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Zusammenfassung 
Kunststofflichtwellenleiter (POFs) stellen ein verhältnismäßig neues Medium zur optische 
Datenkommunikation über kurzen Strecken dar (bis zu einigen hundert Metern). Sie 
arbeiten im sichtbaren Wellenlängenbereich des elektromagnetischen Spektrums und 
werden auch für Beleuchtung und für Sensor-Anwendungen verwendet. 

Während ihrer Einsatzdauer unterliegen POFs unterschiedlichen Arten von 
Umweltbeanspruchungen, hauptsächlich durch hohe Temperatur, hohe Feuchtigkeit und 
mechanischen Belastungen. Zahlreiche experimentelle Forschungen beschäftigten sich mit 
der standardisierten Prüfung der Zuverlässigkeit von im Handel erhältlichen Fasern. Jedoch 
gab es bisher wenig Erfolg bei der Bemühung, zwei grundlegende optische Erscheinungen, 
Absorption und Streuung, die die Lichtausbreitung in Fasern stark beeinflussen, zu 
verstehen und praktisch zu modellieren: Diese beiden Effekte beschreiben nicht nur die 
Qualität neuer Fasern, sondern sie werden auch stark durch die Alterungsprozess 
beeinflusst. 

Der Hauptzweck dieser Doktorarbeit war es, ein praktisch verwendbares und theoretisch 
gut fundiertes Modell der Lichtausbreitung in nicht gealterten und gealterten POFs zu 
entwickeln und es durch optische Experimente zu verifizieren. Dabei wurden 
anwendungsorientierte Aspekte mit theoretischer POF-Modellierung kombiniert. 

Die Arbeit enthält die erste bekannte Anwendung der Wellenanalyse zur Untersuchung der 
winkelabhängigen Eigenschaften der Streuung. Die Resultate der numerischen Beispiele 
stimmen mit den experimentell beobachteten Ergebnissen überein. Der Gebrauch der 
Wellenoptik war erforderlich, weil die vereinfachende Anwendung der geometrischen Optik 
zu einer den experimentellen Ergebnissen widersprechenden Winkelabhängigkeit führt. Die 
Resultate der Wellenanalyse wurden ausserdem dazu verwendet, ein generelles  
POF-Modell zu entwickeln, das auf dem Strahlverfolgungsverfahren basiert. 

Für die praktischen Experimente wurden mehrere POF-Proben unterschiedlicher Hersteller 
künstlich gealtert, indem sie bis 4500 Stunden bei 100 °C gelagert wurden (ohne 
Feuchtekontrolle). Die Parameter der jeweiligen Simulationen wurden mittels einer 
systematischen Optimierung an die gemessen optischen Eigenschaften der gealterten 
Proben angeglichen. Die erreichte Übereinstimmung ist besser als in bisher vorliegenden 
Untersuchungen und bestätigt die Verwendbarkeit des Modells. Die Resultate deuten an, 
dass der Übertragungsverlust der gealterten Fasern in den ersten Tagen und Wochen der 
Alterung am stärksten durch eine wesentliche physikalische Verschlechterung der Kern-
Mantel-Grenzfläche verursacht wird. Chemische Effekte des Alterungsprozesses scheinen 
im Faserkernmaterial zuerst nach einigen Monaten aufzutreten. Als Nebeneffekt dieser 
Arbeit wurde ein Kalibrierung- und Qualitätseinschätzungsverfahren für CCD-Kameras 
entwickelt. 



Abstract 
This thesis discusses theoretical and practical aspects of modelling of light propagation in 
non-aged and aged step-index polymer optical fibres (POFs). Special attention has been 
paid in describing optical characteristics of non-ideal fibres, scattering and attenuation, and 
in combining application-oriented and theoretical approaches. The precedence has been 
given to practical issues, but much effort has been also spent on the theoretical analysis of 
basic mechanisms governing light propagation in cylindrical waveguides. 

As a result a practically usable general POF model based on the raytracing approach has 
been developed and implemented. A systematic numerical optimisation of its parameters 
has been performed to obtain the best fit between simulated and measured optical 
characteristics of numerous non-aged and aged fibre samples. The model was verified by 
providing good agreement, especially for the non-aged fibres. The relations found between 
aging time and optimal values of model parameters contribute to a better understanding of 
the aging mechanisms of POFs. 
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List of important symbols 
α illumination angle 

αmax acceptance angle 

αout output angle 

β relative wavenumber of a mode 

d(r,φ,z) refractive index perturbation 

γ propagation angle 

g Green’s function of an ideal cylindrical waveguide 

jm radial component of a modal field 

k free-space wavenumber 

λ free-space wavelength 

m azimuthal order number of a mode 

n(r) unperturbed refractive index profile 

np(r,φ,z) perturbed refractive index profile 

n0 refractive index of fibre’s core 

n1 refractive index of fibre’s clad 

NA numerical aperture 

Ω perturbation region 

R fibre radius 

R0 radius of the perturbation region 

τ transverse mode parameter 

u scalar field propagating in a waveguide 

uinc incident field 

uscat scattered field 

V normalised frequency of a fibre 

w fibre modal parameter 

w0 core modal parameter 

w1 clad modal parameter 

z0 length of the perturbation region 



 

Contents 
1 INTRODUCTION................................................................................................................9 
2 MODELLING OF LIGHT PROPAGATION IN POF...........................................................12 

2.1 WAVE-OPTICS MODEL ..................................................................................................12 
2.1.1 Maxwell’s, vector and scalar wave equations ...................................................13 
2.1.2 Modes ...............................................................................................................15 
2.1.3 Modal representation of an input field ...............................................................20 

2.1.3.1 Representation theorem............................................................................20 
2.1.3.2 Illumination, modal fields and fibre output .................................................22 

2.1.4 Scattering and mode mixing..............................................................................25 
2.1.4.1 Scattering on input and end faces.............................................................25 
2.1.4.2 Refractive index perturbations...................................................................25 

2.1.5 POF and transition to modal continuum............................................................29 
2.2 RAYTRACING MODEL ....................................................................................................29 

2.2.1 Attenuation........................................................................................................32 
2.2.2 Scattering..........................................................................................................33 
2.2.3 Fresnel reflection ..............................................................................................37 

2.3 BASIC MEASURABLE OPTICAL CHARACTERISTICS OF A FIBRE .............................................47 
2.3.1 Far-field profile (FFP)........................................................................................47 
2.3.2 Near-field profile (NFP) .....................................................................................48 

3 SIMULATION SOFTWARE ..............................................................................................50 
3.1 COMMERCIALLY AVAILABLE SOFTWARE ..........................................................................50 
3.2 DEVELOPED SOFTWARE ...............................................................................................50 

3.2.1 Raytracing software library................................................................................51 
3.2.1.1 Setup parameters......................................................................................51 
3.2.1.2 Material parameters ..................................................................................52 
3.2.1.3 Software parameters .................................................................................52 
3.2.1.4 Simulation results......................................................................................52 

3.2.2 User interface for raytracing..............................................................................53 
3.2.3 Optimisation software .......................................................................................54 

3.2.3.1 Setup parameters......................................................................................54 
3.2.3.2 Constraints on optimised material parameters ..........................................56 
3.2.3.3 Optimisation procedure .............................................................................57 

4 AGING PROCESS AND POF SAMPLES.........................................................................59 
4.1 LOSS MECHANISMS IN POF AND FIBRE AGING.................................................................59 
4.2 AGING INFLUENCE ON RAYTRACING MODEL .....................................................................60 
4.3 POF SAMPLES ............................................................................................................60 
4.4 AGING CONDITIONS......................................................................................................62 

4.4.1 Sample preparation...........................................................................................64 
5 EXPERIMENTAL INSTRUMENTATION FOR FFP MEASUREMENTS...........................68 

5.1 GENERAL MEASUREMENT SETUP ...................................................................................68 
5.2 LASER ........................................................................................................................69 
5.3 CCD CAMERA CALIBRATION..........................................................................................69 

5.3.1 Setup for calibration measurements .................................................................69 
5.3.2 Unreliability factors and calibration data ...........................................................70 

5.3.2.1 Dark profile................................................................................................71 
5.3.2.2 Random noise ...........................................................................................71 
5.3.2.3 Non-linear response function ....................................................................72 



5.3.2.4 Non-uniform sensitivity ..............................................................................72 
5.3.2.5 Damaged CCD cells..................................................................................73 
5.3.2.6 Temperature dependence .........................................................................74 

5.3.3 Calibration procedure for measurements..........................................................74 
5.3.4 Expanding the dynamic range...........................................................................75 

5.4 QUALITY VERIFICATION OF THE FAR-FIELD OPTICS ...........................................................75 
5.4.1 Test setup and measurements..........................................................................76 
5.4.2 Linearity of angle to space transformation ........................................................76 
5.4.3 Distortion of angle to space transformation.......................................................77 
5.4.4 Angular resolution .............................................................................................77 

6 FAR-FIELD PROFILE MEASUREMENTS .......................................................................79 
6.1 SAMPLES PREPARATION ...............................................................................................79 
6.2 MEASUREMENT PROCEDURE.........................................................................................79 
6.3 FFP EXTRACTION........................................................................................................80 
6.4 SAMPLE RESULTS ........................................................................................................81 

6.4.1 Non-aged 10 m fibre .........................................................................................81 
6.4.2 Influence of sample length ................................................................................83 
6.4.3 Influence of aging time......................................................................................83 

6.4.3.1 Attenuation ................................................................................................83 
6.4.3.2 Far-field profile ..........................................................................................85 

7 AGING INFLUENCE ON MODEL PARAMETERS...........................................................87 
7.1 RAYTRACING PARAMETERS...........................................................................................87 
7.2 OVERALL ATTENUATION................................................................................................89 
7.3 CORE-CLAD INTERFACE ATTENUATION ...........................................................................91 
7.4 BULK CORE ATTENUATION.............................................................................................92 
7.5 SCATTERING ...............................................................................................................93 

8 CONCLUSIONS ...............................................................................................................96 
APPENDICES .....................................................................................................................98 

A1 BASIC IDENTITIES .........................................................................................................98 
A2 SAMPLE MODAL ANALYSIS ...........................................................................................100 

A2.1 Modes..............................................................................................................101 
A2.2 Illumination and mode-angle relation...............................................................106 
A2.3 Scattering and mode mixing ............................................................................109 

A2.3.1 On input and end faces............................................................................109 
A2.3.2 Refractive index perturbations .................................................................111 

A3 SAMPLE MEASURED AND SIMULATED FFP GRAPHS ........................................................114 
A3.1 ESKA CK-40 fibre............................................................................................114 
A3.2 PGU FB-1000 fibre ..........................................................................................116 
A3.3 LUMINOUS TB-1000 fibre...............................................................................119 

A4 CONVERGENCE OF THE VON NEUMANN SERIES..............................................................121 
A4.1 Coefficient am(τ) .............................................................................................123 
A4.2 Coefficient bm(τ) .............................................................................................129 
A4.3 Term am

2(τ) + bm
2(τ) ....................................................................................131 

REFERENCES..................................................................................................................133 



1 Introduction 

- 9 - 

1 Introduction 
Polymer optical fibres (POFs) are a new emerging medium for short-range optical data 
communication (up to a few hundred meters) in the visible region of the spectrum. POFs 
are also widely used for lighting and for sensor applications. 

As a safe, inexpensive and reliable data transmission medium POFs are foremost used by 
the automotive industry, for home and office networks, and for in-device data transmission 
and control [58, 59]. Although their relatively high attenuation (approx. 150 dB/km) does not 
allow long-distance transmissions, they are in many other aspects (flexibility, low costs of 
production and wiring, ease of handling) in short-range applications superior to silica fibres. 

In course of use POFs are subjected to different types of environmental stresses, mainly 
high temperature, humidity and mechanical stress. Great amount of experimental research 
has already been done to standardise, experimentally test and assess the durability of 
commercially available fibres [10, 26, 32, 48-56]. However, little effort has been directed 
towards understanding and practical modelling of two main optical mechanisms not 
occurring in idealised fibres but affecting light propagation in a real fibre: attenuation and 
scattering. Both represent the non-ideality not only for new fibres, but are also strongly 
involved in their aging process and thus critical for fibre’s optical properties. Respective 
researches are important for developing more efficient fibre test methods and for assessing 
fibre performance under stress. 

There has been much theoretical research devoted to fibre optics and wave-analysis of 
cylindrical waveguides [2, 28, 29, 30]. Nevertheless, it has been rarely rigorous in its 
mathematical contents. The major flaw seems to be the lack of conditions guaranteeing 
uniqueness of the solution to the scalar wave equation on a cylindrical fibre, a problem 
solved for open-space and a spherical wave by Rellich [25, 9]. On the other hand, results 
obtained in such theoretical investigations have been rarely systematically verified against 
real fibre measurement data. 

There has also been much theoretical [1, 2, 62-67] but very little application-oriented 
analysis of scattering induced by small-size random irregularities of the refractive index, 
which is always present in real fibres, especially those subjected to environmental stress 
and aged. No basic analysis of angular characteristics of this scattering is known, an often 
met problem in analysis of scattering in open-space geometry but hardly tractable in the 
case of cylindrical waveguides with their not obvious relation between mode and its 
illumination, propagation or radiation angles. Analysis based on geometric optics and 
raytracing, although often referred to, cannot, contrary to expectations, explain some 
experimentally observed angular characteristics of scattering, thus the use of a constant 
[42-46, 60] or purely phenomenological relations [16, 41]. 

Therefore the primary task of this Ph.D. work is to develop a practically usable and 
theoretically well-rooted model of light propagation in POFs, to investigate the influence of 
aging effects on it, and to verify it by optical experiments. To achieve a more general 
understanding of the POF aging process, parallel to this work a Ph.D. thesis of another 
BAM employee, A. Appajaiah, is prepared, it investigates chemical aspects of aging on the 
same and similar POF samples [17, 33-36]. 
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Now the outline of the following thesis will be given in respect to its essential parts: 

In Part 2.1 of Chapter 2 the scalar wave equation is solved for the case of a cylindrical 
waveguide. The uniqueness of the solution (i.e. the counterpart of Rellich’s radiation 
condition [25, 9]) is stated without proof as a hypothesis. The representation theorem of 
Alexandrov and Ciraolo [2] is stated and used to define the relations between illumination 
angle, excited modes and output angle. Wave analysis of scattering processes in 2D slab 
waveguides of Magnanini and Santosa [8] is expanded in Part 2.1.4 to 3D cylindrical 
waveguides. Convergence of a critical series of this part, the one representing the scattered 
field, is stated as a hypothesis only. Appendix A4 contains considerations concerning a 
possible proof. 

Part 2.2 of Chapter 2 describes the geometric optics approach to fibre modelling and 
introduces raytracing model with mechanisms mostly absent in the previous research:  

• scattering mechanism (Part 2.2.2) based on the results of the theoretical 
investigations of Part 2.1 and the numerical simulations of scattering intensity in 
dependence on illumination angle (reported in Appendix A2); 

• implemented Fresnel reflection law (Part 2.2.3) in the form of a random choice 
between reflection and transmission for each ray incident on the core-clad interface. 
This mechanism, although intuitively obvious, requires astonishingly much effort to 
prove its validity. 

Part 2.3 of Chapter 2 introduces two basic characteristics of an optical fibre: far-field profiles 
and near-field profiles.  

Chapter 3 describes the software developed to implement the raytracing model of Part 2.2. 
It includes simulation software as well as the software allowing comparison of simulated 
and measured far-field profiles and semi-automatic parameter optimisation.  

Fibres used for practical investigations, their technical specifications, aging conditions and 
preparation of the samples for further measurements are described in Chapter 4. Fibres 
from three manufacturers have been used. The high temperature aging process 
(100 °C/<<50 % RH (dry heat)) has been selected; the fibres used in further investigations 
were subjected to six different aging times (ranging from no aging, i.e. 0 h, up to half a year, 
i.e. approx. 4500 h in oven). 

Chapter 5 discusses the setup used for far-field profile measurements. Part 5.3 describes 
the developed procedure, necessary for quality assessment and calibration of CCD 
cameras [14]. 

Chapter 6 discusses the measurement process and the procedure for far-field profile 
extraction from obtained measurements. Part 6.4 presents sample measurement results: 
far-field profiles of non-aged and aged fibres. 

The results of the parameter optimisation by comparison of simulated and measured  
far-fields are presented in Chapter 7. This systematic approach to model validation and 
parameter fitting can be considered superior to earlier research, because here: 
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• Both bulk and interface attenuation coefficients are used to trace separately aging of 
the bulk material and physical degradation of the core-clad interface. 

• Fibres of different lengths are measured and compared. The amount of the 
scattering understandably depends on fibre length, thus using fibre samples of 
different length allows for significantly more control over the scattering parameters 
and ensures model validity for not only one fibre length. 

• Semi-automatic numerical optimisation procedure is applied. 

Appendix A2 contains the results of numerical wave analysis of two sample cylindrical 
waveguides. It directly uses the notation and results of Part 2.2. For both cases it was found 
that scattering intensity clearly decreases with increasing illumination angle, an explanation 
for the relations experimentally observed before. This is a pure wave-effect and probably 
cannot be satisfactorily explained on the basis of geometric optics and simple raytracing 
model only, which suggest the opposite scattering – angle relation. 

Appendix A3 shows several graphs comparing simulated and measured far-field profiles of 
fibres used in this research. 
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2 Modelling of light propagation in POF 
In this chapter two most important approaches used for analysis and modelling of optical 
fibres will be discussed: the wave optics (Part 2.1) and the raytracing approach (Part 2.2). 
We will concentrate mainly on the property of an optical fibre that is most aging-related, 
i.e. scattering and, in the case of the raytracing approach, also attenuation (see also 
Part 4.1). The fibre simulations (Chapter 7, Appendix A3) performed within this research are 
made with self-implemented software (Chapter 3) using the raytracing model described 
here. At the end of this chapter we will discuss basic measurable characteristics of an 
optical fibre: near- and far-field profiles (Part 2.3). 

For the analysis of light propagation in optical fibres both the Cartesian and the cylindrical 
coordinate systems will be used (Fig. 2.1). 

 
Fig. 2.1 The nomenclature for describing the optical fibre. The fibre axis lies along the z axis of both 

Cartesian and cylindrical coordinate systems. The clad will be assumed to extend infinitely, 
as in Eq. (2.16), or to end at some finite distance, as in Eq. (2.74), where air of refractive 
index 1 begins. 

2.1 Wave-optics model 
Wave approach takes into account the wave nature of propagating light and requires 
solving the vector wave equation or its simplified version, the scalar wave equation. As the 
scalar wave equation is generally considered valid (so called weak guidance 
approximation) and broadly used for optical fibres modelling due to small variations of a 
refractive index in a typical fibre, in this analysis only the scalar description of propagating 
fields will be used. 

Within the wave-optics approach, light propagating in an optical waveguide is described in 
terms of a set of discrete solutions of wave equations (vector or scalar), called guided 
modes, and a set of continuous solutions, called radiating modes. Those modes (in the 
scalar case considered here) are eigenvalue functions of the scalar wave equation and 
each finite energy solution of this equation is a unique superposition of guided and radiating 
modes, as the representation theorem of Alexandorv and Ciraolo [2] states (Part 2.1.3.1). 

In this Part 2.1 we will solve the scalar wave equation (Part 2.1.2), cite the representation 
theorem (Part 2.1.3.1), relate the inclination of an input beam to the excitation of particular 
modes (Part 2.1.3.2) and finally discuss scattering of propagating light between modes 
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caused mainly by perturbations of the refractive index of the waveguide (Part 2.1.4). The 
obtained angle-dependence of the scattering intensity will then be used in the raytracing 
approach (Part 2.2). 

As it is common in the context of the wave analysis, mainly the term ‘waveguide’ instead of 
‘fibre’ will be used in this part. 

2.1.1 Maxwell’s, vector and scalar wave equations 
Propagation of an electromagnetic field is exactly described by the set of Maxwell’s 
equations [1, 4]. For the case of non-magnetic materials, which normally constitute an 
optical waveguide, and assuming an implicit time dependence exp(-iωt), they are 
expressible using MKS units in the following form [1]: 
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where E(x,y,z) and H(x,y,z) are the electric and magnetic field vectors, J is the current 
density, σ is the charge density, µ0 and ε0 are respectively the permeability and permittivity 
(dielectric constant) of free space and the free-space wavenumber k is related to the 
wavelength λ of light in free space and to the angular frequency ω by: 

(2.2) c
k ω

λ
π == 2

. 

n in Eq. (2.1) is the refractive index of the medium, related to its permittivity ε and the 
permittivity of free space ε0 by [1, 4]: 

(2.3) 0
2εε n= . 

For the translationally invariant waveguides, i.e. for the waveguides with refractive index 
profiles n = n(x,y) not varying with the distance z along the waveguide, both electric and 
magnetic fields of the waveguide are according to [1] expressible as superpositions of fields 
with the following separable forms: 

(2.4) 
( ) ( ) ( )
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β
hH
eE

=
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where β is the relative wavenumber and βk is the propagation constant. After decomposing 
the fields into their longitudinal and transverse components 
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(2.5) 
( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )kziyxhyxzyx

kziyxeyxzyx

z

z

 exp,ˆ,,,
 exp,ˆ,,,

β
β

zhH
zeE

t

t

+=
+=

, 

where ẑ  is the unit vector parallel to the waveguide axis. Substituting those 
representations into the source-free Maxwell’s equations (i.e. with J ≡ 0, σ ≡ 0) we can 
relate other field components to the transverse electric field et [1]: 

(2.6) 

( )

( )

.

, ˆ1

,ln

2
1

0

0

2

t

tt

tt

h

ezh

ee

∇=

∇+×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∇⋅+∇=

β

β
µ
ε

β

ih

eik
k

nie

z

z

z

 

Eliminating either electric or magnetic field from Eq. (2.1), the inhomogeneous vector wave 
equations [1] can be obtained: 

(2.7) 
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With no sources present, both fields satisfy the homogenous vector wave equation, 
obtained from Eq. (2.7) by setting J ≡ 0: 

(2.8) 
( )

( ) .ln

ln
222

222

nkn

nkn

∇××∇=+
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HH∆H

EE∆E
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Solving equations Eq. (2.8) even in the relatively simple case of the step-index waveguide 
profile is difficult [1, 6] and only few other profiles are known to have exact solutions [1]. 
Pronounce simplification is possible, if variations of the waveguide refractive index ∆n are 
considered enough small (like in the case of POF with ∆n ≈ 6 % at the core-clad interface) 
to neglect the right-hand-side of Eq. (2.8), i.e. assume 

(2.9) 0ln 2 =∇ n . 

