: Columnar grain
tilt angle ® = 67,5°.
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Figure D.50: Energy reflection and transmission coefficients of the three waves at the in-
terface between two transverse isotropic media as a function of the incidence angle © and
the layback angle W of medium 2. Pure transverse (T2) wave incidence from medium 1.
Medium 1: Grain angle ® = —67,5°; layback angle ¥ = —22.5°. Medium 2: Columnar

grain tilt angle ® = 67,5°.
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Figure D.51: Reflection and transmission energy coefficients of the three waves at the in-
terface between two transverse isotropic media as a function of the incidence angle © and
the layback angle U of medium 2. Pure transverse (T2) wave incidence from medium 1.
Medium 1: Grain angle ® = 90°; layback angle ¥ = —22,5°. Medium 2: Columnar grain
tilt angle ® = 67,3°.
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Appendix E

Reflection and transmission energy
coefficients at imperfect interfaces

E.1 Solid imperfect interface between two anisotro-
pic media

A.65
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Figure E.1: Energy reflection and transmission coefficients of the three waves at the imper-
fect interface between two transverse isotropic media as a function of the incidence angle
© and the layback angle ¥ of medium 2. Quasi longitudinal (qL) wave incidence from
medium 1. Medium 1: Grain angle ® = —67,5°; layback angle ¥ = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°. Interface: Crack area fraction A = 0.75, f = 2
MHz
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e) z-axis: Tqrer f) z-axis: t,r,1

Figure E.2: Energy reflection and transmission coefficients of the three waves at the imper-
fect interface between two transverse isotropic media as a function of the incidence angle
© and the layback angle U of medium 2. Quasi longitudinal (qL) wave incidence from
medium 1. Medium 1: Grain angle ® = —67,5°; layback angle ¥ = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°. Interface: Crack area fraction A = 0.75, f = 5
MHz
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Figure E.3: Energy reflection and transmission coefficients of the three waves at the imper-
fect interface between two transverse isotropic media as a function of the incidence angle
© and the layback angle ¥ of medium 2. Quasi transverse (qT1) wave incidence from
medium 1. Medium 1: Grain angle ® = 67,5°; layback angle ¥ = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°. Interface: Crack area fraction A = 0.75, f = 2
MHz
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Figure E.4: Energy reflection and transmission coefficients of the three waves at the imper-
fect interface between two transverse isotropic media as a function of the incidence angle
© and the layback angle ¥ of medium 2. Quasi transverse (qT1) wave incidence from
medium 1. Medium 1: Grain angle ® = 67,5°; layback angle V = —22,5°. Medium 2:
Columnar grain tilt angle & = 67,5°. Interface: Crack area fraction A = 0.75, f = 5

MHz
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Figure E.5: Energy reflection and transmission coefficients of the three waves at the imper-
fect interface between two transverse isotropic media as a function of the incidencé angle
© and the layback angle ¥ of medium 2. Pure transverse (T2) wave incidence from
medium 1. Medium 1: Grain angle ® = 67,5°; layback angle ¥V = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°. Interface: Crack area fraction A = 0.75, f = 2
MHz
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Figure E.6: Energy reflection and transmission coefficients of the three waves at the imper-
fect interface between two transverse isotropic media as a function of the incidence angle
© and the layback angle ¥ of medium 2. Pure transverse (T2) wave incidence from
medium 1. Medium 1: Grain angle ® = 67,5°; layback angle U = —22,5°. Medium 2:
Columnar grain tilt angle ® = 67,5°. Interface: Crack area fraction A = 0.75, f = 5
MHz
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E.2 Thin viscoelastic layers between perspex and an-
isotropic medium
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Figure E.7: Reflection and transmission energy coefficients of the three waves at the glyc-
erine coupling layer between perspez and the transverse isotropic medium as a function
of the incidence angle © and the layback angle ¥ in the transverse isotropic medium 2.
Longitudinal (L) wave incidence. Medium 2: Columnar grain tilt angle ® = 67,5°,
Frequency f = 2 MHz, Layer thickness h = 50 pm
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Figure E.8: Reflection and transmission energy coefficients of the three waves at the high
viscosity ‘Gel 000" coupling layer between persper and the transverse isotropic medium
as a function of the incidence angle © and the layback angle U in the transverse isotropic
medium 2. Longitudinal (L) wave incidence. Medium 2: Columnar grain tilt angle
® = 0°. Frequency f = 2 MHz, Layer thickness h = 50 um
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Figure B.9: Reflection and transmission energy coefficients of the three waves at the high
viscosity ‘Gel 8000 coupling layer between persper and the transverse isotropic medium
as a function of the incidence angle © and the layback angle U in the transverse isotropic
medium 2. Longitudinal (L) wave incidence. Medium 2: Columnar grain tilt angle
® = 67.5°. Frequency f = 2 MHz, Layer thickness h = 50 ym
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Figure E.10: Reflection and transmission energy coefficients of the three waves at the
rigid interface between perspex and the transverse isotropic medium as a function of the
incidence angle © and the layback angle ¥ in the transverse isotropic medium 2. Longi-
tudinal (L) wave incidence. Medium 2: Columnar grain tilt angle ® = 0°.
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Figure E.11: Reflection and transmission energy coefficients of the three waves at the
glycerine coupling layer between perspez and the transverse isotropic medium as a function
of the incidence angle © and the layback angle U in the transverse isotropic medium 2.
Vertically polarized transverse (Tv) wave incidence. Medium 2: Columnar grain tilt
angle ® = 67,5°. Frequency f = 2 MHz, Layer thickness h = 50 ym
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Figure E.12: Reflection and transmission energy coefficients of the three waves at the
high viscosity ‘Gel 3000’ coupling layer between perspex and the transverse isotropic me-
dium as a function of the incidence angle © and the layback angle ¥ in the transverse
isotropic medium 2. Vertically polarized transverse (Tv) wave incidence. Medium 2:
Columnar grain tilt angle ® = 0°. Frequency f = 2 MHz, Layer thickness h = 50 pym