Optical waveguides with ∆n ≈ 0 and consequently with n0 ≈ n1 are called weakly guiding [5], 
although, as Snyder and Love in [1, page 281] state, the terminology is somewhat 
misleading since both strong guidance and total containment of light within the core are 
possible. Both Cartesian coordinates of the transverse component et of the electric field 
propagating in such waveguide may be found by solving the scalar wave equation: 

(2.10) 022 =+∆ uknu , 
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where u denote one of the Cartesian coordinates of et. The longitudinal components ez ≈ 0 
and hz ≈ 0 (i.e. all fields are TEM waves) due to the weak guidance approximation, the 
transversal component ht of the magnetic field may be computed using the formulae 
Eq. (2.6). 

For a detailed discussion of the derivation of the weak guidance approximation and the 
relations between solutions of Eq. (2.8) and Eq. (2.10) see Snyder and Love  
[1, Chapter 32 and 33], and Gloge [5]. 

2.1.2 Modes 
We will look for basic, simply expressible solutions of Eq. (2.10), called modes. As the 
representation theorem of Alexandrov and Ciraolo [2] states, each finite energy field 
propagating in a weakly guiding waveguide is a unique superposition of such modes. 

Rewriting the equation Eq. (2.10) in cylindrical coordinates (r, φ, z) we obtain: 

(2.11) 011 22
2

2

22

2
=+

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂+

∂
∂ unku

rrz
ur

rr
u

z . 

We will look for solutions in separated variables only: 

(2.12) ( ) ( ) ( ) ( )2,exp exp,, βϕβϕ rjimkzizru m⋅⋅= , 

where jm: R→R is the radial component of the propagating mode depending on β2,  
β is the relative wavenumber of the mode (βk is the mode propagation constant) and m∈Z 
due to the conservation condition. After substituting Eq. (2.12) into Eq. (2.11) and 
eliminating the variables φ and z we obtain: 

(2.13) ( ) 01
2

2
222 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+′+′′

r
mnkjj

r
j mmm β

. 

For notational clarity from now on τ will be used for β2: 

(2.14) 2: βτ = . 

The form of the general solution to Eq. (2.13) depends on the relation between n2 
and β2 = τ : 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −⋅+⎟

⎠
⎞⎜

⎝
⎛ −⋅= τττττ 22, nkrYbnkrJarj mmmmm

 
, τ < n2 

( ) ( ) m
m

m
m rbra ⋅+⋅ − ττ  , τ = n2, |m| > 0 

( ) =τ,rjm { ( ) ram ln⋅τ  , τ = n2, m = 0 
(2.15) 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −⋅+⎟

⎠
⎞⎜

⎝
⎛ −⋅= 22, nkrKbnkrIarj mmmmm τττττ  , τ > n2 
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where Jm and Ym are m-th order real Bessel functions of the first and second kind, Im and Km 
are m-th order real modified Bessel functions of the first and second kind and am(τ), bm(τ) 
are arbitrary but real coefficients. 

In the case of the step-index waveguide two values of the refractive index must be 
considered: n0 for the core and n1 for the infinitely extended clad: 

n0 , r∈[0, R ] 
(2.16) n(r) = {n1 < n0  , r∈(R, ∞), 

where R is the radius of the waveguide. Thus, the equation Eq. (2.13) has to be solved 
separately for the core and separately for the clad. The general solution for the whole 
waveguide, across its core and clad, has then to be expressed as: 

( )τ,0 rjm  , r∈[0, R ] 
(2.17) ( ) =τ,rjm { ( )τ,1 rjm  , r∈(R, ∞), 

where 0 jm and 1 jm are the solutions of Eq. (2.13) in the core and in the clad, respectively. 
Both have to satisfy the following conditions: 

( ) ( )ττ ,, 10 RjRj mm = , 

( ) ( )ττ ,, 10 RjRj mm ′=′ , (2.18) 

0 jm and 1 jm are bounded. 

First two of them are boundary conditions; the continuity of jm and its first derivative across 
the core-clad interface follows directly from Eq. (2.10) and Eq. (2.16). Third condition is an 
obvious physical requirement. Functions building the solutions Eq. (2.15) are bounded or 
unbounded on [0, R ] and (R,  ∞) according to Table 2.1: 

Table 2.1  Properties of the solutions to equation Eq. (2.13) in waveguide’s core and clad. 

 bounded unbounded 

r∈[0, R ) J, I, r|m| Y, K, r -|m|, |m|>0 

r∈[R, ∞) J, K, Y, r -|m| I, r|m|, |m|>0 

For notational clarity we introduce the following modal parameters: 

τ−= 2
00 : nkw , 

τ−= 2
11 : nkw , 

2
1

2
0: nnkw −= , 

(2.19) 

V := wR. 
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Note that V is a mode-independent waveguide parameter (often called waveguide’s 
normalised frequency), for a typical POF V ≈ 4000. In the literature often not τ but 2

0w  is 
treated as an independent, mode-specific variable. This approach lacks a bit of the 
conceptual clarity of the relative wavenumber β, but leads to simpler mode-angle relation 
and occasionally will be used also here. 

Taking into account the third requirement from Eq. (2.18), the data in Table 2.1, the 
relations between 2

0n , 2
1n , τ = β2 and combining separate solutions Eq. (2.15) for the core 

and the clad, potential solutions to Eq. (2.13) may be written as: 

( )rwJ m 0  , r∈[0, R ] 
for 2

1n<τ  ( ) =τ,rjm { ( ) ( ) ( ) ( )rwYbrwJa mmmm 11 ⋅+⋅ ττ  , r∈(R, ∞), 

( )rwJ m 0  , r∈[0, R ] 
for 2

1n=τ  ( ) =τ,rjm { ( ) m
m ra −⋅τ      ,|m| > 0 , r∈(R, ∞), 

( )rwJ m 0  , r∈[0, R ] 
for ( )2

0
2
1 , nn∈τ ( ) =τ,rjm { ( ) ( )rwKb mm 1⋅τ  , r∈(R, ∞), 

mr  , r∈[0, R ] 
for 2

0n=τ  ( ) =τ,rjm { ( ) ( )rwKb mm 1⋅τ  , r∈(R, ∞), 

( )rwI m 0  , r∈[0, R ] 

(2.20) 

for 2
0n>τ  ( ) =τ,rjm { ( ) ( )rwKb mm 1⋅τ  , r∈(R, ∞), 

where am(τ), bm(τ) are arbitrary real coefficients.  

All potential solutions Eq. (2.20) have to be checked against the first two requirements of 
Eq. (2.18), the boundary conditions. It turns out, that: 

• For 2
0n≥τ : There are no propagating modes, i.e. the boundary conditions Eq. (2.18) 

are satisfied by ( )τ,rjm  for none 2
0n≥τ  and none bm(τ). 

• For ( )2
0

2
1 , nn∈τ : For each m∈Z there is a discrete (maybe empty) set of solutions, 

the solutions exist if and only if { }m
m
k Pk ,,1,0 K=∈ ττ  and have the following form: 

( )rwJ m 0  , r∈[0, R ] 
(2.21) ( )=m

km rj τ, { ( )
( ) ( )rwK

RwK
RwJ

m
m

m
1

1

0  , r∈(R, ∞), 

where { }m
m
k Pk ,,1,0 K=τ  is the set of the solutions of the following equation: 

(2.22) 
( )

( )
( )

( )RwK
RwK

Rw
RwJ
RwJ

Rw
m

m

m

m

1

11
1

0

01
0

++ = . 
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where w0 and w1 are defined in Eq. (2.19) and 222
1

22
0 VRwRw =+ . Note that all the 

functions ( )m
km rjr τ, ⋅  are in L2(0,∞) and the powers carried by the corresponding 

modes Eq. (2.12) may be computed as: 

(2.23) 

( ) =⋅∫
∞

0

2  ,2 drrjr m
km τπ  

( )
( ) ( ) ( ) ( ) ( ) ( )[ ]RwJRwJRwKRwKRwKRwJ

RwK
R

mmmmmm
m

01011
2

11110
2

1
2

2

+−+− −= π . 

• For 2
1n=τ : For each |m| > 0 the existence of the solution depends on the identity 

(2.24) 
( )

( ) mm
wRJ
wRJ

wR
m

m +=+1 . 

The solution exists if and only if the identity holds, and then it has the form: 

( )wrJ m  , r∈[0, R ] 
(2.25) ( )=2

1, nrjm  { ( ) m
m

m rwRJR −⋅  , r∈(R, ∞). 

The function ( )2
1, nrjr m⋅  belongs to L2(0, ∞) if and only if |m| > 1 and then the 

corresponding mode Eq. (2.12) carries finite power: 

(2.26) ( ) ( )wRJ
m

m
Rdrnrjr mm

22

0

2
1

2

1
,2

−
=⋅∫

∞

ππ . 

Note that in this case ww =0 . 

• For 2
1n<τ : For each m∈Z and for each ( )2

1, n∞−∈τ  there exists a solution to 
Eq. (2.13) with a form listed in Eq. (2.20): 

( )rwJ m 0  , r∈[0, R ] 
(2.27) ( ) =τ,rjm { ( ) ( ) ( ) ( )rwYbrwJa mmmm 11 ⋅+⋅ ττ  , r∈(R, ∞). 

Using the identity Eq. (A1.1) we can obtain the formulae for ( )τma  and ( )τmb : 

( ) ( ) ( ) ( ) ( )[ ]RwYRwJwRwYRwJwRa mmmmm 110110102
1

++ −= πτ , 

(2.28) 

( ) ( ) ( ) ( ) ( )[ ]RwJRwJwRwJRwJwRb mmmmm 011001112
1

++ −= πτ . 

Functions ( )2
1, nrjr m⋅  are not in L2(0, ∞). 

The existence of the solutions to Eq. (2.13) in dependence on τ can be schematically 
summarised as on the Fig. 2.2. 
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Fig. 2.2 Diagram of solutions to the radial component of a scalar field propagating in a waveguide, 

equation Eq. (2.13). 

According to the terminology used on Fig. 2.2, modes with the radial component jm of the 
form either Eq. (2.21) or Eq. (2.25) with |m| > 1, so propagating with τ ∈ [ 2

0
2
1 ,nn ), are called 

guided modes. They decay exponentially in the clad with the radius and carry finite power 
(for examples see Fig. A2.4, Fig. A2.5 and Fig. A2.7). Alexandrov and Ciraolo have proved 
in [2, Theorem 8.2] the following: 

THEOREM 2.1. [2] The total number of guided modes (in all m∈Z) is finite.                

Modes with the radial component jm of the form Eq. (2.27), propagating with 2
1n<τ  are 

called radiating modes. Radiating modes extend oscillating with the radius into the clad 
much farer than guided modes (no exponential decay, for examples see Fig. A2.6). As 

( ) ( )∞∉⋅ ,0, 22
1 Lnrjr m , finite power propagating in the waveguide may be distributed 

among radiating modes only continuously.  

Note that Eq. (2.12) implies that both guided and radiating modes with positive τ are 
oscillating with distance z along the waveguide, while radiating modes with τ < 0 
exponentially decay or grow, depending on the direction of the propagation. Such 
exponentially decaying or growing modes are called evanescent modes. 

For given m∈Z let j0m(r,τ0) and j1m(r,τ1) be two different solutions of Eq. (2.13), not both 
radiating. It can be easily checked that the functions r½j0m(r,τ) and r½j1m(r,τ) are 
orthogonal: Under the substitution v0m(r,τ0) := r½j0m(r,τ0) and v1m(r,τ1) := r½j1m(r,τ1) 
equation Eq. (2.13) gives the two following equations: 

(2.29) 

( ) ( ) ( ) 025.0,,
2

2

0
22

0000 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−+′′
r

mnkrvrv mm τττ
, 

( ) ( ) ( ) 025.0,,
2

2

1
22

1111 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−+′′
r

mnkrvrv mm τττ
. 

Multiplying the first equation by v1m(r,τ1), the second by v0m(r,τ), subtracting the products 
and integrating the result over [0,∞) yields: 

(2.30) ( ) ( ) ( ) =⋅− ∫
∞

0
11001

22  ,, drrvrvnk mm τττ
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( ) ( ) ( ) ( )[ ] =⋅′′−′′⋅= ∫
∞

0
11001100  ,,,, drrvrvrvrv mmmm ττττ  

( ) ( ) ( ) ( )[ ] =⋅′−′⋅= ∞

∞

=
=

∞→
→

rr
rrmmmm

r
r

rvrvrvrv
00

 ,,,,lim 110011000
ττττ  

( ) ( ) ( ) ( )[ ] 0,,,,lim 11001100 =⋅′−′⋅⋅=
∞→

ττττ rjrjrjrjr mmmmr
, 

for the expression in the parenthesis converges to zero quicker than r -1, if at least one of 
j0m(r,τ0) and j1m(r,τ1) is not radiating, see Eq. (A1.2). 

Example computations and graphs of modal fields for two waveguides with normalised 
frequency parameter V = 8 and V = 20 may be found in Appendix A2.1. 

2.1.3 Modal representation of an input field 
In the previous part we have solved the scalar wave equation in separated variables for the 
case of a step-index waveguide and obtained the set of basic configurations of the 
propagating field, called modes. It turns out that each finite-power field propagating in such 
a waveguide can be uniquely represented as a superposition of modal fields, as the 
representation theorem of Alexandrov and Ciraolo [2] states. We now will cite the theorem 
(Corollary 2.4) and use it to obtain the modal representation of the angle-dependent uniform 
lighting of the fibre input face, in order to approximate the laser lighting used for the 
measurements of far-field profiles in the experimental part of this work (Chapters 5 and 6). 
We will also state the assumptions that will allow calculating fibre output far-field out of 
modal fields. 

2.1.3.1 Representation theorem 
Alexandrov and Ciraolo, proving in [2] the two following theorems, have showed that the 
radial components jm, m∈Z, may be viewed as transform kernels, with the corresponding 
sets of τ as the transform variable.  

THEOREM 2.2. [2] Let g:R+→C be such a function that ( ) ( )∞∈⋅ ,02Lrgr . For each m∈Z 
the following integral converge: 

(2.31) ( ) ( ) ( )∫
∞

⋅⋅=
0

 ,: drrgrjrG mm ττ  

and there exists a non-decreasing function χm:R→R such that: 

(2.32) ( ) ( ) ( ) ( )∫
∞

∞−

⋅= τχττ
π mmm dGrjrg  ,1

. 
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The Parseval identity holds: 

(2.33) ( ) ( ) ( )∫∫
∞

∞−

∞

=⋅ τχτπ mm dGdrrgr 2

0

2 22 . 
 

THEOREM 2.3. [2] Let g:R+→C be such a function such that ( ) ( )∞∈⋅ ,02Lrgr  and let 
χm:R→R be the non-decreasing function from Theorem 2.2. Then 

(2.34) ( )
( ) ( )ττ

τπτχ 22
2

2
1

mm
m ba

dkd
+

=  for ( )2
1, n∞−∈τ . 

For τ ∈ [ 2
0

2
1 ,nn ) function χm is constant between the discontinuity points 

{ m
m
k Pk  ..., ,1 ,0  =τ }, where 2

1n  is the first discontinuity point if and only if the equation 
Eq. (2.24) holds and the rest m

kτ  are the roots of the equation Eq. (2.22). In each 
discontinuity point m

kτ  function χm has a jump m
kr , where 

(2.35) ( )
1

0

2  ,:

−∞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅= ∫ drtjrr m

km
m

k τπ . 

For τ ∈ [ 2
0

2
1 ,nn ) function χm is constant. Using Eq. (2.34) the formula Eq. (2.32) for the back 

transform can be rewritten as: 

(2.36) ( ) ( ) ( ) ( ) ( )
( ) ( )∫∑

∞−= +
⋅

+⋅⋅=

2
1

22
2

0

,
2
1,1

n

mm

mm
P

k
mm

m
k d

ba
Grj

kGrjrrg
m

τ
ττ
ττ

ττ
π

. 
 

Both theorems directly imply the following corollary: 

COROLLARY 2.4. Let ( )zru ,,ϕ  be a finite-power solution of the scalar wave equation 
Eq. (2.10), Eq. (2.11) with the refractive index n defined in Eq. (2.16), i.e. let for each z 

(2.37) ( ) ∞<⋅∫ ∫
∞π

ϕϕπ
2

0 0

2  ,,2 ddrzrur . 

Let um(r, z) be the Fourier coefficients of ( )zru ,,ϕ : 

(2.38) ( ) ( )∫ −=
π

ϕ ϕϕ
π

2

0

 ,,
2
1:, dzruezru im

m . 

Then u at each distance z along the waveguide is the superposition of guided and radiating 
modes jm(r,τ), m∈Z with weights Gm(τ, z): 

(2.39) ( ) ( ) ( ) ( ) ( )∑ ∫
∈

∞

∞−

⋅⋅=
Zm

mmm dzGrjimzru τχττϕ
π

ϕ  ,,exp1,, , 
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where dχm(τ) is defined in Eq. (2.34) and Eq. (2.35). The coefficients Gm(τ, z) contain all  
z-dependence and are defined by: 

(2.40) ( ) ( ) ( )∫
∞

⋅⋅=
0

 ,,:, drzrurjrzG mmm ττ  

and satisfy 

(2.41) ( ) ( ) ( )kziGzG mm  exp0,, βττ ⋅= . 

The Parseval identity holds, too: 

(2.42) ( ) ( ) ( )∑ ∫∫ ∫
∈

∞

∞−

∞

=⋅
Zm

mm dzGdrdzrur τχτϕϕ
π

2

0

2

0

2 ,2 ,, . 
 

PROOF:  

Eq. (2.37) and the standard Parseval identity for Fourier series imply that 
( ) ( )∞∈⋅ ,0, 2Lzrur m  with um(r,z) defined in Eq. (2.38). Thus, um(r,z) matches the 

assumptions of both Theorem 2.2 and Theorem 2.3. According to Theorem 2.2, the integral 
Eq. (2.40) defining Gm(τ, z) converges. Eq. (2.32) and the inverse Fourier transform imply 
Eq. (2.39). Eq. (2.41) holds due to Eq. (2.12). The Parseval identity Eq. (2.42) holds due to 
Eq. (2.33) and the standard Parseval identity for Fourier series.                 

2.1.3.2 Illumination, modal fields and fibre output 
For fibre lighting purposes in the experimental part of this work a red laser (Part 5.2) 
illuminating the whole fibre input face was used. Using the approach from [1], we will 
assume the following simplifications:  

• The fibre input face is uniformly illuminated. This assumption is justified, as the beam 
diameter (half width of a Gaussian energy distribution) of the laser used for 
measurements is 3 mm to 4 mm, while the fibre diameter is 1 mm only. 

• Fields at the input face are approximately those at the boundary between two semi-
infinite media of refractive indices 1 (air) and n0 (core). 

• Weak guidance assumption, i.e. ∆n ≈ 0. 

• Modal fields in considered case of a semi-infinite waveguide are the same as in the 
case of an infinite waveguide. 

Those simplifications will allow finding relatively simple formulae for angle-dependent mode 
excitation. 

Let the input face of the fibre be lighted by a plane wave with the direction of propagation 
contained in the x-z surface, uniformly polarized in y-axis direction and with incident angle α 
with the fibre axis (Fig. 2.3). 
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       air (nair=1)     fibre core (n0) 

fibre axis    z 
α 

x 

γ 

 
Fig. 2.3 Refraction of a beam at the input face of a weakly guiding fibre. 

According to the second assumption, the field u at the input face can be computed from 
standard formulae for plane-wave refraction at a dielectric interface [4]. Normalising, to 
keep the total power illuminating the waveguide core constant, and using the Snell’s law 
Eq. (2.79), we get the following expression for the field u at the input face z = 0 inside the 
fibre: 

(2.43) 

( ) ( ) ( )[ ] =⋅= γαϕ sinexp0,, 0 xiknpru core1
 

( ) ( )[ ] ( ) [ ) ( )[ ]αϕααα sincosexpsinexp ,0 ⋅⋅=⋅= ∈ ikrpikxp Rrcore 11
, 

where p(α) is the Fresnel transmission coefficient Eq. (2.96). Now, using the series 
expansion Eq. (A1.3) and Eq. (A1.4) we obtain: 

(2.44) ( ) [ ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅= ∑

∈
∈

Zm
m

m
Rr imkrJipru ϕααϕ expsin0,, ,01

. 

According to Eq. (2.38): 

(2.45) ( ) ( ) [ ) ( )[ ]αα sin0, ,0 krJipru mRr
m

m ∈⋅⋅= 1  

Use the formula Eq. (A1.5) and Eq. (2.21), Eq. (2.25), Eq. (2.27) to compute the definite 
integral Eq. (2.40) and obtain: 

(2.46) 

( ) ( ) ( ) ( ) ( ) =⋅⋅⋅= ∫
R

mm
m

m drkrJrwJrpiG
0

00  sin0,; αατα  

( ) ( ) ( ) ( ) ( )[ ]RwJkRJwkRJRwJk
kw

pRi
mmmm

m

01010222
0

sinsinsin
sin −− ⋅−⋅⋅

−
= ααα

α
α . 
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The Parseval identity Eq. (2.42) allows to write the following formula for the power 
contained in a guided mode: 

(2.47) ( )( ) ( ) ( )2
0

0 0,;2:; m
km

m
k

m
km Grp τατα = , 

where m
kr  is defined in Eq. (2.35), Eq. (2.23) and Eq. (2.26). The total power in radiating 

modes is given by:  

(2.48) ( ) ( ) ( ) ( )
( ) ( )∑ ∫

∈ ∞− +
=

Zm

n

mm

m
r d

ba

G
kp

2
1

 
0,;

:
22

2
020 τ

ττ

τα
πα , 

where am(τ) and bm(τ) are defined in Eq. (2.28). The total incident power equals: 

(2.49) 2: Rpinc π= . 

Sample computations and graphs for angle-dependent mode excitations of two waveguides 
with parameter V = 8 and V = 20 can be found in Appendix A2. In Part A2.2 we define, 
basing on the simulations results, the optimal illumination angle for a guided mode, i.e. the 
illumination angle maximising the power Eq. (2.47) entering the mode, and call it further the 
external propagating angle of the mode (as relative to the outside environment, so α and 
not γ on Fig. 2.3). 

Using Eq. (2.46) and the assumptions stated at the beginning of this part, modal fields 
dependent on the illumination angle can be accurately found (as on Fig. A2.8). The 
opposite construction, i.e. the precise build-up of fibre angular output characteristics from its 
modal fields is not possible within the scalar wave equation approach as the scalar wave 
equation does not retain the vector properties of propagating fields. However for 
investigations of scattering and mode mixing the angular representation of modal fields is 
necessary. Thus, we will adopt a simplified procedure and assume that each mode at the 
fibre end produces the angular power output per solid radian (FFP, i.e. far-field profile, see 
Part 2.3.1) of the same shape as its normalised excitation characteristics Eq. (2.47): 

(2.50) 
( ) ( ) ( )

( ) ( )∫
= π

ααταπ
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0
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Therefore, if ( )m
kmp τ  equals the power contained in LPmk mode at the fibre’s end, then fibre 

output is assumed to be the { ( )m
kmp τ }-weighted superposition of curves Eq. (2.50), i.e. the 

angular density of output energy per unit time is assumed to equal: 

(2.51) ( ) ( ) ( )∑∑
∈ =

=
Z 0

,; :
m

P

k

m
kout

m
kmout

m

moutputpoutput τατα , 

where only guided modes were taken into account, as they carry most of the propagating 
power, an assumption that will be justified on examples in Appendix A2.2 and henceforth 
used. Note that Eq. (2.51) can be easily put down in vector notation as 
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(2.52) ( ) ( )[ ] ( )[ ]m
kout

m
kmout moutputpoutput τατα ,;

T
⋅= , 

where both vectors contain respective values computed for all modes in the same order. 

2.1.4 Scattering and mode mixing 
Even if the illuminating beam has a very small divergence (as it is the case with a laser 
beam) and the angular input characteristic of the waveguide contains only one narrow peak 
around the beam inclination angle, the angular characteristic of the output usually is much 
more diffused. This process is referred to as scattering, mode mixing or mode coupling; its 
most important reason are minute perturbations of the waveguide’s refractive index, which 
are inevitable in a real waveguide and give rise to the continuous power flow between 
propagating modes (Part 2.1.4.2). Another, often neglected reason, are the field transitions: 
illuminating to modal and modal to output (Part 2.1.4.1). According to Eq. (2.46) even the 
most parallel beam excites several guided modes, whose diffuse input/output 
characteristics superposed in Eq. (2.52) build-up a diffuse output. 

2.1.4.1 Scattering on input and end faces 
Under the assumption of no power transfer between modes, due to Eq. (2.46) and 
Eq. (2.52), the angular output power distribution can be expressed as: 

(2.53) ( ) ( ) ( )[ ] ( )[ ]m
kout

Tm
kmout moutputpoutput τατααα ,;;:, 0 ⋅= , 

where α and αout are the input and output angles1, respectively. Fig. A2.14 in Appendix A2 
shows sample angular output distributions for few inclinations of the input beam and for two 
sample waveguides. Numerical analysis described there showed that this kind of scattering 
(in investigated waveguides) practically does not depend on the illumination angle (see 
Fig. A2.15). 

2.1.4.2 Refractive index perturbations 
In an ideal non-absorbing waveguide the refractive index profile as well as the power 
distribution between modes are steady along the waveguide’s length. Slight refractive index 
perturbations, inevitable in a real waveguide, give rise to the continuous power flow 
between modes, usually referred to as the mode mixing or coupling. We will follow the 
analysis of scattering of Magnanini and Santosa [8] and expand it to the three-dimensional 
case of an optical fibre using the approach of Alexandrov and Ciraolo [2]. 

The refractive index n in Eq. (2.10) of an ideal waveguide depends only on the radius r. The 
perturbed waveguide in our analysis will have a refractive index np(r,φ,z), defined by the 
perturbation function d(r,φ,z): 

(2.54) 
( ) ( ) ( )zrdrnzrn p ,,,, 22 ϕϕ +=

, 

supp ( ) [ ] [ ) [ ]00 ,02,0,0,, zRzrd ××=Ω= πϕ  

                                                 
1 The angles between the waveguide’s axis and the direction of propagation. 
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for some finite R0 and z0. Substituting Eq. (2.54) into Eq. (2.10) gives the Helmholtz 
equation, discussed in the case of a 3-D waveguide in [2]: 

(2.55) ( ) ( )uzrdkukrnu ,,222 ϕ−=+∆ ; 

the total field u can be decomposed to the sum of the incident and scattered fields: 

(2.56) ( ) ( ) ( )zruzruzru scatinc ,,,,,, ϕϕϕ += . 

Substituting Eq. (2.56) into Eq. (2.55) and using the homogenous scalar wave equation 
Eq. (2.10) satisfied by uinc we obtain a variant of the Helmholtz equation: 

(2.57) ( ) ( )uzrdkukrnu scatscat ,,222 ϕ−=+∆ , 

where the scattered field must obey some form of radiation conditions guaranteeing its 
uniqueness. As the exact form of those conditions is not known, we will state as a 
hypothesis the radiation conditions used by Alexandrov, Ciraolo [2] in solving a version of 
Eq. (2.57), adapted from the open-space scattering problem [9, 25], modified to reflect the 
waveguide geometry: 

HYPOTHESIS 1 [2] If the following conditions are satisfied for all m∈Z 

( )31 RCuscat ∈ , 

( )zrd ,,ϕ  is continuous and with compact support, 
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∂
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⎥
⎥
⎦
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⎢
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⎡
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∂
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z mscatmscatz
, for 02 ≥= βτ  with ( ) 0≠τχ md  

(2.58) 

( ) ( ) 0,lim =
∞→

τzG mscatz
, for 02 <= βτ , 

where (uscat)m is defined analogously to um (Eq. (2.38)): 

(2.59) ( ) ( ) ( )∫ ⋅= −
π

ϕ ϕϕ
π

2

0

 ,,
2
1, dzruezru scat

im
mscat , 

and (Gscat)m analogously to Gm (Eq. (2.40)): 

(2.60) ( ) ( ) ( ) ( ) ( )∫
∞

⋅⋅=
0

 ,,, drzrurjrzG mscatmmscat ττ , 

and uinc, d, jm, dχm are defined in Eq. (2.56), Eq. (2.54), Eq. (2.21), Eq. (2.25), Eq. (2.27) 
and Eq. (2.34) then there exists at most one complex function uscat on R3 satisfying the 
equation Eq. (2.57).                     
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The meaning of the first two conditions of Eq. (2.58) is obvious; the third signifies a fast 
decay of the field as radius r → ∞, the last two mean that the energy going to |z| = ∞ may 
be divided into two parts: one oscillatory and one decaying. 

The (assumed to be unique under Hypothesis 1) solution to Eq. (2.57) can be written as: 

(2.61) ( ) ( ) ( ) ( )∫Ω
−=

 

2 ,,;,,,,,,,, dVzrgudkzruscat ξηρϕξηρξηρϕ  

and rewritten in the form of an integral equation: 

(2.62) ( ) ( ) ( ) ( ) ( )∫Ω
−=

 

2 ,,;,,,,,,,,,, dVzrgudkzruzru inc ξηρϕξηρξηρϕϕ , 

where ( )ξηρϕ ,,;,, zrg  is the Green’s function of a homogenous waveguide, found in [2] 
(with the assumption that the conditions Eq. (2.58) hold) to be equal to: 

(2.63) ( ) ( ) ( ) ( ) ( )∑ ∫
∈

∞

∞−

−− ⋅⋅−=
Zm

mmm
kziim djrjee

k
izrg τχτρτ
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ξηρϕ βξηϕ  ,,1

4
,,;,,

2
 

Equation Eq. (2.62) is satisfied by the von Neumann series [13]: 

(2.64) ( ) ( )∑
∞

=

=
0

,,,,
l

l zruzru ϕϕ , 

where  

(2.65) 

( ) ( )zruzru inc ,,,,0 ϕϕ = , 

( ) ( )zrTuzru ll ,,,,1 ϕϕ =+  

and the operator T is defined as: 

(2.66) ( ) ( ) ( ) ( )∫Ω
−=

 

2 ,,;,,,,,,,, dVzrgudkzrTu ξηρϕξηρξηρϕ . 

The scattered field can be finally computed as: 

(2.67) ( ) ( )∑
∞

=

=
1

,,,,
l

lscat zruzru ϕϕ . 

Appendix A4 contains considerations concerning a possible proof of the convergence of the 
series Eq. (2.67) in the supremum norm. If brought to the end, they would prove the 
existence and continuity of Eq. (2.67) and hence confirm that found uscat is (under 
Hypothesis 1) the solution of Eq. (2.57) in the distribution space. Here the convergence will 
be formulated as a hypothesis only: 

HYPOTHESIS 2 The series Eq. (2.64) converges in the supremum norm.                
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As Magnanini and Santosa did in [8], we will use in further computations the Born 
approximation, i.e. we will use only the first term of the von Neumann series Eq. (2.64) in 
the right hand side of Eq. (2.62) to get: 

(2.68) ( ) ( ) ( ) ( )∫Ω
⋅⋅−≈

 

2  ,,;,,,,,,,, dVzrgudkzru incscat ξηρϕξηρξηρϕ . 

Next, to investigate the waveguide’s mode mixing properties, we will use Eq. (2.39), 
Eq. (2.40), Theorem 2.3, Eq. (2.30) and the orthogonality of { ( ) Z∈mimϕexp } to obtain the 
scattered field and excitations of guided modes after the perturbation, i.e. for 0zz ≥ : 

(2.69) 

( ) ( ) =τ,zG mscat  

( ) ( ) ( ) ( ) ( ) ( )∫Ω
⋅−−⋅⋅=

 
,expexp,,,,exp

4
dVjkiimudkziik

minc τρξβηξηρξηρβ
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If assumed that the incident field consists of exactly one guided mode, i.e. that 

(2.70) ( ) ( ) ( ) ( )000 ,expexp,, τϕβϕ rjimkzizru minc ⋅= , 

where 2
00 βτ = , then Eq. (2.69) can be rewritten for 0zz ≥  in the following form: 

(2.71) 

( ) ( ) =τ,zG mscat  
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0 zGe mscat

zzki ⋅= − . 

This form, given the form of refractive index perturbations d(r,ϕ ,z), together with the 
Parseval identity Eq. (2.33) and under the Born approximation may be used to compute the 
power transfer coefficients between modes caused by the refractive index perturbations. If 
Eq. (2.70) is the incident field, then the relative scattered power in LPmk mode equals: 

(2.72) ( ) ( ) ( ) 2
0200 ,:,;,

0

0 m
kmscat

m
k

m
k

zG
rr

kmkmrsp τ
π

= . 

Eq. (2.53) describes the angular output power distribution of an ideal waveguide, depending 
on the illumination angle. In a similar way we can write down the formula in the case of a 
waveguide containing a perturbed fragment of length z0: 

(2.73) ( ) ( )( )[ ] ( )[ ] ( )[ ]m
kout

Tm
kmout moutputkmkmrsppoutputMix τατααα ,;,;,;:, 00

0 ⋅⋅= , 

where the middle term denotes the power coupling matrix obtained from Eq. (2.72), whose 
rows represents ordered all incidence modes (indices m0, k0 of Eq. (2.72)) and columns all 
ordered output modes (indices m, k). The mode order should be the same as in the cases 
of both vectors representing mode excitations by the illuminating beam and the superposed 
mode output characteristics. 
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Results of numerical computations for two waveguides and random perturbations of the 
refractive index are presented in Appendix A2.3. Apparent relation between the scattered 
field and the illuminating angle found there will be assumed to hold for all waveguides and 
used in the raytracing model and the modelling software. 

2.1.5 POF and transition to modal continuum 
A huge number of guided modes (more than 106 for a standard 1 mm POF), increasingly 
unique guided mode – propagation angle correspondence (Appendix A2.2) and the smooth 
scattering characteristics of Appendix A2.3 suggest the transition to modal continuum and 
to geometric optics, which is the topic of the following Part 2.2. Within this approach a 
propagating mode is represented by a bunch of rays (i.e. local plane waves), see 
[1, Chapter 36] for a discussion of local mode – ray correspondence. 

2.2 Raytracing model 
The raytracing model is based on geometric optics, and considered valid in the limiting case 
of the wave optics, i.e. for λ→0 compared to system dimensions (in typical POF 
applications λ ≈ 653 nm, fibre diameter is 1 mm). It makes use of the concept of a ray, 
refraction and total internal reflection [10]. The general ideas behind modelling and 
raytracing through an ideal step-index fibre within the framework of geometric optics are as 
follow:  

• The fibre is considered to consist of a core and an infinite clad with the refractive 
index n(r) defined by Eq. (2.16) or of a core and a finite clad immersed in air with the 
refractive index of 

n0 , r∈[0, R1 ] (core), 

n1 < n0 , r∈(R1, R2] (clad), (2.74) n(r) = {
1 < n1 , r∈(R2, ∞) (air). 

• The angular power distribution of the light source is used as a probability distribution 
to generate rays incident on the fibre input face. 

• Each generated incident ray is traced (Fig. 2.4) through the fibre according to the 
Snell’s law via successive total internal reflections on the core-clad and/or clad-air 
(jacket) interface until it leaves the fibre end or is transmitted through the interfaces 
and lost outside the fibre. According to the Fresnel law, each transmission of a ray 
through an interface is accompanied by its non-total reflection, which is usually 
neglected in the basic raytracing model (see Part 2.2.3). 

• After a sufficient number of rays is traced, required average characteristics (such as 
attenuation or near- and far-field profiles, see Part 2.3) are computed at the fibre 
endface. 
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Fig. 2.4 An example of raytracing of six rays through a fragment of an ideal step-index fibre. 

The Snell’s law, refraction and total internal reflection are illustrated on Fig. 2.5. 

nb < na

na

incident rays

transmitted ray

totally reflected ray

incidence 
angle αa

αb

 
Fig. 2.5 Snell’s law: ray transmission and total internal reflection on the interface between two media 

of different refractive indices. 

According to the Snell’s law (neglecting absorption and partial reflection), the ray incident 
on a flat interface between two media of different refractive indices is either totally 
transmitted or totally reflected, depending on the values of the refractive indices of both 
media and the incidence angle of the ray. The incidence and transmission angles of the 
transmitted ray are governed by the following identity: 

(2.75) bbaa nn αα sinsin = . 
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Dividing both sides by na we get the condition for the angle αa of the incident ray: 

(2.76) b
a

b
a n

n αα sinsin = . 

And as 1sin ≤bα  we get the following relation 

(2.77) 
a

b
a n

n≤αsin . 

From Eq. (2.77) follows that for ba nn > , so when the ray comes from the media with a 
higher refractive index (like in the case of a ray incident from within the fibre core), not all 
incident rays can be transmitted into the second medium. Thus, according to the Snell’s 
law, an incident ray is transmitted through the interface if and only if 

(2.78) [ )Ta αα ,0∈ , where 
2

),1min(arcsin πα ≤⎟⎟
⎠
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n
. 

If the incidence angle αa exceeds αT, the total internal reflection occurs and the ray is 
reflected back into the media it originates from. This simple, binary approach (ray is either 
transmitted or reflected back) forms the basis for the simple raytracing model. In such a 
model the fibre accepts incident meridional rays (i.e. the rays crossing its axis) only within 
its acceptance angle. 
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Fig. 2.6 Light acceptance of a step-index optical fibre. 

Applying the Snell’s law to the meridional ray confined to the core (the blue ray on Fig. 2.6), 
inverting the inequality Eq. (2.77) (the ray has to be reflected back into the core) and 
knowing that 01 nn < , we can obtain: 

(2.79) 

γα sinsin 0n= , 

0
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2
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. 
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Taking into account 

(2.80) ⎟
⎠
⎞

⎜
⎝
⎛ −= γπγ

2
sincos  

we finally get the guidance condition for incident meridional rays 

(2.81) 2
1

2
0maxsinsin nn −=≤ αα . 

The maximum incidence angle αmax is called the acceptance angle of the fibre, while its sine 
is called fibre’s numerical aperture NA: 

(2.82) ∆≈−+=−== 2sin 0
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nn

n
nnnnnNA α , 

where ∆ is the relative index difference. 

Rays traced exactly according to the Snell’s law happens only in the ideal fibre case. To 
enable modelling of fibre aging processes, two important imperfection-related phenomena 
have to be introduced: attenuation and scattering. Moreover, as the total internal reflection, 
according to the Snall’s law, ceases to occur above the critical angle, the fibre abruptly 
looses all of its guidance properties above its acceptance angle Eq. (2.72). But in reality, 
the limit between total internal reflection and transmission of a ray is not abrupt and incident 
rays are rather splitted on the core-clad interface than totally transmitted, as the Fresnel law 
states. Although the simple binary approach is often used, it is only a rough approximation 
of the reality. Due to the Fresnel reflection approx. 4 % of the power of an incident beam is 
lost (reflected back) already at the input face of a fibre, while the Snell’s law predicts no 
reflection there. Modelling of attenuation and scattering properties of an optical fibre within 
the geometric optics approach and modelling the Fresnel reflection are discussed in 
Part 2.2.1 to Part 2.2.3. 

Raytracing model, besides its intuitive interpretation, has three main advantages that make 
it particularly useful for simulating aging effects on light propagation: 

• Aging-related characteristics (attenuation and scattering) are direct model 
parameters. 

• Total fibre attenuation and relatively easy-to-measure far- and near-field profiles can 
be simply computed. 

• Fibre geometry distortions (e.g. imperfections of a core-clad interface) can be easily 
modelled. 

2.2.1 Attenuation 
The material causes of attenuation are briefly discussed in Part 4.1, devoted to fibre aging 
processes. Here it will be considered only within the framework of fibre modelling and the 
raytracing approach. 

In an ideal raytracing system each ray carries a unit power and is not attenuated along its 
way through fibre. But light transmitted in a real fibre is attenuated, i.e. the rays lose their 
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power along the way. Within the raytracing approach this process can be modelled by 
decreasing the power of each ray due to the fibre bulk material absorption (according to the 
path length) or after each ray reflection/transmission on the core-clad or clad-air interface. A 
ray is traced until it leaves the fibre or its power falls below a given cut-off level. 

Table 2.2  Attenuation parameters. 

bulk attenuation interface attenuation coefficients 

core attenuation core-clad reflection 

clad attenuation core-clad transmission 

 clad-air reflection 

 clad-air transmission 

Therefore, two obvious groups of attenuation parameters will be used, as listed in 
Table 2.2: the bulk attenuation of fibre core and clad and the interface attenuation 
coefficients related to ray reflection and transmission on the interface: 

• Bulk core attenuation parameter ab0 and bulk clad attenuation ab1. Power P of each 
ray is decreased due to the bulk material absorption and depends on the ray path 
lengths l0 and l1 covered respectively within the fibre core and clad: 

(2.83) ( )11000 exp lalaPP bb −−= , 

where P0 is the initial power of the ray. 

• Interface attenuation parameters model ray attenuation on the core-clad and clad-air 
interface (inter alia the Goos-Hänchen shift, i.e. the penetration of the reflecting ray 
into the other medium, see [2]). After each ray reflection or transmission on one of 
those interfaces the power of the ray is decreased: 

(2.84) Pafter reflection or transmission = αi ⋅Pbefore reflection or transmission, 

where ai is one of the four interface attenuation coefficients (Table 2.2). 

In a fibre of length L, without scattering, a ray incident on the input face under the angle α 
and propagated through fibre with the internal angle γ (Eq. (2.70)) towards the fibre axis 
covers a path of γcosL  length and undergoes at least RL 2tan γ⋅  reflections (in the case 
of a meridional ray). Both values depend on the incidence angle and thus the total 
attenuation of a specific ray also depends on its incidence angle. Therefore, it may not be 
equal to the general ‘attenuation’ parameter of the fibre, which is given in fibre’s technical 
data and which characterises only fibre’s average attenuating properties. The real 
measured attenuation, especially of a short fibre, often depends very much on the 
illumination conditions (see Fig. 6.5). 

2.2.2 Scattering 
The material causes of scattering are briefly discussed in Part 4.1, devoted to fibre aging 
processes. Here it will be considered only within the framework of fibre modelling and the 
raytracing approach. The wave optics approach to scattering was discussed in Part 2.1.4, 
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here we will use only the results of the numerical experiments concerning the angle 
dependence of the scattering intensity from Appendix A2.3. 

In an ideal step-index fibre ray path between successive reflections is straight, Snell’s (or 
Fresnel, see Part 2.2.3) law and total reflection exactly governs ray reflections and define its 
path. However, in a real fibre, there are several scattering effects distorting the ray path. As 
showed in Table 2.3, all scattering parameters in principle may be categorised into three 
groups: interface, bulk and endface scattering. 

Table 2.3  Scattering parameters2. 

bulk scattering interface scattering endface scattering 

core bulk scattering scale core-clad interface axial 
scattering endface scattering 

core bulk scattering slope core-clad interface 
azimuthal scattering  

core bulk scattering slope 
location 

clad-air interface axial 
scattering  

core bulk scattering axial 
dispersion 

core-air interface 
azimuthal scattering  

core bulk scattering 
azimuthal dispersion 

  

clad bulk scattering scale   

clad bulk scattering slope   

clad bulk scattering slope 
location   

clad bulk scattering axial 
dispersion   

clad bulk scattering 
azimuthal dispersion   

Endface scattering models imperfections of the fibre endfaces and the scattering effects of 
the conversion between illuminating/output fields and the modal fields discussed in 
Part A2.1 and Appendix A2.3.1. The examples investigated there suggest a constant 
endface scattering coefficient, not dependent on the illumination angle. Thus a ray, when 
transmitted through fibre input or endface, is randomly redirected and the redirection angle 
is drawn each time from the centred Gaussian distribution with standard deviation equal to 
the endface scattering coefficient. 

Interface scattering models imperfections of the core-clad and clad-air interfaces. Their 
axial and azimuthal imperfections are modelled as minute deformations of the ideal 
cylindrical shape in both directions, along and across the fibre. The tilt of the tangent plane 

                                                 
2 The term dispersion in Table 2.3 and henceforth refers to the angular broadening of peaks in the  
far-field profile and not to the time-related pulse broadening affecting the bandwidth of a fibre. 
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in the point where a ray hits the interface is described by two parameters: the standard 
deviations of axial and azimuthal tilt angles. The actual tilt at each reflection/transmission 
point is found by drawing two random numbers from the corresponding normal distributions. 
The mean number of undergone reflections is proportional to the tangent of the propagation 
angle γ and thus the total interface scattering increases with the incidence angle α and the 
propagation angle γ of a ray. 

Bulk scattering models two main different scattering processes: one due to minute intrinsic 
nonuniformities of the fibre refractive index3 and the second caused by extrinsic impurities 
and defects of the core and clad bulk material. The interface scattering occurs only on 
interfaces encountered by the ray on its way, while the bulk scattering distorts the direction 
of a ray in discrete points along its way in the bulk fibre material itself, due to abstract 
scattering obstacles representing impurities, defects or local irregularities of the refractive 
index. Two groups of parameters are required: one to decide when and the second to 
decide how a ray should be scattered: 

• Mean free path (fmp) length. Similarly to Arrue et al. [11], we will use the concept of 
a mean free path length: each ray travels free within the fibre core or clad between 
successive scattering points; the distance of its free path is determined using the free 
mean path parameter. Arrue et al. [11] propose the deterministic model where the 
free path of a ray is always of the same length (1 mm, i.e. the diameter of a typical 
POF), not depending on the ray propagation angle. We will expand this model in two 
important aspects: 

I. We will use a probabilistic model; the free mean path will be the mean of 
each time randomly drawn free path distance. As the probability of 
encountering a scattering obstacle by a ray is assumed to be constant per 
unit length of ray path, the actual distance is modelled by the exponential 
random distribution. Besides this simple rationale, the choice of the 
exponential distribution has two other important advantages: 

o The exponential distribution is the only continuous random 
distribution that does not have memory, i.e. for an exponential 
random variable X 

(2.85) [ ] [ ]xXzxXPzXP >+>=>
. 