E.2: VISCOELASTIC LAYERS BETWEEN PERSPEX AND ANISOTROPIC MEDIUM A.7T9

0.1

0.05

g) z-axis: tyri2)ry

Figure E.13: Energy reflection and transmission coefficients of the second branch of the
quasi transverse wave qT1(2) at the high viscosity ‘Gel 3000° coupling layer between per-
spez and the transverse isotropic medium as a function of the incidence angle © and the
layback angle U in the transverse isotropic medium 2. Vertically polarized transverse
(Tv) wave incidence. Medium 2: Columnar grain tilt angle ® = 0°. Frequency f = 2
MHz, Layer thickness h = 50 pm
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Figure E.14: Energy reflection and transmission coefficients of the three waves at the
high viscosity ‘Gel 3000’ coupling layer between perspex and the transverse isotropic me-
dium as a function of the incidence angle © and the layback angle ¥ in the transverse
isotropic medium 2. Vertically polarized transverse (Tv) wave incidence. Medium 2:
Columnar grain tilt angle ® = 67,5°. Frequency f = 2 MHz, Layer thickness h = 50 um
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Figure E.15: Energy reflection and transmission coefficients of the second branch of the
quasi transverse wave qT1(2) at the high viscosity ‘Gel 3000° coupling layer between per-
spex and the transverse isotropic medium as a function of the incidence angle © and the
layback angle U in the transverse isotropic medium 2. Vertically polarized transverse
(Tv) wave incidence. Medium 2: Columnar grain tilt angle ® = 67,5°. Frequency f = 2
MHz, Layer thickness h = 50 um
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Figure E.16: Reflection and transmission energy coefficients of the three waves at the
rigid interface between perspex and the transverse isotropic medium as a function of the
incidence angle © and the layback angle ¥ in the transverse isotropic medium 2. Verti-
cally polarized transverse (Tv) wave incidence. Medium 2: Columnar grain tilt angle
¢ =0°.
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Figure E.17: Reflection and transmission energy coefficients of the second branch of the
quasi transverse wave ¢T1(2) at the rigid interface between perspex and the transverse
isotropic medium as a function of the incidence angle © and the layback angle VU in the
transverse isotropic medium 2. Vertically polarized transverse (Tv) wave incidence.
Medium 2: Columnar grain tilt angle ® = 0°.
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Figure E.18: Reflection and transmission energy coefficients of the three waves at the
glycerine coupling layer between perspex and the transverse isotropic medium as a function
of the incidence angle © and the layback angle U in the transverse isotropic medium 2.
Horizontally polarized transverse (Th) wave incidence. Medium 2: Columnar grain
tilt angle @ = 675°. Frequency f = 2 MHz, Layer thickness h = 50 um
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Figure E.19: Reflection and transmission energy coefficients of the three waves at the high
viscosity ‘Gel 8000° coupling layer between perspez and the transverse isotropic medium
as a function of the incidence angle © and the layback angle U in the transverse isotropic
medium 2. Horizontally polarized transverse (Th) wave incidence. Medium 2:
Columnar grain tilt angle ® = 0°. Frequency f = 2 MHz, Layer thickness h = 50 um
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Figure E.20: Energy reflection and transmission coefficients of the second branch of the
quasi transverse wave q1'1(2) at the high viscosity ‘Gel 8000’ coupling layer between per-
spex and the transverse isotropic medium as a function of the incidence angle © and the
layback angle U in the transverse isotropic medium 2. Horizontally polarized trans-
verse (Th) wave incidence. Medium 2: Columnar grain tilt angle ® = 0°. Frequency f
= 2 MHz, Layer thickness h = 50 um
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Figure E.21: Energy reflection and transmission coefficients of the three waves at the high
viscosity ‘Gel 8000’ coupling layer between perspex and the transverse isotropic medium
as a function of the incidence angle © and the layback angle W in the transverse isotropic
medium 2. Horizontally polarized transverse (Th) wave incidence. Medium 2:
Columnar grain tilt angle ® = 67,5°. Frequency f = 2 MHz, Layer thickness h = 50 ym