This feature makes the bulk scattering process not dependent on 
ray reflections/transmissions on the core-clad and clad-air 
interfaces, so that they can occur in-between successive ray bulk 
scatterings, without disturbing the exponential bulk scattering 
process itself. 

o Ray path lengths between successive redirection points form a 
stochastic Poisson process with intensity being the reciprocal of 
the mean free path. The overlay of a finite number of Poisson 

                                                 
3 Often referred to as Rayleigh or Mie scattering, which are not quite precise descriptions here, 
because the terms originally describe the scattering of a plane wave and not of modal waves. 
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processes is also a Poisson process, so should it in future be 
necessary to differentiate between diverse causes of bulk 
scattering, the joint scattering process due to all of the causes will 
be also governed by the exponential random distribution with the 
intensity being the sum of the intensities of all component 
processes. This way the model stays open and easily expendable: 
several additional defect-related scattering processes may be 
separately added, removed and modelled, while the exponential 
(Poisson) characteristic of the joint bulk scattering process remains 
the same. 

II. In Appendix A2.3.2 the total scattered power Eq. (A2.12) is on numerical 
examples found to be decreasing with the illumination angle α (see 
Fig. A2.17), and so also with the propagating angle γ of the ray. Thus, to 
include this scattering property in the raytracing model, the free mean path 
has to be made angle-dependent, so that the average number of ray 
redirections per fibre unit length has a similar shape to the curves from 
Fig. A2.17. They have been fitted with the following formula 

(2.86) 
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where the meaning of the parameters κ and θ could be intuitively explained 
as follows: the slope of the curve depends on κ, while θ defines the slope’s 
location. Formula Eq. (2.86) expresses scattering properties of a fibre in 
terms of the angle-dependent scattered power per fibre unit length, as it is 
the case with Eq. (A2.12) and Fig. A2.17. However, the average number of 
undergone scatterings depends on the total path length of a ray, so not only 
on the fibre length but also on the internal propagation angle γ of a ray. 
Thus, the formula Eq. (2.86) before implementing it in software as the 
normalised average number of ray redirections per ray path unit length has 
to be multplied by 

(2.87) αγ 22
0

1
0 sincos −= − nn  

and additionally divided by γπ sin2  to account for the spherical geometry of 
the system. Finally the following formula is obtained for its reciprocal, 
i.e. the angle-dependent free mean path of a ray: 
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where A (bulk scattering scale parameter of Table 2.3) had to be added 
because Eq. (2.86) describes only normalised total scattered power (as on 
Fig. A2.17). Fig. 2.7 shows graphs from Fig. A2.17 (the blue dashed lines) 
and curves of Eq. (2.86) for few values of the fitting parameters. 
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Fig. 2.7 Total scattered power (or normalised number of ray redirections per fibre unit length) in 

dependence on the illumination angle. Four curves numerically computed in Appendix A2.3 
(Fig. A2.17) and few sample fitting curves of Eq. (2.86). 

• At each scattering point the ray has to be redirected according to four bulk scattering 
dispersion parameters (axial and azimuthal, for core and clad). On the analogy to the 
interface scattering, the ray is redirected by changing its axial and azimuthal direction 
angle. The actual redirection angle each time is drawn from the normal distributions 
with the mean zero and the standard deviation being the respective scattering 
dispersion parameter of the model. 

2.2.3 Fresnel reflection 
According strictly to the Snell’s law, the meridional ray from Fig. 2.6 will be guided if and 
only if it is incident within the cone defined by Eq. (2.81). However, more exact analysis 
shows that the boundary of the cone is diffused and leads to the Fresnel formulae. Treating 
rays as local plane waves, and because the fields’ components tangential to the interface 
are continuous across the interface [4], the following two conditions can be written: 

(2.89) 
⊥⊥⊥ =+ tri EEE , 

⊥⊥⊥ =+ tri HHH , 

where E and H denote respectively the amplitudes of the electric and magnetic fields at the 
interface, the subscripts i, r and t denote incident, reflected and transmitted fields and ⊥ 
denote the field component perpendicular to the plane of incidence, so tangential to the 
interface. From Eq. (2.1) follows 

(2.90) µ
ε

||EH =⊥ , 
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and, using Eq. (2.3), equations Eq. (2.89) can be rewritten as 

(2.91) 

⊥⊥⊥ =+ tri EEE , 

|||||||| t
a

b
t
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b
ri E

n
n

EEE ==+
ε
ε

, 

where the subscript || denotes the field component parallel to the plane of incidence. As the 
power incident on a unit area of the interface must equal the sum of the transmitted and 
reflected powers, and using the fact that power is proportional to 2Eε  (and so to 2nE ), 
one can obtain: 

(2.92) btarai EEE αεαεαε coscoscos 2
2

2
1

2
1 +=  

and after simple transformation, using Eq. (2.3) 
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what is valid for both perpendicular (⊥) and parallel ( || ) field components. From Eq. (2.91) 
and Eq. (2.93) we easily get the following formulae for amplitudes of the transferred and 
reflected fields: 
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as well as the following coefficients for the transferred power p⊥, p|| and the reflected power 
q⊥, q|| (related to the power incident on a unit area of the interface): 
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a

b

n
nd = . 



2 Modelling of light propagation in POF 

 - 39 - 

As geometric optics and the raytracing approach do not take into account light polarisation 
effects, in the following the average of p⊥ and p|| will be used for the power transfer 
coefficient p: 

(2.96) ( )||2
1 ppp += ⊥ ,. pq −= 1  

Fig. 2.8 shows graphs of the three average Fresnel power transmission coefficients p in 
dependence on the incidence angle αa for a ray incident from both sides on the core-clad 
interface and on the input face of a typical POF fibre (for the values of the refractive indices 
see Eq. (A2.1)). The red line (‘air→core’) runs for lower incidence angles below the other 
two, which illustrates the fact that the first loss occurs already on the input face of the fibre, 
where approx. 4 % of the incident power is reflected back and does not even enter the fibre. 
Note that rays incident on the core-clad interface from within the core under the angle 
greater than the critical angle (approx. 70°) are totally reflected back into the core (the blue 
line ‘core→clad’ and the blue ray on Fig. 2.6), exactly as it is stated by the Snell’s law. 

 
Fig. 2.8 Average Fresnel power transmission coefficients. 

Raytracing through a fibre within the binary model bases on a simple procedure: a ray 
incident on the core-clad interface is either transmitted into the fibre clad or reflected back 
into the core. If the contribution of the partly reflected rays to the optical properties of POF 
has to be considered, the Fresnel mechanism for ray reflection/transmission must be 
implemented. Its exact implementation would however require splitting the ray at each 
interface, unless it was incident under the critical angle or greater. But if rays were actually 
splitted, the total number of rays to trace would increase exponentially and quickly become 
computationally unmanageable. To avoid it, each traced ray can be on each encountered 
interface not splitted but randomly either fully reflected or fully transmitted with probabilities 
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equal to the relative powers Eq. (2.96) of the respective (reflected and transmitted) rays. 
For example: let, according to Eq. (2.95) and Eq. (2.96), the reflected ray retain 15 % and 
the transmitted 85 % of the incident power; such case will be modelled with one ray, either 
reflected (with 15 % probability) or transmitted (with 85 % probability). Although this solution 
is intuitively simple and obvious, the proof of its soundness astonishingly turns out not to be 
as straightforward as it could be expected. Both raytracing processes (i.e. the exact one, 
with splitting, and the other, modelling probabilistically the splitting) will be redefined as 
stochastic processes with their values at each step corresponding to the power and 
configurations (position, direction, etc.) of the traced ray(s) before successive Fresnel 
reflections or at the fibre output. The proof of soundness of the probabilistic raytracing 
model will be reduced to the proof of power equivalence of both stochastic processes, in 
the meaning defined later. 

First we need to define the space of all possible configurations (position, direction, tilt of the 
splitting interface, arrival time) of the traced ray that are important, i.e. just before the 
Fresnel reflection (Θ0 in the definition below) or leaving the fibre (Θ\Θ0 below). 

DEFINITION 2.5. Let 11RΘΘ0 ⊂⊂ , where 
 

( ){ 1110987654321 ,,,,,,,,,, θθθθθθθθθθθ=0Θ  
( ) { } ( ) ,,,,,1,0,,, 32
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3

4321 RR ⊂∈⊂Θ×Θ∈ Sff θθθθθθθ

( ) }RR ∈⊂⊂Θ∈ 10
32

1098 ,,, θθθθ Sdf  

and ( ){ 1110987654321 ,,,,,,,,,,\ θθθθθθθθθθθ ′′′=0ΘΘ  

( ) { } ( ) ( ) }RRRR ∈⊂∈′′′⊂∈⊂Θ×Θ∈ 11
32

1098
32

765
3

4321 ,,,,,,,,1,0,,, θθθθθθθθθθθ SSff ,
 

be called the fibre space of a given step-index fibre if and only if: 

• Θf ⊂ R3 is the set of all points of all fibre interfaces (input face, endface, core-clad 
and clad-air interface) and θ4 ∈ {0,1} codes one of the both sides of the interface. 

• n  = ( ) 32
765 ,, R⊂∈Sθθθ  is a unit vector normal to the interface at the point 

(θ1,θ2,θ3) representing its tilt. 

• ( ) 32
1098 ,, R⊂⊂Θ∈ Sdfθθθ  is a unit vector describing the direction of a ray at the 

point (θ1,θ2,θ3,θ4) of the interface with tilt (θ5,θ6,θ7). The set of possible directions Θdf 
depends on θ4 and n  = ( )765 ,, θθθ , and consists of only such directions, that the 

Fresnel reflection (and not the total internal reflection) occurs, i.e. that 
( )( )( ) nd≤∠ 1098 ,,,sin θθθn , where dn is the ratio of the refractive index of the target 

medium to the refractive index of the medium the ray originates from, where the 
media are differentiated by θ4. 

• ( ) 32
1098 ,, R⊂⊂Θ∈′′′ Sdoθθθ  is also a unit vector describing the direction of the ray 

at the point (θ1,θ2,θ3,θ4) of the outer fibre interface and pointing outside the fibre. The 
set of possible directions Θdo depends on (θ1,θ2,θ3,θ4): is not empty only for 
(θ1,θ2,θ3,θ4) lying on the outside side of the fibre input or end face or clad-air 
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interface and consists of exactly all such directions that point outwards the fibre, i.e. 
the point (θ1,θ2,θ3,θ4) and the direction ( )1098 ,, θθθ ′′′  constitute a possible output point 
and direction for the traced ray. 

• θ11∈R is the time at which a traced ray reaches the location described by the 
previous coordinates θ1 to θ10.                   

The traced ray at each step of the raytracing procedure can be described as a point in the 
set Θ×[0,1], i.e. by its configuration (position, direction, etc.) and its power. 

DEFINITION 2.6. Let Θ be the fibre space of a given step-index fibre, defined in Definition 2.5. 
The set Θ×[0,1], where the interval [0,1] stands for the power of a ray, will be called the ray 
space of the fibre.                      

The successive steps of the raytracing procedure can be described by finite (or  
one-element, with probabilistic modelling of Fresnel reflections) subsets of Θ×[0,1]. Initial 
illumination of the fibre can be then represented by a subset of Θ0×[0,1], while the output of 
the fibre by a subset of (Θ\Θ0)× [0,1]. Both raytracing processes are schematically 
depicted on Fig. 2.9. 

 
Fig. 2.9 Few steps of both raytracing procedures. The circles symbolise the points of the ray space. 

The circles with dot mark the ray input point; the circles with ‘x’ mark the ray output, i.e. the 
elements of (Θ\Θ0)×[0,1]. 

(a) The exact raytracing procedure. At each point of Fresnel reflection the power of the incident 
ray is splitted into the reflected (solid line) and the transmitted (dashed line) part. The input 
ray falls on the fibre input face, so the first reflected ray goes back into free space and is 
marked with ‘x’. 

(b) The probabilistic modelling of Fresnel reflections. Instead of tracing both reflected and 
transmitted rays, only one of them is randomly chosen (with the probability proportional to the 
power split coefficients in the process (a)) and further traced with full power of the incident 
ray. 
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Before the processes can be formally defined, few auxiliary definitions and symbols should 
be introduced: 

DEFINITION 2.7. Let Θ be the fibre space and Θ×[0,1] be the ray space of a given step-index 
fibre.  

• Let p,q:Θ→[0,1] be two deterministic functions on Θ defined by: 

Fresnel power transmission coefficient , θ∈Θ0 
p(θ) ={1 , θ∈Θ\Θ0, (2.97) 

q(θ) = 1- p(θ). 

• Let XR, XT:Θ→Θ be two random mappings such that  

o for each θ∈Θ0 the random variables RXθ  and TXθ  are the Fresnel 
reflection or output points reached by the respectively reflected and 
transmitted rays in the successive steps of the raytracing procedure. 

o For θ∈(Θ\Θ0) let θθθ ≡≡ TR XX  with probability 1. 

• Let AR, AT:Θ→[0,1] be two random mappings such that  

o for each θ∈Θ0 the random variables RAθ  and TAθ  equal the relative power 
remaining in the reflected and transmitted rays at the points RXθ  and TXθ , 
respectively, not taking into account the Fresnel power transmission 
coefficient p(θ) and the power reflection coefficient q(θ). AR and AT 
represent the bulk and interface attenuation of the traced ray in-between 
points θ and RXθ  or TXθ . 

o For θ∈(Θ\Θ0) let 0≡RAθ  and 1≡TAθ  with probability 1. 

• Let Z:Θ→{0,1} be a random mapping such that Zθ  is for each θ∈Θ a binary 
random variable with the probability of success p(θ), independent of RXζ , TXζ , RAζ  
and TAζ  for each θ,ζ∈Θ. Note that  

(2.98) E[Zθ] = p(θ) 

and that Zθ ≡ 1 with probability 1 for θ∈(Θ\Θ0).                  

NOTATIONAL CONVENTION As we will need deterministic rays as well as randomised rays, the 
random variables in the following will be told from the deterministic values by an underline 
or a capital letter, i.e. all random variables will be denoted with a capital letter (as in 
Definition 2.7) or will be underlined. According to this notation a deterministic ray ( )εθ ,=r  
is an element of Θ×[0,1], while a random ray r = (θ,ε) is a random variable on Θ×[0,1], 
which generally can but need not take a given value r with probability 1.                

In the following, it will be assumed that each random ray is independent of RX ϑ , TX ϑ , RAϑ , 
TAϑ  and θZ , so that fibre illumination does not depend on the raytracing mechanism. 
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Both raytracing processes of Fig. 2.9 can be now formally defined using Definition 2.7: 

DEFINITION 2.8. For each ( )εθ ,=r  (being a random variable in Θ×[0,1]) let random 
variables ( )rT , ( )rR  and ( )rS  be defined as follows: 

(2.99) 
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For each starting ray r = (θ ,ε) the exact raytracing process Pn, n∈N is defined by: 

(2.101) 
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And the probabilistic raytracing process Qn, n∈N is defined as: 
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The random variables T(r) and R(r) are represented on Fig. 2.9(a) by the dashed and the 
solid arrows, respectively. The only kind of an arrow on Fig. 2.9(b) represents the variable 
S(r). Now, when the processes are formally defined, its time to define what it does mean 
that the probabilistic process soundly models the exact one. Intuitively, it is enough that 
their measurable characteristics are the same. And this means mainly (see Part 2.3) the 
equality of the mean output power per endface area or per spherical angle in the same 
periods of time, which generalised leads to the mean output power per any borel subset 
of Θ. 

DEFINITION 2.9. Two finite sets of random rays ( ){ })()()()()( ,,2,1,, ll
k

l
k

l
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k Nkrr K== εθ , l∈{1,2}, 

are called power equivalent if and only if for each n∈N and each M∈B(Θ) 
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where B(Θ) is the set of all borel subsets of Θ⊂R8.                   

DEFINITION 2.10. The exact and probabilistic processes Pn and Qn (n∈N) are said to be 
power equivalent if and only if for each starting ray r = (θ ,ε) and for each n∈N the sets Pn 
and {Qn} are power equivalent.                    
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As the fibre space Θ is defined (in Definition 2.5) in a simple and obvious way, all 
necessary measurable optical characteristics of a fibre, so its far and near field profiles (for 
the definitions see Part 2.3), may be defined via borel sets on Θ. What is left to be shown is 
that both processes Pn and Qn actually are power equivalent. 

THEOREM 2.11. The exact and probabilistic raytracing processes Pn and Qn (n∈N) defined in 
Definition 2.8 are power equivalent. 

PROOF: The power equivalence of the processes Pn, Qn (n∈N) will be shown inductively 
with respect to n. 

(a) P0 and Q0 are power equivalent: It is directly implied by the fact, that both 
processes have the same starting ray. 

(b) P1 and Q1 are power equivalent. Let the starting random ray be r = (θ ,ε) and let 
its probability density function4 (pdf) be f(θ,ε) = f(r). Then 

( ) ( ){ } ( )( ) ( )( ){ }RRTT AqXApXrRrTP θθθθ θεθε ⋅⋅== ,,,,1 , 

( )rSQ =1  

and the mean power of Q1 per any borel subset M∈B(Θ) is (Eq. (2.103) with n=1): 
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4 Instead of a continuous distribution and its pdf, any probabilistic distribution could be taken. The proof 
would stay the same; only the integrals would become notationally more complicated, as they would 
have to be taken with respect to the induced measure on Θ×[0,1]. 
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Because the random variables Zθ are independent of RXϑ , TXϑ , RAϑ  and TAϑ : 
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which is the mean power of P1 per any borel subset M∈B(Θ). 

(c) Assumed that  
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we will prove that so are also 

( ) ( ){ }NkrTrRP kkn ,,2,1,1 K==+ , 

( )01 rSQn =+ . 

The following notational conventions will be used: 

• Let fk(θ,ε) be for each k ∈ {0, 1, 2, …, N} the pdf of ( )kkkr εθ ,= . 

• Let fθ(θ,ε) be for each θ∈Θ the pdf of S((θ,1)) = (Xθ,Aθ). 

• Let KM(θ) be for each θ∈Θ the mean power in M∈B(Θ) of 
S((θ,1)) = (Xθ,Aθ): 
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• Let Tk(θ) be for each k ∈ {0, 1, 2, …, N} the mean power of ( )kkkr εθ ,=  in 

point θ∈Θ: 
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Using the above notation Eq. (2.104) can be rewritten as follows: 
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M is here any borel subset of Θ, so the above implies: 
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with probability 1. 

We will need also the following fact, directly implied by the definition of the power 
equivalence of sets (Definition 2.9): 

• The relation of the power equivalence of sets is transitive, i.e. if (i) sets A 
and B are power equivalent and (ii) sets B and C are power equivalent, then 
(iii) sets A and C are also power equivalent. 

Step (b) of the inductional proof directly implies that the sets ( ) ( ){ }kk rTrR ,  and 

( ){ }krS  are power equivalent. Thus, instead of considering Pn+1 and Qn+1, it is 
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2.3 Basic measurable optical characteristics of a fibre 
Both approaches to light propagation presented in the previous parts of this chapter 
describe the mechanism and allow modelling of light transmission through an optical fibre. 
Both depend on a number of imperfection-related parameters (perturbations of the 
refractive index, roughness of the core-clad interface, mean free path length, scale of the 
bulk scattering, etc.). As there is no known way to estimate the exact numerical values of 
these parameters a priori, they must be found a posteriori, i.e. by comparison between 
simulation results and measurements (see Part 3.2.3). The basis for comparison must be 
such optical characteristic of a fibre that on one hand is relatively easy to measure and to 
simulate but on the other hand diverse enough. As only static and not time-related 
characteristics5 of an optical fibre are considered here, there are two potential fibre 
characteristics: far- and near-field profiles, discussed in the following parts. In the 
implemented raytracing software (Chapter 3) only the far-field profile is used. 

2.3.1 Far-field profile (FFP) 
Far-field profile (FFP) of an optical fibre is the angular distribution of its output power per 
solid angle. It is measured far away from the fibre endface, at a distance much larger than 
the fibre’s diameter, so that the angular differences of rays leaving the fibre at different 
points of the endface can be neglected. 

 
Fig. 2.10 Illustration of the concept of the far-field profile (FFP) measurement. 

FFP is expressed in units of average power radiated into a solid radian. Fig. 2.11 shows two 
sample FFP measurements. Further examples can be found in Part 6.3. 

As it can be concluded from literature [10], FFP strongly depends on the 
• illumination angle, 
• POF type, 
• sample length (see Fig. 2.11). 

                                                 
5 As for example the bandwidth or the impulse-response characteristic of a fibre. 
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Fig. 2.11 Influence of POF sample length on the FFP at the illumination angle 15°. 

Within the raytraced software discrete FFPs will be computed from rays leaving the endface 
of the simulated fibre as a mean output power per solid radian. Let the discretisation step 
equal ∆α and let S(α,α+∆α) denote the total power of all rays leaving the fibre end face with 
inclination angle towards the axis within the interval [α,α+∆α). Then 
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where the denominator equals the surface of a fragment of a sphere with radius 1 lying 
between α and α+∆α angle. 

2.3.2 Near-field profile (NFP) 
Near-field profile (NFP) of an optical fibre is the local output power distribution of the light 
just after leaving the fibre endface (Fig. 2.12). 

 
Fig. 2.12 Few last steps of a raytracing procedure for several rays:The concept of the near-field profile 

(NFP) measurement. 
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NFP is expressed in units of average density of output power on the endface surface. 
Fig. 2.13 shows three sample simulated near-field profiles; the simulations were made with 
the software described in Chapter 3. The illumination angle was equal to 15° (the same as 
on Fig. 2.11), the input beam divergence was 0.35 mrad and the whole input face of a fibre 
(core and clad) was lighted. The imperfection-related parameters were assumed to be 
equal to those of the fitted non-aged Mitsubishi fibre (Table 7.1). The noise overlaid on the 
NFP curves should be attributed to the statistic dispersion of the results and gets smaller 
with the increasing number of traced rays. Note also that (if uniform ray distribution on 
fibre’s endface assumed) the closer to the endface centre, the fewer rays are used for NFP 
computations and hence the more noise. 

 
Fig. 2.13 Three sample simulated near-field profiles of one POF type and different lengths.  

For each curve approx.  1 000 000 rays were traced. 

It has turned out that NFP is almost independent of fibre length and illumination angle. 
Thus, NFP seems to be unsuitable for fibre comparison purposes and will not be used for 
optimising and fitting the imperfection-related fibre parameters. 



3 Simulation software 

- 50 -              BAM-Dissertationsreihe 

3 Simulation software 

3.1 Commercially available software 
Commercially available, scientific raytracing software can be in general divided into two 
groups: sequential and non-sequential raytracing software. 

Sequential raytracing software is used for modelling and simulating the cases, in which the 
rays are traced through a predefined sequence of distinct optical objects, e.g. starting with a 
simulated light source generating several rays in approximately the same direction, 
refracted by a given lens no. 1, reflected then by a mirror and finally refracted by a lens 
no. 2. In this way traced rays may be collected on a projection screen and analysed in 
respect to their local distribution, optical path length, etc. A typical and widely used software 
form this group is the application package Optica, an extension tool to the well-known 
Mathematica from Wolfram Research [21]. 

Software packages belonging to the other group model the raytracing problems, in which 
the sequence of objects encountered by each traced ray is not or cannot be determined a 
priori, before the actual simulation of the ray path takes place. So, for example, some rays 
in the above-mentioned setup may miss the mirror but be nevertheless further traced 
towards other objects lying behind it, while a sequential raytracing software would just 
discard them as not matching the predefined sequence of encountered objects. This kind of 
general raytracing requires usually more sophisticated, versatile and costly software then 
simpler sequential systems. Similar raytracing procedures are also used by 3D lighting and 
scene-building graphical applications. The most known examples are the systems CODE V 
from Optical Research Associates [22] and ASAP from Breault Research Organization [23]. 

Implementing the raytracing procedure described in Part 2.2 would be potentially possible 
using both described kinds of commercial software, because the system consists of the light 
source and only one optical element, the modelled fibre. However, none of the available 
systems offers enough detailed control over the raytracing mechanism (angle-dependent 
intensity of the random scattering, reflection attenuation coefficients, etc.) to allow direct 
implementation of the developed model. Reprogramming would be possible in the case of 
Optica, but it would require deep intervention in the basic code of the package and the 
resulting software (as partly interpreted, not compiled) would be too slow to trace millions of 
rays in a reasonable amount of time. Thus, new specific software for fibre raytracing had to 
be developed. 

3.2 Developed software 
Developed software consists of three parts: 

• Raytracing software library containing all the type definitions and the functions 
necessary for performing actual simulations. 

• Graphical user interface, which allows entering values of the simulation parameters, 
passes them to the library and presents obtained simulation results (FFP, NFP, 
attenuation, etc.). 
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• Optimisation functions and their user interface, which allows entering the simulation 
parameters and measured FFPs, and communicates with the library for performing 
simulations to use the results in the optimisation process. 

All three parts of the software were developed in Delphi environment from Borland Software 
Corporation [24], as it offers both code compilation (so high speed of its execution) and 
easy creation and management of the graphical user interface. 

3.2.1 Raytracing software library 
The raytracing library performs the simulation exactly as described in Part 2.2, according to 
the values of three groups of parameters: setup, material and software. 

3.2.1.1 Setup parameters 
Several setup parameters are required to define the physical properties of the simulation 
setup, i.e. of the simulated fibre and the light source. Their values, as describing the 
physical setup itself and not the optical properties of the fibre, are assumed to be given a 
priori, independent of the aging time, and are not optimised to get the best fit between 
simulated and measured FFPs (Part 3.2.3.1). Most important of the setup parameters are 
listed in Table 3.1. 

Table 3.1  Most important setup parameters. 

 parameter type remarks 

fibre length real  

core diameter real  

fibre diameter real  

use clad tracing logical Should rays be traced also 
in the clad? 

model Fresnel reflection logical Should Fresnel reflection 
modelling be used? fib

re
 s

pe
ci

fic
 

ray cut-off power level real 
A ray is traced only until it 
leaves the fibre or its power 
falls below the cut-off level. 

illumination angle real  

light divergence real  

uniform illumination logical 
Should uniform illumination 
(and not a Gaussian beam) 
be used? 

beam horizontal diameter real  

beam vertical diameter real  

beam rotation real  

illu
m

in
at

io
n 

sp
ec

ifi
c 

beam centre location (real, real)  
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3.2.1.2 Material parameters 
The material parameters of the simulation describe the optical properties6 of the simulated 
fibre and thus their values are optimised to get the best fit between simulated and 
measured FFPs (Part 3.2.3.2). Besides the parameters listed in Table 2.2 (describing fibre 
attenuation) and Table 2.3 (describing fibre scattering) they include also the refractive 
indices of fibre’s core and clad, hence a total of 23. As an exact optimisation of all 23 
independent parameters would be too time-consuming and thus practically impossible, the 
material parameters have been subjected to additional constraints, see Part 3.2.3.1. 

3.2.1.3 Software parameters 
The software parameters influence only the control of the simulation process and the 
display of its results, not the way the simulation is performed. The most important software 
parameters are:  

• Memory save, a logical parameter. If true, the data of rays leaving fibre’s endface 
(output point, power, direction) are stored only in an aggregate form. If false, all the 
output data of each ray (six 4-byte reals, i.e. 24 bytes for each ray) is stored. One 
million traced rays would produce then approx. 24 MB of output data for further 
processing. 

• Refresh step, an integer. As refreshing the cumulative FFP/NFP graphs on the 
screen takes usually much more time than tracing a single ray through a typical fibre, 
it is reasonable to refresh the graphs only after several rays have been traced. This 
parameter defines the number of rays to trace before the simulation is temporary 
interrupted for displaying its updated results. 

• Rescale FFP, a logical parameter. If true, the simulated FFP is rescaled to fit a given 
FFP and the fit quality is computed. 

3.2.1.4 Simulation results 
In each simulation step a total of refresh step (a software parameter, see Part 3.2.1.3) rays 
is traced. Then the library functions return the simulation results listed in Table 3.2. 

Table 3.2  Simulation results returned after each simulation step. 

parameter type remarks 

FFP array of reals simulated discrete FFP 

NFP array of reals simulated discrete NFP 

transmitted rays array of array 
of reals 

array of output rays’ data 
(if save memory == false) 

no of traced rays integer no of rays traced in this step 

no of transmitted rays integer no of rays leaving fibre’s endface 

backscattered power real  

transmitted power real  

                                                 
6 With the exception the endface scattering parameter of Table 2.3, which describes rather the quality 
of fibre endface polishing than the aging-affected material properties. 
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3.2.2 User interface for raytracing 
Fig. 3.1 shows the user interface allowing for a direct use of the raytracing library. The 
upper part of the window contains controls used for manual parameter input; the lower part 
shows basic simulation results (transmitted and backscattered power, number of traced 
rays, average simulation speed in rays per second, etc.) and either simulated FFP/NFP or 
their simple smoothness measure based on the variation of the curves. The simulated FFP 
can be rescaled to match a reference FFP and the fit quality can be computed. During the 
execution the shown results are regularly refreshed, the FFP/NFP graph can be saved for 
future reference. 

For the FFP simulation presented in Fig. 3.1 as sample parameter values a fibre length 
of 3.2 m and an illumination angle of 15° were used; over a million of rays have been 
traced. Fig. 3.2 shows the simulated NFP obtained during the same simulation. 

 
Fig. 3.1 Graphical user interface of the raytracing library for the FFP simulation. Besides other 

parameters, 3.2 m fibre length, 15° illumination angle and over a million of traced rays have 
been used. 
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Fig. 3.2 Simulated NFP corresponding to Fig. 3.1. 

3.2.3 Optimisation software 
The graphical interface described in the previous part, although it allows to compute the 
(best-square-)fit quality of the simulated and reference FFPs, cannot be used for 
optimisation of the material parameters with the measured FFPs (Chapter 6) due to two 
following reasons: 

• It allows for only manual and thus rough and non-systematic optimisation. 

• It allows simulating and comparing with the reference of only one FFP at a time. For 
better optimisation results, several FFPs of each investigated fibre type, differing only 
in the length of the measured sample and its illumination angle (see Chapter 6), have 
been measured. 

Thus, another software had to be developed for performing the semi-automatic optimisation 
of fibre’s material parameters (Part 3.2.1.2), capable of using several measured FFPs 
simultaneously. 

3.2.3.1 Setup parameters 
The setup parameters mentioned in Part 3.2.1.1 and listed in Table 3.1 have been divided 
into two groups: those common to all measured fibre samples and those specific to each 
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FFP measurement. Assumed to be common to all measured samples and thus constant are 
the following: 

• Fibre core diameter: a value of 0.98 mm, as typical for POFs, has been used. 

• Fibre diameter: a value of 1 mm, as typical for POFs, has been used. 

• Use clad tracing: true. Rays in all simulations were traced also in fibre’s clad. 

• Model Fresnel reflection: true. The Fresnel reflection was modelled according to the 
mechanism described in Part 2.2.3. 

• Ray cut-off power level: 10-4. Each ray was traced until it left the fibre or its power fell 
below 0.01 % of the initial level. 

The rest of the setup parameters describe the conditions of each measurement and thus 
have to be given separately for each FFP measurement, even if some of them happen to 
be the same for all samples: 

• Fibre length: approx. 0.8 m, 3.2 m or 10 m, see Parts 6.1 and 6.2. 

• Illumination angle: 6°, 15° or 24°, see Part 6.2. 

• Light divergence: 0.35 mrad, see Part 5.2. 

• Uniform illumination: true. As the diameter of the laser beam used was 3 mm to 
4 mm (Part 5.2), it was assumed that the illumination intensity over 1 mm POF input 
face is sufficiently uniform. Thus, the setup parameters related to the illuminating 
beam do not apply. 

Fig. 3.3 shows the part of the user interface of the optimisation software used for the input 
of setup parameters and corresponding measured FFPs. 

 
Fig. 3.3 Optimising software. Input of setup parameters and corresponding measured FFPs. 
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3.2.3.2 Constraints on optimised material parameters 
Altogether there are 23 material parameters that describe optical properties of a fibre 
(Part 3.2.1.2). To get the best fit between the measured and simulated FFPs the values of 
all of them should be optimised. However, optimising the fit-quality function (see 
Part 3.2.3.3) in 23 independent variables would be too time-consuming to make the 
procedure practical. Thus, several constraints had to be enforced on the possible values of 
the parameters, leading to the total of six independent optimisation variables listed in 
Table 3.3. 

Table 3.3  Optimisation variables used and their relation to the material parameters. 

variable 
no. 

variable name relation to fibre’s material parameters 

var1 endface scattering = endface scattering 

var2 core bulk attenuation = core bulk attenuation 

var3 interface attenuation 

= core-clad reflection attenuation 
= core-clad transmission attenuation 
= clad-air reflection attenuation 
= clad-air transmission attenuation 

var4 scattering scale 
= core bulk scattering scale 
= clad bulk scattering scale 
(‘A’ parameter in Eq. (2.87)) 

var5 scattering slope 
= core bulk scattering slope 
= clad bulk scattering slope 
(‘κ’ parameter in Eq. (2.87)) 

var6 scattering slope location 
= core bulk scattering slope location 
= clad bulk scattering slope location 
(‘θ’ parameter in Eq. (2.87)) 

The six optimisation variables defined in this way describe 12 of 23 material parameters. 
The 11 parameters left were assumed to be constant and their values were not optimised 
for the following reasons:  

• clad bulk attenuation = 10 000 dB/km 

The most of the transmitted rays cover almost all the way to the endface of the fibre 
within its core, guided through a chain of successive total internal reflection on the 
core-clad interface. Thus, the main medium for light transmission is the core, not the 
clad, and the exact value of clad bulk attenuation does not seem to be decisive. The 
value of 10 000 dB/km is mentioned in Daum et al. [10]. 

• core-clad interface axial scattering = core-clad interface azimuthal scattering  
= clad-air interface axial scattering = core-air interface azimuthal scattering  
= 0. 

As stated in Part 2.2.2, the intensities of both interface and bulk scattering processes 
are dependent on the propagation angle of a ray. The formula Eq. (2.86) for the 
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angle-dependent intensity of the bulk scattering allows for a relatively free choice of 
its shape. Therefore, it will be assumed that its shape accounts also for the influence 
of the interface scattering and thus the only parameters needed for modelling of the 
scattering remain the parameters A, κ and θ of Eq. (2.86) (var4, var5 and var6). 

• core bulk scattering axial dispersion = 
= core bulk scattering azimuthal dispersion = 
= clad bulk scattering axial dispersion =  
= clad bulk scattering azimuthal dispersion = 
= 0.2° 

In general, the (optimised) scale parameter of the bulk scattering (i.e. A in Eq. (2.87)) 
defines how many times a ray is scattered on its way through fibre, while the four 
angular dispersion parameters here define by which angle it is each time scattered. 
Thus, as in practice each ray is scattered numerous times, both groups of 
parameters define the angular dispersion of the scattered power, which depends 
linearly on angular dispersion parameters and is proportional to the square root of 
the mean number of ray redirections (the reciprocal of the mean free path, 
depending on the scale parameter). Hence, scale and angular dispersion parameters 
are substitutive and it is sufficient to optimise the value of only one of them, which 
was also experimentally confirmed in a simpler raytracing model [15]. The value of 
0.2° was experimentally found to correspond to a reasonable optimised value of the 
parameter A. 

• The refractive index of fibre’s core was assumed to be 1.492, a typical value  
for PMMA. 

• The refractive index of fibre’s clad was each time computed using Eq. (2.82) and the 
value of fibre’s numerical aperture NA (Table 4.2) given by the manufacturer. As a 
result, the following values were used: 1.402 for Mitsubishi’s fibres, 1.411 for Asahi’s 
fibres and 1.406 for Toray’s fibres. 

3.2.3.3 Optimisation procedure 
A semiautomatic optimisation procedure based on the Powell’s Direction Set Method [6] 
has been implemented and used to optimise the values of the six variables var1 to var6 
(Part 3.2.3.2) to obtain the best fit between the computed and measured FFPs.  

In each step of the optimisation procedure FFPs have been simulated for the actual values 
of var1 to var6 using the same setup parameters (Part 3.2.3.1) as that of the measured 
fibre samples. The target function d(var1,…,var6) to be minimised was the sum of the 
normalised square differences between the measured and simulated two-dimensional 
FFPs7, rescaled to get the best fit between the two: 

                                                 
7 Obtained from their one-dimensional representation, thus constant on the rings of ∆α = 0.2° width. 
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where Ώ is the fragment of a unit sphere with its origin in the middle of the fibre output face 
and extending up to 45° (i.e. the detectable angular range of the FFP optics) out of the fibre 
axis. For the meaning of the weighting coefficients in the second term see Eq. (2.105). The 
non-indexed sum in Eq. (3.1) denotes the sum over all different measured and simulated 
samples for the current fibre and the scaling factor ϑ  has the value that minimises the 
target function, i.e.: 

(3.2) 
( )6,,minarg: varvar1d K

+∈
=

Rϑ
ϑ . 

Rescaling of the simulated FFPs with the factor ϑ  was necessary because the measured 
FFPs are expressed in a.u. / srad and those arbitrary units cannot be related to the 
unknown total power incident on the fibre’s input face, as it is the case with the simulated 
FFPs. Nonetheless the attenuation parameters can be optimised thanks to the use of 
different fibre lengths. 

Note that the target function Eq. (3.1) compares two-dimensional FFPs and thus puts more 
weight on the tails of the corresponding one-dimensional curves, which can be generally 
observed on measured and fitted graphs in Appendix A3: the higher is the output angle, the 
better the fit of both curves. 

Simulated FFPs are in fact obtained from a Monte Carlo procedure and thus each 
computed value of the target function d contains some amount of noise disturbing its 
minimisation process. The more rays traced, the less gets the noise and the more exact is 
the optimisation procedure but also the longer time it demands. Thus, the  
best-fitting values of the variables var1 to var6, describing the optical properties of an 
investigated fibre, are always loaded with some amount of uncertainty (Table 7.4), which 
represents the trade-off between the optimisation time and its accuracy. 
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4 Aging process and POF samples 
In this chapter we give a short overview of the material loss mechanisms in POFs and of 
fibre aging (Part 4.1), discuss their influence on the raytracing model (Part 4.2), specify the 
fibres used (Part 4.3), describe the applied aging conditions and show sample online 
measurements of relative fibre transmission under long-term environmental stress 
(Part 4.4). 

4.1 Loss mechanisms in POF and fibre aging 
POF during its service time is often subjected to different types of environmental stresses, 
which result in changes of its chemical and physical properties. This is called aging. Most 
important in respect to the deterioration of optical properties are long-term influences of 
high temperature, high humidity, freezing, radiation, and mechanical or chemical stress. 

See Daum et al. [10, Chapter 8] for a general discussion of the reliability of POFs, for 
measurement methods to trace the influence of environmental stresses, for reports on 
several reliability investigations made under various stress conditions, for a description of 
standardisation efforts and for numerous references. 

Loss factors of optical transmission in a commercially available POF can be divided into 
those specific to the material itself (intrinsic) and those related to fibre imperfections or 
impurities (extrinsic). They are further categorised as shown in Table 4.1. 

Table 4.1  Loss factors in POFs [10, 17]. 

Absorption 
• high harmonics of the C-H bondings 
• electron transitions 

Intrinsic loss 
factors 

Scattering • Rayleigh scattering 

Absorption 
• organic contaminants 
• water absorption 
• transition metals Extrinsic loss 

factors 

Scattering 
• microcracks 
• fluctuations of the core diameter 
• core-clad interface imperfections 

The influence of the aging process on the loss factors will not be discussed in detail in this 
research. It is treated parallel to this work, in another thesis at the Federal Institute for 
Materials Research and Testing (BAM) by A. Appajaiah. He investigates the material 
aspects of high temperature and high humidity aging [see 33-36]. Further literature is given 
in [17], too. 
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4.2 Aging influence on raytracing model 
In a real fibre as well as in a modelled one that imitates it, passing light encounters two 
main imperfection-related processes: attenuation and scattering. Both processes can be 
described in two ways: 

I. Using the terms belonging to the geometric or wave optics, as in Chapter 2 and 
Appendix A2, so that the overall influence of attenuation and scattering on fibre 
optical properties and light propagation could be computed or simulated, which is 
one of the goals of this work. 

II. But they can also be described using rather chemical than optical terms, as in 
Table 4.1 and in the above-mentioned thesis of A. Appajaiah [see 33-36]. This 
approach allows better understanding of the environmental influence on fibre 
material itself but it is harder to relate its terminology and findings to fibre’s optical 
properties. 

In this work we deal mainly with simulation of light propagation, so the terminology of the 
first approach will be used. Because it is reasonable to assume that the raytracing 
mechanism itself does not change under environmental influences, its parameters have to 
change. The raytracing parameters listed and explained in Part 2.2 will be (as it is described 
in the beginning of Part 2.3) found for each investigated fibre separately, by comparison of 
the measured and simulated FFPs (Chapter 7). Thus, by tracing changes of the values of 
the model parameters between initially the same fibres but subjected to different 
environmental conditions or different aging times, the following aging-related alteration can 
be found: 

• Aging of the fibre bulk material, traced via its modelled 
o scattering (the left column of the Table 2.3) and 
o attenuation properties (the left column of the Table 2.2). 

• Degradation of the core-clad interface, traced via the modelled 
o interface scattering (the middle column of the Table 2.3) and 
o interface attenuation coefficients (the right column of the Table 2.2). 

For the results and discussion see Chapter 7. 

4.3 POF samples 
For the experimental part of the work commercially available PMMA-based POFs of 1 mm 
diameter from three leading manufacturers were bought and used: 

• Mitsubishi Rayon Co., fibre ESKA CK-40, 
• Asahi Chemicals Inc., fibre LUMINOUS TB-1000, 
• Toray Industries Inc., fibre PGU-FB 1000. 

All three fibres were bought bare (core and clad only, no jacket) to trace the pure influence 
of the environmental conditions during the aging tests, not disturbed by the presence of the 
protective layer of jacket. The nominal basic technical data of all three fibres are very similar 
and listed as given by the manufacturers in Table 4.2, together with the measured 
attenuation value at 650 nm for comparison. For its measurement a broad-spectrum light 
source was used and a Sentronic S2000 miniature spectrometer [37]. The light was 
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launched into measured samples using a 0.8 mm diameter, high NA silica fibre directly 
illuminating the POF input face. 

Table 4.2  Basic technical data of the fibres used in investigations. 

 
ESKA  
CK-40 

LUMINOUS 
TB-1000 

PGU-FB  
1000 

∅ 1 mm 1 mm 1 mm 

core material PMMA PMMA PMMA 

clad material fluoropolymer fluoropolymer fluoropolymer 

numerical aperture NA 0.51 0.485±0.05 0.50 

acceptance angle αmax 30.7° 29.0° 30.0° 

nominal attenuation at 650 nm 0.20 dB/m 0.16 dB/m 0.15 dB/m 

measured attenuation at 650 nm 0.14 dB/m 0.14 dB/m 0.16 dB/m 

Mitsubishi’s fibre’s numerical aperture value of 0.51 corresponds to the typical combination 
of PMMA-core refractive index of 1.492 and clad refractive index of 1.402. Those typical 
values are used in all numerical investigations of Appendix A2, as stated in Eq. (A2.1). 
Fig. 4.1 shows the spectral attenuations of all three non-aged fibres measured using 10 m 
polished-end samples with a Sentronic S2000 miniature spectrometer [37]. 

 
Fig. 4.1 Measured spectral attenuations of 10 m non-aged fibres. 
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4.4 Aging conditions 
Five samples of all three fibre types were subjected to accelerated aging using specialised 
climatic chambers, ovens and the following conditions: 

• total fibre length 13 m, aged fibre length 10 m; 
• dry heat conditions (80 °C, 90 °C, 95 °C and 100 °C), i.e. high temperature without 

humidity control (<<50 % RH) or 
• high temperature combined with high humidity (92 °C / 95 % RH, 92 °C / 50 % RH). 

All tests went on for 3000 h to 4500 h. During the whole aging processes online 
transmission measurements of the hot fibres were automatically performed with the help of 
the multiplexer measurement system [19]: 

• in 10 min steps, 
• using three LEDs with spectra centred at: 525 nm (green), 590 nm (yellow) and 

650 nm (red) wavelengths. 

Fig. 4.2 to Fig. 4.6 show sample results of obtained measurements. Note that the 
transmission measurements were done online, during exposure8, and thus they differ from 
the values that are obtained from the fibres cooled down to the room conditions9, for the 
comparison of both see Fig. 4.20. 