A 88 APPENDIX E: ENERGY COEFFICIENTS AT IMPERFECT INTERFACES

0.75
0.5

0.25

g) z-axis: tyri2)Th

Figure E.22: Energy reflection and transmission coefficients of the second branch of the
quast transverse wave qT1(2) at the high viscosity ‘Gel 3000’ coupling layer between per-
spex and the transverse isotropic medium as a function of the incidence angle © and the
layback angle ¥ in the transverse isotropic medium 2. Horizontally polarized trans-
verse (Th) wave incidence. Medium 2: Columnar grain tilt angle ® = 67,5°. Frequency
f = 2 MHz, Layer thickness h = 50 uym
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Figure E.23: Reflection and transmission energy coefficients of the three waves at the
rigid interface between perspex and the transverse isotropic medium as a function of the
incidence angle © and the layback angle ¥ in the transverse isotropic medium 2. Hori-
zontally polarized transverse (Th) wave incidence. Medium 2: Columnar grain tilt
angle ® = 0°.
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Figure E.24: Reflection and transmission energy coefficients of the second branch of the
quasi transverse wave qT1(2) at the rigid interface between persper and the transverse
isotropic medium as a function of the incidence angle © and the layback angle ¥ in
the transverse isotropic medium 2. Horizontally polarized transverse (Th) wave
incidence. Medium 2: Columnar gramn till angle ® = 0°.
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Results of ray tracing in austenitic weld
metal
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Figure F.1: Beam path (group velocity direc-
tion) of quasi longitudinal (qL), quasi trans-
verse (qT'1), and pure transverse (1'2) waves
calculated three-dimensionally (side-view and
top-view). Stiffness constant matriz of the
austenitic weld metal s. page 49. Incidence
angle = 60°. Weld thickness = 25 mm. An-
gle of bevel o' = 25°. Gap between root faces
D=1mm T =40, n =0, s. equa-
tion (5.1) [114, 116, 118, 126].
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Figure F.2: Beam path (group velocity direc-
tion) of quasi longitudinal (gL ), quasi trans-
verse (qT'1), and pure transverse (T2) waves
calculated three-dimensionally (side-view and
top-view). Stiffness constant matriz of the
austenitic weld metal s. page 49. Incidence
angle = 45°. Weld thickness = 25 mm. An-
gle of bevel o' = 25°. Gap between root faces

D=1mm. T =03 14 = 085 s
tion (3.1). [114, 116, 118, 126]

equa-
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Figure F.3: Beam path (group velocity direc-
tion) of quasi longitudinal (gL ), quast trans-
verse (qT1), and pure transverse (12) waves
calculated three-dimensionally (side-view and
top-view). Stiffness constant matriz of the
austenitic weld metal s. page 49. Incidence
angle = 60°. Weld thickness = 25 mm. An-
gle of bevel o/ = 25°. Gap between the root
faces D = 1 mm. T' = 0.3, n = 0.85, s.
equation (3.1). [114, 116, 118, 126]



Appendix G

Definition of the terms in the stochastic
wave equation

One point averages:

1 2m N
e(Af) = o /O Cijua(©,@,T) d — C5yy (G.1)

Voigt’s averages:

Cop = wafaofw 76, 6,) sin 0 db do dy (G2)

Two point averages:

(A ae) = (Aimn) (80)) =

1 27

2 0 (Oz'jmn(@aq)ﬂqj) C;:?m”)

(Copkl(eaq’a‘l’) - Opkz) do—

1 2 .
S ( L (ngmn(@, (I’, \Ij) C?Jmn) d(‘b %

A2

f:w (Cop;cg(@, @, ‘I’) opk:l) d¢5)
(G.3)

The isotropic Green’s tensor (Lifshits & Parkhomovski 1950 [99], Mura 1987 [22]):

Gyr) = — (B8 g(r) + 6 h(r)) (G4)
o) = T B8 (41 = Phexe(=if)];;
h(r) = m{(l +af)exp(=ef)|5r — (k1) exp(—1 K T)
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where

F(f)lgr=F(kr)—F(kr)

Standard integrals arising in the evaluation of Green’s integral:

/ exp(_P 7") sing 7 dr — arctan g LP &g 0] (G.S)
0 r P
%0 2
— ingrdr= >0 G.6
/0 exp(—p ) sing r dr o [p ] (G.6)
- dr=——[p>0 G.7
fo exp(—pr) cosqr dr - [p > 0] (G.7)
/oo'r exp(—pr) sinqrdr=_2pq [p>0g¢>0] (G.8)
0 (P + )
/m P4 s0g>0 (G.9)
T exp(—pr) cosqrdr = >0qg> .
i p(—pr) cosg )
®exp(—pr)(cosar—cosbr) dr 1 = b +p?
=5 1
/U T 9 na2+p2 [Re[p] > 0] (G.10)

Rotation matrix a:

a is the composite matrix resulting from rotating crystallographic axes with reference to
a fixed laboratory coordinate axes system. The matrix is equivalent to

1. rotation around z axis by angle ©
2. rotation around y axis by angle ¥

3. rotation around z axis by angle ®

cos® cos¥  cosO sin® +cos® sinV¥ sin® —cos® cos® sin¥ +sin® sin©
a=|—cosV sin® cos® cos® —sin® sinW sin® cos® sin® sin¥ + cos® sin ©
sin ¥ —cosV¥ sin® cos ¥ cos®
(G.11)

where angles © and ¥ describe the texture direction in three dimensional space.



Appendix H

Influence of scattering on phase velocity

The intrinsic loss mechanism by scattering is one of the causes which results in the atten-
uation of the ultrasound beam. It is assumed, that these losses are uniformly distributed
throughout the volume of the solid. The plane wave ansatz as given by equation 2.1 is

used. For sake of simplicity the wave propagating in the z direction is considered.

u=Aexpir(kz—wt)
where u = particle displacement
A = amplitude of the particle displacement
k = wave number
w = circular frequency ¢ = time
The ansatz that k is a complex quantity (describing attenuation) is considered:

k=k—-1«

where o = is the attenuation coefficient. Here both, £ and «, are real quantities.

Referring to Chapter 2 the phase velocity V' is defined as

w
=%

or
=V ik

It is further assumed that the velocity V is complex:

V=W+:1W

(H.1)

(H.2)

(H.5)

Again, V,V; and V; are real quantities. In the absence of any losses, the second terms in
the equations (H.2),(H.5) vanish. Substituting equations (H.2),( H.5) in (H.4) yields

w= (ko Vo +a Vi) +1(ke Vi —a Vo)

The quantities a and k can be deduced from the above:

a=(w—k V)/V1)

ko = (o V) /W1)
Substituting (H.8) in (H.7) yields:
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Viw
. H.9
TRV e

Vo w
ki =5 e H.10
T+ (H.10)

Therefore phase velocity is:
2 2
y, = W+ W) (H.11)
Vo

If 1 < 1, in the first approximation, the relation for phase velocity and attenuation
coefficients can be derived.

V,~ Vy (H.12)
|7
an 11/; (H.13)

This simple analytical relation shows what is often observed in experiments, viz. the phase
velocities and other associated properties in the attenuating medium are approximately
the same as those in the non-attenuating medium, whereas attenuation depends on the
phase velocity in the attenuating medium seen by the term V.
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List of symbols

Crystallographic basis vectors of the cubic lattice
Direction cosine matrix

Amplitude of the particle displacement velocity
Anisotropy factor

Crack area fraction of the interface

Particle displacement direction

Angle of bevel

Attenuation coefficient

Elastic stiffness constants related to the crystallographic axes,
ikl =XY,Z

Stiffness constants in abbreviated notation
Stiffness constants in abbreviated notation