 
Fig. 4.2 Relative online transmission of 10 m hot samples (i.e. during exposure) of investigated fibres 

at 650 nm wavelength and under 100 °C / <<50 % RH. 

The transmission of the fibres subjected to the 80 °C / <<50 % RH stress has stayed 
practically constant or dropped only very slightly during the whole test (Fig. 4.3). The 
temperature of 92 °C combined with 95 % relative humidity (Fig. 4.5) has caused the 
transmission of all fibres to drop completely within the first hours of the test, while keeping 

                                                 
8 Fibres during exposure will be henceforth referred to as the ‘hot’ fibres. 
9 Henceforth referred to as the ‘cold’ fibres. 
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the temperature at 92 °C but decreasing the relative humidity to 50 % has allowed the 
transmission (at least in the commonly used 650 nm region) to stay relatively high through 
the whole test time, see Fig. 4.5 and Fig. 4.6. 

Fig. 4.3 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at 
650 nm wavelength in dry heat conditions, i.e. 80 °C, 90 °C, 95 °C and 100 °C without 
humidity control (<<50 % RH). 

Fig. 4.4 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at three 
wavelengths under 100 °C / <<50 % RH. 

Fig. 4.5 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at 
650 nm wavelength under 90 °C to 95 °C, without humidity control (dry heat, i.e. <<50 % RH) 
and with high relative humidity (50 % RH, 95 % RH). 
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Fig. 4.6 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at three 
wavelengths under 92 °C and with 50 % relative humidity. 

4.4.1 Sample preparation 
Because the main purpose of this research was to develop and to validate the model for 
light propagation in POFs, capable of describing the aging-related changes, as typical 
examples, besides the non-aged fibres, only the samples obtained during the 
100 °C / <<50 % RH aging were used for further investigations (Chapters 6 and 7). 
Table 4.3 lists the respective aging times. At each time given in the table, a set of three fibre 
samples, one for each manufacturer, has been taken out of the oven and kept for 
attenuation and FFP measurements, resulting in a total of 18 fibre samples. 

Table 4.3  Aging times of POF samples used for further optical investigations. 

Aging time (100 °C / <<50 % RH) 
of the sample sets used for investigations 

sample set 0:  0 h (fresh, non-aged fibre) 
sample set 1:  2 h 
sample set 2:  258 h 
sample set 3:  677 h 
sample set 4:  1393 h 
sample set 5:  4467 h 

After cooling down to room temperature (about 25 °C) each of those 18 fibre samples had 
been cut into three pieces of the length of approx. 0.8 m, 3.2 m and 10 m. The endfaces of 
the pieces were polished using several abrasive papers with a grade down to 0.1 µm. As a 
result 54 fibre samples with fine-polished endfaces were prepared for FFP measurements 
(Chapter 6). The 10m-pieces were used for measuring the spectral attenuations with a 
Sentronic S2000 miniature spectrometer [27], too. The results of the latter are given in 
Fig. 4.7 to Fig. 4.9. 

Note that the attenuation of the cooled down fibres in the usable wavelength ranges seems 
to stay approximately constant or even decrease (Asahi’s fibre, Fig. 4.7 and Fig. 4.9) with 
the aging time (between set2 and set4). This astonishing behaviour is confirmed with the 
total transmission measurements obtained in Chapter 6 (Fig. 6.11 to Fig. 6.16). 
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Fig. 4.10 to Fig. 4.12 compare the relative transmission of the hot fibre samples (Fig. 4.2) 
with the relative transmission of the cooled down samples. 

 
Fig. 4.7 Attenuation of the 10 m sample of Asahi’s fibre at different aging times (Table 4.3) in the 

100 °C / <<50 % RH conditions. 

 
Fig. 4.8 Attenuation of the 10 m sample of Mitsubishi’s’s fibre at different aging times (Table 4.3) in 

the 100 °C / <<50 % RH conditions. 
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Fig. 4.9 Attenuation of the 10 m sample of Toray’s fibre at different aging times (Table 4.3) in the 

100 °C / <<50 % RH conditions. 

 
Fig. 4.10 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample of Asahi’s 

fibre at 650 nm wavelength and under 100 °C / <<50 % RH. 
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Fig. 4.11 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample of 

Mitsubishi’s fibres at 650 nm wavelength and under 100 °C / <<50 % RH. 

 
Fig. 4.12 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample of Toray’s 

fibres at 650 nm wavelength and under 100 °C / <<50 % RH. 
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5 Experimental instrumentation for FFP measurements 
In Part 2.3 the near- and far-field profiles of an optical fibre were discussed and the far-field 
profile (FFP) was chosen as the enough general and diverse fibre characteristic to be used 
for the comparison of simulated and real POFs, as in [11, 15, 16]. The simulation software 
described in Chapter 3 uses the formula Eq. (2.105) for computing the FFP of a simulated 
fibre. The FFP of a real fibre must however be measured. In this chapter the measurement 
setup, the necessary instrumentation, its reliability and calibration is discussed. 

5.1 General measurement setup 
To get enough complete characteristics of a POF, either aged or non-aged, its far-field 
profile has to be measured in dependence on 

• incidence angle of an illuminating beam, 
• fibre length. 

Fig. 5.1 schematically depicts the setup used for FFP measurements [see 38-40]. A red 
laser is used for POF illumination; a specialised far-field optics translates the angular 
characteristic of fibre output power to spatial coordinates, needed for illumination of the flat 
CCD sensor of the CCD camera. The CCD camera output is then processed to obtain the 
FFP using the procedure described in Part 6.3. 

 

CCD
cameraFFP opticsmeasured fibre

wide-beam 
laser with
launching 

optics
 

Fig. 5.1 Principle of the measurement setup. 

The measurement setup outlined on Fig. 5.1 has resolved basic contradiction between time 
efficiency and accuracy of other possible techniques for far-field measurement, but has also 
created new problems: 

• It is time-effective. Due to the huge number of measurements (several combinations 
of illumination angle, fibre length, fibre type/manufacturer and aging time) the 
traditional scanning (goniophotometric) measurements turned out to be too time-
consuming. Therefore, it was decided to use a CCD camera with 1024×1024 cells 
(meaning a simultaneous measurement of >105 points of FFP), as it allows taking 
measurement with a limited number of short single snaps. 

• It is accurate in respect to the illumination. The CCD camera’s reliability had to be 
investigated. As there is no obvious literature on calibration and reliability of CCD 
cameras, a procedure for their quality assessment and calibration had to be 
developed (Part 5.3). A common measurement problem of standard CCD cameras, 
i.e. too small dynamic range, may be overcome by combining several measurements 
taken with different exposure times, as described in Part 5.3.4. 

• It is accurate in respect to the angular resolution. Using a bare CCD sensor with a 
direct illumination provides first at the distance to the fibre endface of approx. 12 mm 
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the sufficient angular part of the FFP (±αmax ≈ 30°) but already too small angular 
resolution (approx. 4.7° for the fibre of 1 mm diameter). A specialised FFP optics 
with much higher angular accuracy (at least 0.5°) became available recently. 
However, optics’ reliability, i.e. its angular distortion and stability of resolution, had to 
be investigated, too (Part 5.4). 

5.2 Laser 
As a light source for POF illumination a laser diode DLS 15 from LINUS was used with the 
following optical properties: 

• Wavelength: 653 nm at 20 °C. 
• Beam divergence: 0.3 mrad to 0.4 mrad (0.017° to 0.023°). 
• Beam diameter: 3 mm to 4 mm. 

The beam diameter safely surpassing that of the measured POFs (1 mm) guarantees 
almost uniform illumination of fibre input face. The stability of the output power was tested 
together with the stability of the CCD camera’s response after exposure time change, for 
the results see Fig. 5.9. 

5.3 CCD camera calibration 
On one hand scientific CCD cameras are fast and robust instruments for optical 
measurements. On the other hand, most of reasonably priced scientific CCD cameras are 
constructed to give rather qualitative than quantitative results. Nevertheless, they can be 
used for scientific purposes and POF measurements, although with a calibrating procedure. 
In this part we describe the measurement setup used to obtain calibration measurements 
(Part 5.3.1), discuss common inaccuracies of CCD cameras (Part 5.3.2), propose a 
calibration procedure for measurements (Part 5.3.3) and address the often-occurring 
problem of too small dynamic range (Part 5.3.4). 

5.3.1 Setup for calibration measurements 
The general idea of the setup is to get several snaps (raw responses of the camera’s CCD 
sensor) under direct uniform illumination of the sensor with the wavelength approximately 
the same as that of the used laser. Fig. 5.2 shows the setup. 

 
bare CCD sensor 

 red filter 

integrating 
sphere with 
white light 
source 

 direct illumination 
 

Fig. 5.2 Principle of the calibration setup. 
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The distance between the integrating sphere and the bare CCD sensor was approx. 0.5 m. 
The uniformity of the sensor relative illumination intensity was better than 0.5 %, measured 
with a linear photodiode. An example is shown in Fig. 5.3. The sensor of dimensions 
14.34 mm × 14.34 mm was positioned for measurements with its centre at the ‘0 mm point’ 
of the horizontal axis on Fig. 5.3. As the CCD camera a ‘BFi OPTiLAS Eurocam CCD-1020’ 
with the following characteristics was used: 

• 1024 × 1024 pixel resolution, 
• Bit depth of 12 bpp (bit per pixel), i.e. 4096 distinct grey levels [GL], 
• Adjustable exposure time ≥ 1 ms. 

The same camera was used for all further FFP measurements (Chapter 6). 
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Fig. 5.3 Typical measurement of the illumination uniformity of the CCD sensor (measured radial from 

the centre and plotted as normalised intensity). 

For each of the considered exposure times (1 ms, 2 ms, 4 ms, 8 ms, 16 ms and 32 ms) the 
following four measurement series were made, each one of 16 measurements, to obtain the 
calibration data: 

• A series X0 of 16 measurements taken with zero illumination, i.e. under completely 
dark conditions. The absolute illumination intensity m0 = 0. 

• Three series Xi, i∈{1, 2, 3} of 16 measurements, each taken under uniform lighting 
conditions generated by the distant integrating sphere of Fig. 5.2 and (by using 
different voltage) generating approx. 25 %, 50 % and 75 % of the maximal CCD 
sensor response (1012 GL = 4096 GL, grey levels). The absolute (actual) illumination 
intensity mi, i∈{1, 2, 3} was measured for each series separately with a linear 
photodiode. 

5.3.2 Unreliability factors and calibration data 
The reliability of a single uncalibrated CCD camera measurement may be strongly 
influenced by several factors; below the most important are mentioned. 
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5.3.2.1 Dark profile 
The dark profile is the camera’s output under zero illumination, thus it is the constant bias of 
all measurements taken with the camera. For each exposure time it is computed as the 
average of all 16 measurements of the X0 series taken under completely dark conditions. 
As the dark profile is strongly temperature-dependent and the used camera is not cooled, 
all measurements should be taken after the temperature of the CCD sensor stabilises. 
Fig. 5.4 shows the dark profile of the used camera at the typical 32 ms exposure time. 
Besides the slope, a finer wave-like pattern may be noticed, it is probably related to the row 
arrangement of the CCD cells within the sensor. 

 
Fig. 5.4 The camera’s dark profile at 32 ms exposure time. For presentation clarity and to reduce the 

effect of unreliable cells and noise the figure shows averages over 8×8 squares. 

5.3.2.2 Random noise 
Sensor random noise is the cause of inevitable differences between successive 
measurements taken under exactly the same conditions. Random noise of a single CCD 
cell may be modelled with a centred Gaussian random distribution. For each of six 
exposure times and for each CCD cell the sample standard deviation si, i∈{0, 1, 2, 3} of 
each of four measurement series was computed.  

The average sample standard deviation of the dark profile (under null illumination) at the 
most-used 32 ms exposure time was found to be approx. 1.5 GL (grey levels). For the non-
zero illumination, it turned out that si increases with the illumination intensity. Thus, the 
random noise of each cell was characterised by taking the maximum value of three relative 
sample standard deviations10. The average value at 32 ms exposure time was found to be 
approx. 0.6 %, which corresponds to approx. 24 GL at the full illumination (4095 GL). 

                                                 
10 Sample standard deviation divided by the respective average illumination level. 
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5.3.2.3 Non-linear response function 
Response function of an ideal CCD cell should have a linear relationship between input and 
output. However, response function of a real CCD cell may not be ideally linear, as it was 
the case with the earlier investigated ‘DALSA CA-D4’ camera [14] with the average relative 
non-linearity of 7 %. Nevertheless, the camera used here showed the average non-linearity 
of approx. 0.3 % only (at 32 ms exposure time). 

For each exposure time the response function of each cell is modelled in the following way: 
The average response xi of each cell in the measurement series Xi and the corresponding 
measured absolute lighting intensities mi form a series of four points (mi,xi), i∈{0, 1, 2, 3} 
lying on the actual response function of the cell. The points have to be fitted with a  
cell-specific function x = f(m) (linear, quadratic, exponential, etc.). The inverse function 
m = f -1(x) will be further used to translate cell’s response x to the real illumination intensity 
m and where appropriate to correct cell’s nonlinear characteristics, too. The average non-
linearity of the sensor can be computed by averaging relative deviations of the best linear fit 
from the measured points. 

As the camera used here had almost linear characteristic, the response functions of its 
CCD cells were fitted with the linear function: 

(5.1) x = f(m) := x0 + am. 

5.3.2.4 Non-uniform sensitivity 
Differences between response functions of CCD cells make the sensitivity profile of a CCD 
sensor non-uniform. As the CCD camera used here had almost linear response, its 
sensitivity profile can be assumed to stay constant over all illumination levels and be directly 
defined by the inclinations a of individual cells’ response functions Eq. (5.1). Fig. 5.5 shows 
the relative sensitivity profiles of the used camera at 1 ms and 32 ms exposure time (the 
average value was rescaled to 100 %). 

Fig. 5.5 Relative sensitivity profiles of the camera at 1 ms (left) and 32 ms (right) exposure time. For 
presentation clarity and to reduce the influence of unreliable cells and noise the figures show 
averages over 8×8 squares. 
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5.3.2.5 Damaged CCD cells 
In a real CCD sensor some cells are usually damaged or dead as well as there may be dust 
and scratches present on the CCD sensor’s surface generating a remarkable local 
sensitivity change. Such cells will be called irregular. Measurements of such cells are 
unreliable and should be approximated basing on measurements of neighbouring cells. 
Fig. 5.6 presents sample defect of the sensor surface of the investigated CCD camera that 
has been identified via the sensitivity profile analysis.  

As an irregularity criterion the following can be used: The cell is marked irregular if and only 
if it satisfies at least one of the following conditions: 

• The random noise of the cell is too high (e.g. more than a given r-percentile of the 
noise values of all investigated cells). 

• The fit quality (average square fit error) of cell’s fitted response function f is too bad 
(e.g. the error exceeds a given r-percentile of the square fit errors of all investigated 
cells). 

• The fitted response function f of the cell differs too much from the average fitted 
response function (e.g. the mean square difference exceeds a given r-percentile of 
the mean square differences of all investigated cells). 

For further investigations the 3σ level (i.e. r ≈ 99.7 %) was used. The total number of 
irregular cells of the camera was found to be about 2.4 % (approx. 25 000 of the total cell 
number ∼1 050 000). Fig. 5.7 shows the distribution of the irregular cells on the sensor 
surface at 32 ms exposure time. Note the horizontal blue strip in the upper part of the figure, 
consisting entirely of unusable irregular cells. 

 

Fig. 5.6 Fragment of the sensitivity profile of 
the camera at 32 ms exposure time. 
The magnification clearly shows a 
defect of the CCD sensor surface. 

Fig. 5.7 Irregular cells (blue dots) foundt 32 ms 
exposure time 
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5.3.2.6 Temperature dependence 
Many characteristics of a CCD camera are strongly temperature-dependent. As the CCD 
camera used here was not cooled, all measurements (calibration as well as FFP 
measurements) had to be taken after the CCD sensor temperature stabilises. Fig. 5.8 
shows the camera’s response in dependence on the heat-up time (the camera was 
switched on at the time 0, after overnight cooling down to the room temperature). As a 
result, the heat-up time of at least 2 hours before all measurements was always used.  

The temperature distribution on the sensor could be different for different exposure times, 
which (if true) would require some accommodation time after any change of the exposure 
time. Fig. 5.9 shows the response of the already heated-up camera after the exposure time 
change at the time 0 from 32 ms to 1 ms. As the variations found are rather minute, it was 
assumed that there is no need for such accommodation time. Small variations of the 
camera’s response prove also good output power stability of the laser used for the 
measurements. 

85%

90%

95%

100%

0 10 20 30 40 50 60 [min]
99%

100%

101%

0 2 4 6 8 10 [min]  

Fig. 5.8 The camera’s typical response (an 
average over 10×10 cells square) in 
dependence on the heat-up time at the 
exposure time of 32 ms. 

Fig. 5.9 Response of the already heated-up 
camera after a change of the exposure 
time from 32 ms to 1 ms. 

5.3.3 Calibration procedure for measurements 
The factors mentioned in the previous section strongly influence the reliability of 
measurements taken with a CCD camera. Nevertheless, using the calibration data collected 
and processed as described in Part 5.3.1 and Part 5.3.2, each raw measurement can be 
calibrated in the following way to exclude or minimise effects of the most of the mentioned 
unreliability factors: 

1) Let the camera heat-up at least 2 hours after switching it on. 

2) Take a series of N subsequent raw measurements and compute their average. 
The random noise should be reduced by the factor of N ½. 

3) Correct the sensor’s dark noise and non-uniform sensitivity by applying to the 
measurement of each CCD cell its inverse fitted response function m = f -1(x). 

4) For each irregular cell approximate its measurement value using the calibrated 
measurement values of its neighbouring regular cells. 
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As the unreliability characteristics of the camera can be wavelength-dependent, the 
calibration measurements should be made with a light source of approximately the same 
spectrum as used for final measurements. 

5.3.4 Expanding the dynamic range 
Another practical problem concerning the most of the low-end scientific cameras is their 
restriction to the bit depth of 8 bpp or 12 bpp only and thus to the dynamic range of 1:256 or 
1:4096 at the very best. This dynamic range, relatively small for many applications, can be 
further considerably reduced by the above-mentioned unreliability factors. It was found that 
this limitation might be overcome by combining several calibrated measurements taken with 
different exposure times, according to the following procedure: 

1) Make several calibrated measurements using different exposure times. 

2) Upscale those made at shorter exposure times to match the longest exposure time 
measurement. As the exposure time rate only roughly determine the scaling factor, 
find it beforehand by comparing the response functions fitted at different exposure 
times. 

3) Merge the scaled measurements into the final measurement. 

Note that for each of the calibrated measurements obtained in 1) a separate calibration 
procedure should be performed and a separate set of calibration data (Part 5.3.1) should be 
used. Note also that at long exposure times in highly excited areas overexposure (blooming 
effect) should be avoided. 

5.4 Quality verification of the far-field optics 
As the far-field optics in the setup outlined on Fig. 5.1 a specialised FFP optics A3267-12 
from HAMAMATSU with the following optical specifications was used: 

• Detectable angular range: ±45°. 
• Angular resolution: 0.2°. 
• Wavelength range: 630 nm – 1650 nm. 

Accuracy of measurements taken with the setup strongly depends on the optics’ reliability. 
Thus, three crucial FFP optics’ characteristics have been investigated: 

• Linearity of the θ-f (angle→space) transformation. 
• Distortion level of the θ-f transformation. 
• Real angular resolution and its stability across the angular input range. 

The results of the tests described below showed that the real angular resolution of 0.5° 
(with the used CCD camera) is worse than the nominal value of 0.2°. Nevertheless, the 
tests clearly confirm high quality of the optics and show that there is no need for any FFP 
optics calibration procedure. 



5 Experimental instrumentation for FFP measurements 

- 76 -              BAM-Dissertationsreihe 

5.4.1 Test setup and measurements 
For test purposes the red laser diode described in Part 5.2 was used to directly illuminate 
(with adjustable illumination angle) the input lens of the FFP optics under various angles 
with the help of a goniometer. The full field of the FFP optics (approx. 90° in diameter) was 
tested in approx. 5° steps with the resolution of ±5´ (≈ ±0.083°), all input beams were 
contained in one plane which included also the optics’ axis. The resulting spots were 
registered with the CCD camera and calibrated according to the procedure described in 
Part 5.3.3. Fig. 5.10 shows a typical example of a calibrated spot. 

 
Fig. 5.10 Sample calibrated spot measured by the CCD camera (clip from the complete CCD array). 

One CCD cell row/column corresponds to the angular distance of approx. 0.2°. 

5.4.2 Linearity of angle to space transformation 
As the angular differences between all successive input beams were equal to 5°, the 
distance between respective peaks (the maxima) of successive measured spots on the 
CCD sensor should be identical, up to one pixel. Because the plane in which the 
illumination angle changes is parallel neither to the rows nor to the columns, both are 
influenced by the angular changes. Table 5.1 lists the coordinates of all spot peaks, i.e. of 
the CCD cells with maximum illumination, and the distance between the current and the 
previous spot.  
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Table 5.1  Coordinates of the spot peaks on the CCD sensor. 

illumination 
angle 

x 
(rows) 

y 
(columns) 

d 
illumination 

angle 
x 

(rows) 
y 

(columns) 
d 

-45° 410 717 - 5° 536 507 24.7 

-40° 423 696 24.7 10° 548 486 24.2 

-35° 436 675 24.7 15° 561 465 24.7 

-30° 448 654 24.2 20° 573 444 24.2 

-25° 460 633 24.2 25° 585 423 24.2 

-20° 473 612 24.7 30° 598 402 24.7 

-15° 485 591 24.2 35° 610 381 24.2 

-10° 498 570 24.7 40° 623 360 24.7 

-5° 510 549 24.2 45° 635 339 24.2 

0° 523 528 24.7     

The linearity of the FFP optics has turned out to be constant across the full detectable 
angular range of 90° (up to one pixel). One row or column of CCD cells corresponds to the 
illumination angular difference of approx. 0.2°. The results confirm that there is no need for 
any linearity corrections. 

5.4.3 Distortion of angle to space transformation 
As all input beams were contained in one plane, the peaks (i.e. the maxima) of all 
measured spots should be also placed in one line across the CCD sensor, up to  
one-pixel resolution. Using the coordinates of the spots maxima from Table 5.1 the linear 
best fit can be computed to be 81074.140668066.1 +−= xy . The average non-linearity of 
the spots, i.e. the square average distance between the spots and the linear best fit was 
found to equal approx. 0.06°, i.e. much less then 0.2° corresponding to one cell distance. 
Thus, there is no need for any distortion corrections. 

5.4.4 Angular resolution 
Fig. 5.8 shows how much an illuminating beam of approx. 0.02° divergence (see Part 5.2) is 
broadened by the FFP optics. Although the maximum of its energy distribution can be 
located within the distance of one cell (as in Part 5.4.2), the nearest distance in which two 
similar distributions can be distinguished from each other depends on the dispersion of the 
distribution. It is common sense to use the width at half height as a measure, i.e. the 
diameter in degrees of each spot at 50 % of its height, see Fig. 5.11. Additionally the 
corresponding 25 % values are given to be on the save side. The resolution measured at 
half height (50 % level) was not worse than 0.5°, which will be assumed to be the real 
angular resolution of the setup. 
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Fig. 5.11  FFP optics resolution test: spot diameter at 25 % and 50 % spot height. 
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6 Far-field profile measurements 

6.1 Samples preparation 
As stated in Part 4.4.1, the non-aged and aged up to 4467 hours (approx. half a year) 
samples (at 100 °C / <<50 % RH) have been used for further investigations. Table 4.3 lists 
the aging times of the six sets of the fibre samples used, each consisting of three fibres 
from three manufacturers and finally cut into three pieces of approx. 0.8 m, 3.2 m and 10 m 
length. Then, after fine polishing of the endfaces, 54 fibre samples were prepared for FFP 
measurements. 

6.2 Measurement procedure 
The measuring setup is outlined in Fig. 5.1 and used with three illumination angles (6°, 15° 
and 24°) to investigate the angle-dependent optical properties of the fibre. The fibre bend 
radius during all the measurements was kept not less than 20 cm to avoid the influence of 
bending [20, 68, 69]. 

Thus, each measured fibre sample is identified by three parameters: 

• manufacturer (M: Mitsubishi Rayon, A: Asahi Chemicals, T: Toray Industries), 
• aging by set no. (set0, …, set5: see Table 4.3) 
• sample length (1: ∼0.8 m, 2: ∼3.2 m, 3: ∼10 m), 

while each FFP measurement can be uniquely identified by the additional fourth parameter: 

• illumination angle (6°, 15° and 24°). 

Thus, for clarity from now on each fibre sample will be uniquely identified by the first three 
parameters (e.g. M-set3-2 will mean: Mitsubishi’s fibre, aged 667 h, 3.2 m sample length), 
while each measured FFP will be identified by all four parameters (e.g. M-set3-2-15 will 
mean the FFP of the M-set3-2 fibre sample measured at 15° illumination angle). 

For each calibrated FFP measurement six raw snaps with up to six applicable exposure 
times were used, meaning a maximum of 36 snaps for each of 3 illumination angles and 
54 fibre samples. These raw snaps were calibrated, related to the corresponding exposure 
times and merged together according to the procedure described in Parts 5.3.3 and 
Part 5.3.4. In total more than 1000 raw snaps had to be processed. 

Taking into account the three illumination angles, 54 fibre pieces need a total number of 
162 measured FFPs. However, for the shortest fibres (0.8 m) many measurements had to 
be discarded, as they were apparently strongly dependent on the momentary run of the 
fibre, as observed on the monitor of the online measurement system. Due to an accidental 
damage to the sample, one measurement of the 3.2 m fibre piece (M-set1-2-24) had to be 
discarded, too. Table 6.1 lists the illumination angles used for the measurements of the 
18 shortest fibre pieces. 
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Table 6.1 Illumination angles used for the FFP measurements with the shortest (0.8 m) fibre pieces. All 
three illumination angles have been used with all 36 longer fibre pieces (except M-set1-2-24). 

 
ESKA  
CK-40 

LUMINOUS 
TB-1000 

PGU-FB  
1000 

set0 24° - 24° 

set1 24° 15°, 24° - 

set2 24° 15°, 24° 24° 

set3 15°, 24° 24° 15°, 24° 

set4 24° - 15°, 24° 

set5 24° 15°, 24° 15° 

6.3 FFP extraction 
The calibrated measurements, obtained as described in the previous part, have the form of 
two-dimensional functions (or 1024×1024 matrices) characterising the two-dimensional 
angular power distribution of the light leaving the fibre endface. The distance from the 
matrix centre depends linearly (Part 5.4.2) on the axial angle α of an outgoing ray, while its 
azimuthal angle φ equals the azimuth of the corresponding point on the matrix11. A clip of 
the M-set3-2-24 two-dimensional FFP has been linearly downscaled to the 256-level grey 
scale (the brightest point has grey level 255) and inverted shown on Fig. 6.1. 

The discrete one-dimensional FFP(α,α+∆α) will be computed out of the two-dimensional 
measurement matrix M using the formula Eq. (2.105) with the discretisation step ∆α ≈ 0.2°. 
The total power S(α,α+∆α) radiated into the axial angle interval [α,α+∆α) can be computed 
by taking: 

(6.1) ( ) ( )∫ ∫
∆+

−− ++⋅=∆+
π αα

α
αα ϕθϕθϕθϕααα

2

0

1
0

1
0   sin,cos  , dddydxMS , 

where (x0, y0) are the coordinates of the FFP ring centre, dα ≈ 0.2° is the angular difference 
corresponding to one-pixel distance on the matrix (see Part 5.4.2). The value of the 
measurement matrix M(x,y) for real x and y is computed by linear interpolation of the 
neighbouring integer points: 

(6.2) 
( ) ⎡ ⎤( ) ⎡ ⎤( ) ⎣ ⎦ ⎣ ⎦( ) ⎣ ⎦( ) ⎣ ⎦ ⎡ ⎤( )( )yxMyyyxMyyxxyxM ,,, −+−−=  

⎣ ⎦( ) ⎡ ⎤( ) ⎡ ⎤ ⎣ ⎦( ) ⎣ ⎦( ) ⎡ ⎤ ⎡ ⎤( )( )yxMyyyxMyyxx ,, −+−−+ . 

The resulting discrete one-dimensional FFP has to be rescaled by dividing it by the cosine 
of the respective illumination angle (6°, 15° or 24°) to account for the decrease in the power 
entering the fibre. 

                                                 
11 For angle notational conventions see Fig. 2.1 and Fig. 2.3. 
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Note that the total transmitted power can be computed using Eq. (6.1) as ( )oo 45,0S , due 
to the fact that the FFP optics’ detectable angular range of ±45° (Part 5.4) exceeds the 
acceptance angle αmax of all measured fibres (approx. 30°, Table 4.2). 

 
Fig. 6.1 Sample calibrated two-dimensional FFP measurement M-set3-2-24 (i.e. ESKA CK-40 fibre, 

aged 677 hours at 100 °C / <<50 % RH, 3.2 m length, illumination angle 24°). 

6.4 Sample results 
6.4.1 Non-aged 10 m fibre 
Fig. 6.2 to Fig. 6.4 show the influence of the illumination angle on the FFPs of 10 m  
non-aged samples of fibre from all three manufacturers. 

 

Fig. 6.2 Influence of the illumination 
angle (6°, 15°, 24°) on the FFP 
of 10 m non-aged Asahi’s fibre. 

Fig. 6.3 Influence of the illumination angle (6°, 15°, 
24°) on the FFP of 10 m non-aged 
Mitsubishi’s fibre. 
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Fig. 6.5 shows the transmission loss due to the change of the illumination angle. Besides 
the generally higher attenuation of the Mitsubishi’s fibre, a decreasing relation between the 
total transmission and the illumination angle can be observed. It is in perfect agreement 
with the raytracing model, as the rays travelling through fibre with higher propagating angle: 
1) cover longer path and 2) undergo more reflections on the core-clad interface than the 
rays parallel to the fibre’s axis. The pronounced transmission drop of the Toray’s fibre at the 
24° illumination angle, in relation to other fibres, suggests higher ray reflection losses on the 
core-clad interface, see Table 7.1 to Table 7.3. 

 

Fig. 6.4 Influence of the illumination angle 
(6°, 15°, 24°) on the FFP of 10 m 
non-aged Toray’s fibre. 

Fig. 6.5 Influence of the illumination angle 
(6°, 15°, 24°) on the total output 
power of 10 m non-aged fibres. 

Fig. 6.6 to Fig. 6.8 compare the FFPs of 10 m samples of the fibre from different 
manufacturers. The shapes of the curves clearly suggest that the most scattering occurs in 
the Toray’s fibre (red curve is on all figures wider than the other two). The relative scattering 
intensity in both other fibre types turns out to be dependent on the illumination angle: 

 

• for lower order modes (6° 
illumination angle, Fig. 6.6) 
higher in the Mitsubishi’s 
fibre (blue curve), 

• for 15° illumination angle 
(Fig. 6.7) approximately the 
same in both fibres (blue 
and black curves overlap) 

• for higher order modes (24° 
illumination angle, Fig. 6.8) 
higher in the Asahi’s fibre 
(black curve). 

 

Fig. 6.6 The FFPs of 10 m non-aged fibres from three 
manufacturers illuminated under 6° angle. 

The above observations are confirmed by the fitted values of angle-dependent scattering 
intensity, see Part 7.5, Fig. 7.10. 
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Fig. 6.7 The FFPs of 10 m non-aged fibres 
from three manufacturers 
illuminated under 15° angle. 

Fig. 6.8 The FFPs of 10 m non-aged fibres from 
three manufacturers illuminated under 
24° angle. 

6.4.2 Influence of sample length 
Fig. 6.9 and Fig. 6.10 illustrate the influence of the POF sample length on its FFP for the 
illumination angles 15° and 24°: 

• The attenuation is in general proportional to fibre length, thus the FFPs of the longer 
samples (green and blue curves) runs mainly below the FFPs of the shorter samples 
(red curve). 

• The scattering is also proportional to fibre length, thus the FFPs of the longer 
samples are more diffused. 

 

Fig. 6.9 Influence of POF sample length 
(3.2 m and 10 m) on the FFP of 
non-aged Toray’s fibre at 15° 
illumination angle. 

Fig. 6.10 Influence of POF sample length (0.8 m, 
3.2 m and 10 m) on the FFP of non-
aged Toray’s fibre at 24° illumination 
angle. 

6.4.3 Influence of aging time 
6.4.3.1 Attenuation 
Fig. 6.11 to Fig. 6.13 show the total transmitted power (i.e. ( )oo 45,0S  of Eq. (6.1)) through 
a 3.2 m sample in dependence on the aging time. The logarithmic scale for the (horizontal) 
time axis has been used to clearly show the transmission change between set0 (0 h), set1 
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(2 h) and set2 (258 h). Note that the logarithmic scale could be used only after adding 1 h to 
all aging times listed in Table 4.3 (to move the beginning of the aging from time 0 h to 1 h). 

The total transmitted power of Fig. 6.11 to Fig. 6.13, measured in arbitrary but absolute 
units, can be easily recalculated to obtain the relative transmission loss of the sample in 
dependence on the aging time (i.e. relative to the transmission of the non-aged sample at 
the respective illumination angle). Fig. 6.14 to Fig. 6.16 compare it with the relative 
transmission loss calculated from the attenuation measured with a spectrometer (black 
lines, calculated from the attenuation data Fig. 4.7 to Fig. 4.8). The curves corresponding to 
the spectrometer measurements combine mainly the behaviour of the curves corresponding 
to the 15° and 24° illumination angle. This is caused by the high NA of the large-diameter 
silica fibre directly illuminating the fibre input face in the spectrometer setup, thus strongly 
exciting higher-order modes. 

Fig. 6.11 Aging time influence on the total 
output power of 3.2 m cold Asahi’s 
fibre at three illumination angles (6°, 
15° and 24°). 

Fig. 6.12 Aging time influence on the total 
output power of 3.2 m cold 
Mitsubishi’s fibre at three 
illumination angles (6°, 15° and 24°). 

Fig. 6.13 Aging time influence on the total 
output power of 3.2 m cold Toray’s 
fibre at three illumination angles (6°, 
15°, 24°). 

Fig. 6.14 Relative transmission of 3.2 m cold 
Asahi’s fibre computed from the FFPs 
and measured with a spectrometer. 
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Fig. 6.15 Relative transmission of 3.2 m cold 
Mitsubishi’s fibre computed from the 
FFPs and measured with a 
spectrometer. 

Fig. 6.16 Relative transmission of 3.2 m cold 
Toray’s fibre computed from the FFPs 
and measured with a spectrometer. 

6.4.3.2 Far-field profile 
Fig. 6.17 - 6.22 show the FFPs of the 3.2 m samples in dependence on the aging time.. 

 

Fig. 6.17 Influence of POF aging time on the FFP 
of 3.2 m Asahi’s fibre at 15° illumination 
angle. 

Fig. 6.18 Influence of POF aging time on the FFP 
of 3.2 m Asahi’s fibre at 24° illumination 
angle 

 

Fig. 6.19 Influence of POF aging time on the FFP 
of 3.2 m Mitsubishi’s fibre at 6° 
illumination angle. 

Fig. 6.20 Influence of POF aging time on the FFP 
of 3.2 m Mitsubishi’s fibre at 15° 
illumination angle 
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Fig. 6.21 Influence of POF aging time on the FFP 
of 3.2 m Toray’s fibre at 6° illumination 
angle. 

Fig. 6.22 Influence of POF aging time on the FFP 
of 3.2 m Toray’s fibre at 15° illumination 
angle. 

A general increase in attenuation (each successive curve runs generally below the 
preceding one) and in scattering intensity (successive curves are more diffused) with aging 
time can be observed. The inverse run of the first two curves of the Toray’s fibre (Fig. 6.21 
and Fig. 6.22) can be attributed to the measured slight increase in the transmission of 
lower-order modes after the first 2 hours of aging, see Fig. 6.13 and Fig. 6.16. It suggests a 
slight decrease in scattering intensity, too 
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7 Aging influence on model parameters 
The first part of this chapter (Part 7.1) discuss the optimised values of the raytracing 
parameters, sample lengths of their uncertainty intervals, and shows graphs of the 
dependence of the optimised target function12 on two sample parameters. Part 7.2 
compares the overall attenuation of the simulated fibres with the measured attenuation of 
the real fibres. Part 7.3, Part 7.4 and Part 7.5 discuss the influence of the aging process on 
the optimised model parameters except for the endface scattering (the quality of the core-
clad interface, attenuation of the bulk core material, angle-dependent scattering). It was 
found that the measured profound transmission drop during the first hours and days of 
aging is caused mainly by physical deterioration of the core-clad interface while the slower 
drop at the end of the aging process (first after few thousands of hours) can be attributed to 
the beginning then chemical deterioration of the fibre material. 

7.1 Raytracing parameters 
The optimum values of six raytracing parameters were found separately for all of the 
18 investigated POF types (3 fibre manufacturers, 6 aging times each), using the 
optimisation procedure described in Part 3.2.3. As stated in Part 6.2, a total of as many as 
128 simulated and measured FFPs had to be matched. An average of 1500 rays were used 
to compute each FFP; finding the best fit along a given direction required approx. 12 
computations of the target function Eq. (3.1). To find the global minimum the optimisation 
along all the directions had to be repeated at least 4 times. As a result approx. 10 million 
rays had to be traced. 

Table 7.1 to Table 7.3 list for all three manufacturers the optimum values of the respective 
fibres’ raytracing parameters found during the optimisation process. The numeration of the 
parameters was introduced and explained in Part 3.2.3.2, Table 3.3. Fibre ‘sets’ represent 
aging times (set0 = non-aged; set5 = strongly aged), for the explanation see Table 4.3 in 
Part 4.4.1 and Part 6.2. Appendix A3 compares sample graphs of FFPs measured and 
simulated using the corresponding optimum parameter values from Table 7.1 to Table 7.3. 

Table 7.1 Optimum values of the raytracing parameters of the non-aged and aged Mitsubishi’s fibre 
(ESKA CK-40). See Table 4.2 for the aging times and Table 3.3 for the parameter 
description. 

 M-set0 M-set1 M-set2 M-set3 M-set4 M-set5 

var1 [deg] 3.4 3.0 3.2 3.2 3.5 3.8 

var2 [dB/km] 113 113 120 120 125 145 

var3 [mdB] 0.10 0.25 1.20 1.15 1.20 1.55 

var4 [mm] 34.0 13.5 8.0 9.75 10.0 5.80 

var5 [a.u.] 2 0.75 1 1 1 8 

var6 [deg] 14 14 15 15 25 45 

                                                 
12 Target function Eq. (3.1) represents the fit quality between measured and simulated FFPs. 



7 Aging influence on model parameters 

- 88 -              BAM-Dissertationsreihe 

Table 7.2 Optimum values of the raytracing parameters of the non-aged and aged Asahi’s fibre 
(LUMINOUS TB-1000). See Table 4.2 for the aging times and Table 3.3 for the parameter 
description. 

 A-set0 A-set1 A-set2 A-set3 A-set4 A-set5 

var1 [deg] 4.5 3.9 3.9 2.9 2.5 5.5 

var2 [dB/km] 115 125 120 120 120 160 

var3 [mdB] 0.20 0.30 1.20 1.15 1.45 2.40 

var4 [mm] 107 11.5 6.8 2 2.75 1.175 

var5 [a.u.] 8.0 1.1 1.1 0 0.45 0 

var6 [deg] 45 30 90 - 20 - 

Table 7.3 Optimum values of the raytracing parameters of the non-aged and aged Toray’s fibre (PGU 
FB-1000). See Table 4.2 for the aging times and Table 3.3 for the parameter description. 

 T-set0 T-set1 T-set2 T-set3 T-set4 T-set5 

var1 [deg] 3.75 4.0 4.0 4.4 4.15 5.4 

var2 [dB/km] 117 125 120 135 130 155 

var3 [mdB] 0.4 0.6 1.20 1.30 1.30 1.75 

var4 [mm] 17.7 22.0 10.7 7.75 8.50 3.30 

var5 [a.u.] 2.0 1.2 0.8 0.7 0.66 0.3 

var6 [deg] 25 21 40 60 40 90 

Note that, as stated in Part 3.2.3.3, due to the random nature of the raytracing process and 
FFP simulation, the optimum values given in Table 7.1 to Table 7.3 cannot be understood 
as exact values, but rather as the middles of respective uncertainty intervals. Table 7.4 lists 
sample uncertainties of the exact values on the example of the non-aged and strongly aged 
Mitsubishi’s fibre (M-set0 and M-set5). 

Table 7.4  Uncertainties of the optimum values of the raytracing parameters of the non-aged and 
strongly aged Mitsubishi’s fibre (M-set0 and M-set5).  

 M-set0 M-set5 

var1 ± 0.3 deg ± 1.5 deg 

var2 ± 25 dB/km ± 50 dB/km 

var3 ± 0.04 mdB ± 0.06 mdB 

var4 ± 12.5 % ± 25 % 

var5 ± 0.6 [-4.0, +∞) 

var6 ± 3.5 deg [-10, +45) deg 

The uncertainties of optimum values of the raytracing parameters were found to be 
generally much lower for the non-aged than for the aged fibres and to increase with the 
aging time. This increasing parameters’ uncertainties together with the worsening fit quality 
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(illustrated in Appendix A3, which compares the measured and simulated FFPs) suggest 
that the developed model allows faithful modelling of non-aged or short-term aged fibres, 
but in course of a long-term high temperature aging additional attenuation and/or scattering 
mechanisms occur that are not enough well implemented in the model or not enough well 
covered by the scattering angle-dependence of the form Eq. (2.86). 

Note that the particularly high uncertainty of the optimised value of var2 (bulk core 
attenuation) can be attributed to the small length difference (approx. 10 m) between the 
shortest and the longest investigated sample. The attenuation uncertainty of ± 25 dB/km 
corresponds to ± 0.25 dB (± 6 % transmission) uncertainty on the measured 10 m distance. 
Measuring and simulating much longer fibres would increase the quality of the fit, but would 
require much longer simulation and optimisation time. On the other hand high uncertainties 
of var5 and var6 for long-aged fibre are related rather to their specific optimum values 
(making the scattering intensity almost constant for all illumination angles within the 
acceptance angle, i.e. up to 30°, see Part 7.5) than to the optimisation inaccuracies. 

As examples in Fig. 7.1 the target function dependence on two sample parameters is 
shown (var3 and var4, i.e. interface attenuation and bulk scattering scale). The fibre M-set2 
and the optimum parameter values from Table 7.1 were used. Each of the seven FFPs  
(M-set2-1-24 to M-set2-3-06) used for computing the target function (see Eq. (3.1)) was 
simulated with 4000 rays. The minima correspond to the optimum values of both 
parameters. 

 
Fig. 7.1 Target function dependence on interface attenuation (var3, left) and bulk scattering scale 

(var4, right). The fibre M-set2 and the optimum parameter values from Table 7.1 were used. 
Each FFP used for computing the target function was simulated with 4000 rays. 

7.2 Overall attenuation 
Table 7.1 to Table 7.3 show, between others, the dependence of the attenuation 
parameters var2 and var3 on the aging time. However, the actual overall attenuation of the 
simulated fibre depends not only on the two attenuation parameters but also on the 
scattering parameters and on the illumination conditions; it can be obtained only by 
performing a simulation. Fig. 7.2 to Fig. 7.4 compare two measured relative transmissions 
of aged to a different degree 10 m fibre samples (i.e. the online transmission measured on 
the hot fibre and the transmission of the same-time aged cold fibre, see Fig. 4.10 to 
Fig. 4.11) with the relative transmission of 10 m simulated fibre. The curves illustrate the 
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aging process at 100 °C / <<50 % RH (as Fig. 7.2 to Fig. 7.4 and data in Table 7.1 to 
Table 7.3 do). The illumination angle of 0° has been used; the high numerical apertures of 
the LED used in the online measurement system (Part 4.4) and of the illuminating silica 
fibre in the spectrometer setup (Part 4.3) were simulated by a high divergence of the 
illuminating beam (15° ≈ 0.26 rad). 

 
Fig. 7.2 Relative transmission of the hot (online), the cold (cooled down) and the simulated 10 m 

samples of Mitsubishi’s fibre in dependence on the aging time (650 nm wavelength, 
100 °C / <<50 % RH). 

 
Fig. 7.3 Relative transmission of the hot (online), the cold (cooled down) and the simulated 10 m 

samples of Asahi’s fibre in dependence on the aging time (650 nm wavelength, 
100 °C / <<50 % RH). 
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Fig. 7.4 Relative transmission of the hot (online), the cold (cooled down) and the simulated 10 m 

samples of Toray’s fibre in dependence on the aging time (650 nm wavelength, 
100 °C / <<50 % RH). 

Comparison between the simulation (green) and the measurement is to be made for the 
cold fibre (blue), because only the FFPs of the cold samples were measured (Chapter 6) 
and used for the parameter fitting. Note the good match in the case of the Toray’s fibres 
(Fig. 7.4). The simulated Asahi’s fibres (Fig. 7.3) have provided the worst match, 
nevertheless the overall transmission of the simulated and measured fibre A-set3 (both 
fourth points in Fig. 7.3) match exactly. 