Ultrasound penetration depth due to damping losses in a vis-
coelastic layer

Kronecker’s delta symbol; i,j = x,y,z

Polarization deviation of the qL (qT1) wave, respectively, due
to ultrasound scattering

Displacement at a perfect interface due to a static tensile
force

Displacement in the presence of imperfections at an interface
due to a static tensile force

Half width of the gap between root faces

Average grain diameter (DIN 50601)

Grain shape parameter: Average grain diameter to height
ratio of the columnar grain

Energy flux density vector

Time averaged energy flux density vector

Kinetic energy

Potential energy

Total energy of the plane wave (Egin + Epot)

Time averaged total energy

Step size during ray tracing

Perturbation parameter in the Keller’ approximation
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APPENDIX I: LIST OF SYMBOLS

Measure of the change of the grain orientation as a function
of the distance z from the weld centre line

Vector sum of the traction forces exerted on the opposite
sides of the imperfect interface

Christoffel matrix

Bulk modulus

Coupling layer thickness

k =Fk-n, kis the wave number

Wave number: k = 2%

Slowness (Inverse of the phase velocity V})
Slowness vector components used in the Snell’s law
Transverse interfacial stiffnesses

Extensional (longitudinal) interfacial stiffness

Unit vector denoting the direction of the wave vector along
X-, ¥-, and z-axes of the reference coordinate system

Shear viscosity coefficient of a viscous coupling medium
Normal unit vector of a surface element

Boundary normal vector

Kinematic viscosity of a viscous fluid

w = 27 f (angular frequency)

Incidence angle in the yz plane

Columnar grain angle measured with respect to the reference
T-axis

Columnar grain tilt angle against the crystallographic X Z-
plane

Columnar grain layback angle against the crystallographic
Y Z-plane

Quasi longitudinal (quasi compression) wave

Quasi transverse (quasi shear) wave

quasi transverse (quasi shear) wave with polarization in the
incidence plane (in-plane polarization)

Space vector with z,y, 2 Cartesian coordinates

Density of the material

Densities of adjacent media

Polar coordinates

Rotation angle for coordinate transformation

Reflection coefficients (amplitude ratios of reflected waves to
incident waves)

Reflection energy coefficients
The legend of this type has the following meaning:

- the first letter r (or t) denotes the energy reflection
(or transmission) coefficient. (The energy coefficients
are now denoted by lower-case letters. Confusion with
amplitude ratios are not possible since these are only
treated in sections 2.3.1 and 2.3.2.)
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- The first term qL (or L, Tv, Th, qT1, T2) of the sub-
script denotes the type of wave for which the energy
coefficient is calculated.
qL: quasi longitudinal wave,
qT1: quasi transverse wave,

T2: pure transverse wave,

L: pure longitudinal wave,

Tv: vertically polarized transverse wave,
Th: horizontally polarized transverse wave.

- The second term gL (or L, Tv, Th, qT1, T2) of the
subscript denotes the type of the incident wave.

Strain tensor
Pure transverse (pure shear) wave

Pure transverse (pure shear) wave with polarization perpen-
dicular to the incidence plane (anti-plane)

Incidence angle in the zz plane, the zy plane containing the
boundary

Incidence angle between wave vector and z-direction of the
laboratory system z,y, z

Traction force tensor; 4,7 = z,¥, 2

Traction force tensors across an interface

Traction force components

Traction force components for the reflected wave

Traction force components for the transmitted wave
Transmission coefficients (amplitude ratios of transmitted waves
to incident waves)

Energy transmission coefficients

Measure of the slope of the columnar grain axis at the fusion
faces

Particle displacement of an incident wave
Particle displacement of a transmitted wave

Eigenvector or particle displacement velocity (polarization)
vector

Particle displacement velocities across an interface
Complex conjugated eigenvector

Particle displacement velocity components for the reflected
wave

Particle displacement velocity components for the transmit-
ted wave

Phase velocity

Group velocity

Energy velocity

Phase velocity of the incident wave

Component of group velocity perpendicular to the interface

Phase velocity in the transverse isotropic medium (longitudi-
nal, shear) in the presence of grain scattering
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xlyiz
X,Y,Z
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Phase velocity in the transverse isotropic mono-crystalline
medium (longitudinal, shear)

Half beam width f?" at the amplitude of a Gaussian amplitude
profile f(z)
Laboratory (Cartesian) coordinate system

Crystallographic (Cartesian) coordinate system with Z being
the columnar grain direction
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