As mentioned above, several parameters influence the overall attenuation. In the next parts 
of this chapter changes of separate parameters with the aging time are discussed. 

7.3 Core-clad interface attenuation 
Fig. 7.5 shows the interface attenuation coefficient (var3) in dependence on the aging time 
for the fibres from all three manufacturers. Note that the aging time axis is shown in 
logarithmic scale. 

The clear sharp increase in the fitted interface attenuation during the first hours and days of 
aging can be attributed to a rapid physical deterioration of the core-clad interface, 
presumably caused by the temperature shock. 



7 Aging influence on model parameters 

- 92 -              BAM-Dissertationsreihe 

 
Fig. 7.5 Fitted interface attenuation coefficient (var3) in dependence on the aging time. 

7.4 Bulk core attenuation 
Fig. 7.6 shows the core bulk attenuation (var2) in dependence on the aging time for the 
fibres from all three manufacturers. As on Fig. 7.5, the aging time axis is shown in 
logarithmic scale. 

 
Fig. 7.6 Fitted bulk core material attenuation (var2) in dependence on the aging time. 
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The fitted bulk core material attenuation remains almost constant during most of the aging 
process (in contrast to var3 of the previous part). A noticeable increase happens at the end 
of the exposure, first after 4000 h, compared to the immediate increase of the interface 
attenuation in Fig. 7.5. It suggests that the chemical deterioration of the fibre material 
(represented by var2) progresses much slower than the deterioration of the fibre’s physical 
structure (var3). The bulk core attenuations of all three fibres show similar dependence on 
the aging time, as expected from the fact that the core material in all three cases is the 
same (PMMA, Table 4.2). 

7.5 Scattering 
Fig. 7.7 to Fig. 7.9 show the fitted angle-dependent simulated scattering intensity in 
dependence on the aging time (computed with Eq. (2.86) and divided by var4 to get rid of 
the normalisation present there). On all three figures it is given in the same arbitrary units 
per millimetre. As almost all rays propagate within fibre’s acceptance angle and thus almost 
only those rays were used in optimisation of the parameters, the scattering intensity is 
plotted only for the illumination angles between 0° and 30°. Note the difference in the 
scaling of the vertical axes between the figures. The label order in the legend box 
corresponds to the curve order at 0° illumination angle. 

As expected from the theoretical investigations of the Chapter 2 and Appendix A2, the 
scattering intensity decreases with the increasing illumination angle and tends to increase 
with the increasing aging time. Higher attenuation of the aged Asahi’s fibres compared to 
the fibres from the other two manufacturers (Fig. 4.2) seems to be caused primarily by the 
much quicker increase of the scattering intensity with the aging time. 

 
Fig. 7.7 Fitted angle-dependent scattering intensity of Mitsubishi’s fibre for all six aging times. 
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Fig. 7.8 Fitted angle-dependent scattering intensity of Asahi’s fibre for all six aging times. 

 
Fig. 7.9 Fitted angle-dependent scattering intensity of Toray’s fibre for all six aging times. 

Fig. 7.10 compares the fitted scattering intensities of all three investigated non-aged fibres 
(M/A/T-set0 from Fig. 7.7 to Fig. 7.9). It confirms the assumptions stated already in 
Part 6.4.1 and based on the measured FFPs’ shapes (Fig. 6.6 to Fig. 6.8): the non-aged 
Toray’s fibre (red) shows the highest scattering; for small illumination angles the scattering 
of the non-aged Mitsubishi’s fibre (blue) is higher than that of the non-aged Asahi’s fibre 
(black), for greater illumination angles the relation is opposite. 
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Fig. 7.10  Fitted angle-dependent scattering intensity of non-aged fibres from all three manufacturers. 
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8 Conclusions 
The present Ph.D. work has combined an application-oriented as well as a theoretical 
approach to POF modelling. The precedence has been given to the practical issues and 
model verification, while at the same time much effort has been also spent on the 
mathematical analysis of the basic mechanisms governing light propagation in cylindrical 
waveguides, a prerequisite for reliable POF models and simulation. 

In course of this work a practically usable general POF model has been developed; it 
implements the theoretically investigated mechanisms of scattering and Fresnel reflection. 
The first known systematic numerical optimisation of model parameters has been 
performed to get the best fit between simulated and measured optical characteristics of 
fibre samples. In extension to previous researches samples of different length and several 
illumination angles have been used. The results have been compared for fibres from three 
different manufacturers and subjected to six different aging times. The model was verified 
by providing a good agreement between simulated and measured FFPs, especially for  
non-aged fibres. 

The important aspects of the work can be more detailed summarised as follows: 

• Theoretical investigations of this work contain the first known attempt to use the 
wave-optics approach in the analysis of angular properties of scattering in cylindrical 
waveguides. Computed numerical examples have confirmed the experimentally 
observed decreasing scattering intensity with increasing illumination angle, an 
important practical result, as the geometric optics analysis suggests the opposite 
relation. 

• To investigate the aging influence on fibre optical properties was one of the main 
tasks of this work. The optimised values of the attenuation coefficients for aged fibres 
suggest that most of the profound transmission loss in the first days, weeks and even 
months of investigated high temperature aging (100 °C / <<50 % RH) is caused by a 
significant physical deterioration of the core-clad interface. Chemical aging-related 
effects in bulk fibre material affecting its attenuation occur first after several months 
of aging. This observation seems to be also confirmed by the results of chemical 
experiments of a parallel running Ph.D. work of A. Appajaiah. 

• The investigations showed also a general strong increase in the scattering intensity 
during the course of the aging. At present, the implemented scattering mechanism 
cannot differentiate between the scattering effects related to core-clad interface and 
bulk material. Thus, it cannot be told, if the observed scattering increase originates 
from physical deterioration of the core-clad interface or chemical changes of fibre 
bulk material. 

• The agreement between measurement and simulation for the non-aged fibres is 
substantially better than reported in previous researches [16]. On the other hand, the 
general decrease of the fit quality with fibre aging time suggests that in course of the 
high temperature aging additional attenuation and/or scattering mechanisms occur, 
which are not implemented in the proposed model or not enough well covered by the 
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used form of the scattering-angle dependence. Thus, the model itself can be in 
future research refined and improved. 

• The fit quality between the simulated and measured far-fields (especially at low 
illumination angles and for the above-mentioned long, strongly aged fibres), can be 
further improved even with the current model by refining the optimisation process to 
obtain better numerical values of the parameters, mainly at the expense of the 
simulation time. Using longer fibre samples and more illumination angles, tracing 
more rays or dropping some of the constraints forced on the parameters could be 
useful for this purpose. 

• In course of the work fibres subjected to only one aging condition were investigated 
(100 °C / <<50 % RH). The influence of other aging conditions on the optical 
parameters of the model (i.e. of other temperatures possibly combined with high 
humidity) could also be investigated and compared. The results of detailed analysis 
could lead to development of more efficient methods for prediction of optical 
transmission through POFs under long-term environmental stress. 

• As a side effect of this work, a calibration and quality assessment procedure for CCD 
cameras has been developed. It was necessary to guarantee the reliability of far-field 
profile measurements, because camera manufacturers, in general, deliver neither 
such procedures nor reliability data. 

Therefore, progress has been made concerning the modelling and simulation of light 
propagation in non-aged and aged POFs. Nevertheless, additional further improvements by 
future research are possible. 

The theoretical part of the work leaves its mathematical problems open, too. Primarily, there 
is no rigorous analysis of radiation conditions that would guarantee the uniqueness of the 
discussed solution to the scalar wave equation on a cylindrical waveguide. The presumed 
conditions, formulated analogically to those holding for the open-space problem [25] and 
necessary to solve the corresponding Helmholtz equation [2], were stated here as a 
hypothesis only. Furthermore, the (decreasing) relation between the illumination angle and 
the scattering intensity was found on numerical examples only for two waveguide radii and 
two specific forms of the refractive index perturbation. A more universal estimation, based 
on general formulae, would be welcome, as well as a general estimation of the angle-
dependence of the relative guided power, presumably stepwise for large-diameter fibres (as 
numerical computations have shown). Last but not least, the proof of the convergence of 
the von Neumann series representing the scattered field should be brought to the end. 
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Appendices 

A1 Basic identities 
Wronskians of Bessel functions [1, 3, 12]: 
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Asymptotic expansions of Bessel functions for large argument (z → ∞) [1, 3]: 
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Series of Bessel functions [1, 3]: 
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where the second equality follows from [1, 3, 12]: 

(A1.4) 
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Integral of Bessel functions [1, 3]: 
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Upper bounds of Bessel functions [3, 12]: 

(A1.6) 
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Recurrence relations for Bessel functions [1, 3, 12] 
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Infinite summations of Bessel functions [3, 12] 

(A1.8) 
( ) 12 =∑

∈Zm
m zJ .  

Power series expansion of Ym(z) at z=0 [3, 12]: 
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where ψ(z) is the digamma function ψ(z)=Γ´(z)/Γ(z).  

Eq. (A1.9) implicates the following limiting forms of Ym(z) for small argument z→0: 
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Power series expansion of Jm(z) at z=0 and its limiting forms for small argument z→0 [1, 3]: 
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Derivatives of Bessel functions with respect to the argument [1, 3, 12]: 
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Summations of Bessel function [3, 12]: 
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Debye asymptotic formulae for large order ( 31mmz −<< , m>>0) [1, 3]: 
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Eq. (A1.13) implicates that for enough large order m and constant argument z: 

(A1.15) 
Jm(z) monotonically decreases to zero as m→∞, 

Ym(z) monotonically decreases to -∞ as m→∞. 
 

A2 Sample modal analysis 
In this appendix modal characteristics of sample waveguides (mainly of two waveguides 
with normalised frequency parameters V = 8 and V = 20) are numerically computed and 
investigated. The results illustrate the theoretical discussion of Chapter 2, Part 2.1. 

Some numerically computed properties of waveguides investigated in this part were used, 
due to the lack of exact formulas, as the basis for two general assumptions needed for 
modelling the scattering within the raytracing approach in Part 2.2: 

• Numerically computed results concerning the mode mixing (aroused due to four 
tested random forms of the refractive index perturbations, Part A2.3) form the basis 
for the general formula approximating the angle-dependent scattering intensity 
(Part 2.2.3, Eq. (2.87)). 

• Based on the results concerning excitation of guided modes for both investigated 
waveguides (Part A2.2, Fig. A2.10) it is assumed that for the illumination angles lying 
within the acceptance angle the overwhelming part of the input power enters guided 
modes. Therefore, taking also into account the quick attenuation of radiating modes 
in a real fibre, mode mixing analysis can be limited to the power flow between the 
guided modes only (Part A2.3). 

All fibres investigated in this part differ only in their normalised frequency (and so in their 
diameters), all other parameters are assumed to be equal those of a typical POF, the 
wavelength equals 653 nm, so that of the laser used in the experiments (Part 5.2). 

n0 = 1.492, 
n1 = 1.402, 
λ = 653 nm (red laser used in experiments), (A2.1) 

k = 2π/λ ≈ 9.622 × 106. 

According to Eq. (2.19), normalised frequency V of 8 and 20 corresponds to the fibre 
diameters of 3.26 µm and 8.14 µm, respectively. 
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A2.1 Modes 
All guided modes of waveguides with V = 8 and V = 20 were computed by numerically 
solving equation Eq. (2.22). Equation Eq. (2.24) in both cases has no guided-mode 
solutions (i.e. for |m|>1). The waveguide with V = 8 supports 17 guided modes (for  
m∈{-5, -4, …, 4, 5}), while the other waveguide (V = 20) supports a total of 105 guided 
modes (m∈{-16, -15, …, 15, 16}). All the guided modes of both waveguides together with 
the corresponding relative wavenumber β are listed in Table A2.1 and Table A2.2. Note that 
Eq. (2.22) has the same solutions for +m and –m modes, i.e. the corresponding modes in 
both cases have the same relative wavenumber β, the same radial component jm(r,τ) and 
differ only in the oscillating term exp(±imφ) (see Eq. (2.12)). Table A2.1 and Table A2.2 
present (numerically obtained) all solutions to Eq. (2.22) for different values of the integer 
parameter m. They correspond to the zeros of Eq. (A2.2) and each of them represents one 
guided mode of form Eq. (2.21). 

Table A2.1  Numerical characteristics of guided modes for the V = 20 waveguide. 

m relative mode wavenumber β 

0 1.404 1.427 1.448 1.464 1.477 1.486 1.491 

±1 1.416 1.438 1.457 1.471 1.482 1.489  

±2 1.405 1.428 1.448 1.465 1.478 1.487  

±3 1.417 1.440 1.458 1.473 1.484   

±4 1.406 1.430 1.451 1.468 1.481   

±5 1.420 1.443 1.462 1.477    

±6 1.410 1.434 1.455 1.472    

±7 1.425 1.448 1.468     

±8 1.416 1.441 1.462     

±9 1.406 1.433 1.456     

±10 1.424 1.450      

±11 1.415 1.443      

±12 1.405 1.436      

±13 1.428       

±14 1.420       

±15 1.411       

±16 1.402       
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Table A2.2  Numerical characteristics of guided modes for the V = 8 waveguide. 

m 0 ±1 ±2 ±3 ±4 ±5 

1.414 1.440 1.418 1.448 1.430 1.410 

1.459 1.476 1.464    
relative mode 
wavenumber β 

1.486      

Fig. A2.1 shows for the V = 20 waveguide sample graphs of the function 
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for m=0 and m=16, whose (numerically found) zeros correspond to the respective guided 
modes, see Eq. (2.22). Values of w0R and w1R are bound to β by Eq. (2.19) and to each 
other by the identity ( ) ( )2

1
2

0
2400 RwRwV +== . 

 
Fig. A2.1 Function f(β) of Eq. (A2.2) with V=20 for m=0 (red) and m=16 (blue). The zeros (to be found 

numerically) correspond to the respective guided modes.  

Guided modes are usually described with LPmk symbol, where m corresponds to the rows in 
Table A2.1 (columns in Table A2.2) and k∈Z is assigned (starting with 0) upwards columns 
of Table A2.1 (right to left in Table A2.2), i.e. corresponding to the increasing values of 
parameter w0R or decreasing values of β. Fig. A2.2 shows descriptions of all the guided 
modes of the V = 8 waveguide in the (w0R, |m|) coordinate system. 
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Fig. A2.2 Descriptions of all guided modes of the V = 8 waveguide in the (w0R, |m|) coordinate system. 

Fig. A2.3 compares guided modes of both waveguides in the same coordinate system. 

 
Fig. A2.3 Guided modes of the V = 8 (red) and the V = 20 (blue) waveguide in the (w0R, |m|) 

coordinate system. 

The real parts of four sample guided modes Eq. (2.21) over the V = 8 waveguide’s cross-
section are shown in Fig. A2.4, while Fig. A2.5 shows real parts of two sample guided 
modes Eq. (2.21) of the V = 20 waveguide. Their squared value is proportional to the local 
energy distribution of the respective mode. 
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Fig. A2.4 Real parts of four guided modes on the cross-section of the V = 8 waveguide. The 

waveguides’ radii were scaled to unity (horizontal axes). 
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Fig. A2.5 Real parts of two guided modes on the cross-section of the V = 20 waveguide. The 

waveguides’ radii were scaled to unity (horizontal axes). 
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As showed in Chapter 2, Part 2.1.2, for each τ < 2
1n  and each m∈Z exists a corresponding 

radiating mode. Fig. A2.6 shows real parts of two sample radiating modes Eq. (2.27) of both 
waveguides.  

       V = 8,  m = 7,  β = 1 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
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       V = 20,  m = 1,  β = 1.4 ≈ n1 
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Fig. A2.6 Top view on the real parts of four sample radiating modes on the cross-sections of two 
waveguides. The waveguides’ radii were scaled to unity. The white (black) colour 
corresponds to the maximum (minimum) value.  

The basic guided mode (LP01) was also found for two other waveguides with the normalised 
frequency parameter V equal to 100 and 500. Fig. A2.7 compares in logarithmic scale its 
radial components ( )0

10 ,τrj  for all four waveguides. It shows that the field of LP01 mode 

extending into the clad decays exponentially with waveguide’s radius and that the decay 
rate increases with waveguide’s radius (or its normalised frequency). 
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Fig. A2.7 Radial component of LP01 mode for four different waveguides’ radii (logarithmic scale). 

A2.2 Illumination and mode-angle relation 
Using formula Eq. (2.46) we can compute the excitation of each guided mode of a 
waveguide with a uniformly illuminated input face. Summing Eq. (2.47) over all guided 
modes gives the total guided power. In this part we will use p(α) ≡ 1 in Eq. (2.46), thus we 
will neglect the effects of slightly increasing with angle Fresnel reflection coefficient and 
assume that all power incident on the waveguide’s input face actually enters it and excites 
its modes. 

Fig. A2.8 shows relative excitations (the ratio of the power entering the mode to the total 
incident power) of all guided modes of the V = 8 waveguide in dependence on the 
illumination angle. Power in both LP±mp modes were added, whenever |m|>0 

 
Fig. A2.8 Relative excitation (the ratio of the power entering the mode to the total incident power) of all 

guided LP±mp modes of the V = 8 waveguide in dependence on the illumination angle α. 
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Fig. A2.9 shows for both V = 8 and V = 20 waveguides the dependence on the illumination 
angle of the excitation of LP01 mode and of two other modes with the excitation maxima 
around 0°, 15° and 30°, respectively. The maxima of all graphs were normalised to 100 % 
to ease comparison of their shapes. 

 
Fig. A2.9 Dependence on the illumination angle of the normalised excitation of three sample modes 

with the optimum inclination about 0°, 15° and 30° for both V = 8 and V = 20 waveguides. 

Fig. A2.10 shows the angle-dependence of the relative total guided power for both 
waveguides (ratio of the power contained in all guided modes to the total incident power). 

 
Fig. A2.10 Relative total guided power in dependence on illumination angle for both V = 8 and 

V = 20 waveguides. 

Fig. A2.10 clearly suggests that with increasing waveguide’s radius R (or its normalised 
frequency V) almost all power incident within the acceptance angle enters guided modes 
and so the limiting graph is step-like, see [1, Chapter 20]. For each investigated mode there 
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is the optimum input illumination angle, which maximises the power entering the mode (the 
maximum of the plots on Fig. A2.8 and Fig. A2.9). Based on the Fig. A2.9, it may be 
assumed that for each guided mode of any waveguide (i.e. waveguide of any parameter V) 
there exists a similar peak of the excitation graph and that its dispersion tends to decrease 
with the increasing waveguide parameter V (and the waveguide’s radius R), as on Fig. 2.10, 
so that for a highly multimode waveguide each guided mode may be practically uniquely 
related to its optimum illumination angle, called its external propagation angle (as related to 
the outside environment, so α and not γ on Fig. 2.3). Fig. A2.11 shows the relation between 
the modal parameter w0R of the mode and its optimum illumination angle, see 
[1, Chapter 20] for discussion and references. 

 
Fig. A2.11 Optimum input illumination angle in dependence on the modal parameter w0R  for the 

V = 8 (left) and V = 20 (right) waveguide. 

According to the formulae Eq. (2.33), Eq. (2.34) and Eq. (2.46) propagating power is 
distributed continuously with respect to τ among radiating modes. The distribution function 
p(τ) is given by: 

(A2.3) ( ) ( )
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Zm mm
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ba
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τ
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22
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2 0,

. 

To get the total power contained in all radiating modes the formula Eq. (A2.3) for p(τ) has to 
be integrated with respect to τ within the limits (-∞, 2

1n ), as Eq. (2.48) states. Fig. A2.12 
shows the relative power distribution ( ) 2Rp πτ , see Eq. (2.49), of the V = 8 waveguide for 
four different illumination angles, while Fig. A2.13 compares ( ) 2Rp πτ  of both V = 8 and 
V = 20 waveguides for 15° illumination angle. Summing over m∈Z in both cases was made 
only over m∈{-20, …, 20} or m∈{-80, …, 80} for the V = 8 or V = 20 waveguide, 
respectively. Both figures are shown in logarithmic scale. 
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Fig. A2.12 Relative power distribution among radiating modes of the V = 8 waveguide for four 
illumination angles. 

 
Fig. A2.13 Relative power distribution among radiating modes of both V = 8 and V = 20 waveguides 

at 15° illumination angle. 

Fig. A2.13 clearly shows that the excitation of radiating modes in the V = 20 waveguide is 
considerably lower that in the V = 8 waveguide and in the former more power is transported 
via guided modes, as Fig. A2.10 shows. From both figures it may be seen and assumed 
that the more multimode is the waveguide, the less power enters its radiating modes (for 
illumination angles within the acceptance angle). 

A2.3 Scattering and mode mixing 
A2.3.1 On input and end faces 
Formula Eq. (2.53) allows calculating distribution of the output power per solid angle, 
depending on the illumination angle and under assumption of no power transfer between 
modes. Fig. A2.14 shows sample graphs of angular distribution of the total output power for 
both investigated waveguides and several different illumination angles α. 
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Fig. A2.14 Angular distributions of the total output power for both waveguides; plots for different 
illumination angles α. No power transfer between modes assumed. 

Both figures confirm that the conversions between the illuminating/output fields and the 
modal fields on endfaces diffuse the angular input characteristics. To compute the scale of 
the diffusion, i.e. the angle-dependent dispersion of the output power, the graphs of 
Fig. A2.14 were numerically square-best-fitted with respect to the dispersion parameter s 
with the (reflected at 0) Gaussian dispersion characteristics: 

(A2.4) ( ) ( ) ( )sss outoutout ,;,;:,; 00 ααψααψααψ −+= , 

where α is the illumination angle, αout the output angle and 
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Amplitudes A for each illumination angle α were kept constant and equal to the integral of 
the respective curve. The fitted values of dispersions s are shown in Fig. A2.15. 

 
Fig. A2.15 The dispersions s of the curves Eq. (A2.4), which best fit the angular distribution of the 

total output power (Fig. A2.14). 
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The parameter s characterising the angle-dependent dispersion of the scattered power 
turned out to be almost constant across all illumination angles and for both investigated 
waveguides. Therefore, it will be henceforth assumed (and used in the raytracing software) 
that the scattering on fibre’s endfaces is constant and does not depend on the illumination 
angle. 

A2.3.2 Refractive index perturbations 
Given the refractive index perturbation function d (defined in Eq. (2.54)), the formulae 
Eq. (2.71) to Eq. (2.73) can be used to investigate the angular dependence of the total 
power and the dispersion of the scattered field. In the numerical computations for the 
perturbation function a finite sum of simple single perturbations will be used: 
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where the point (ρl, ηl, ξl) is the centre of a single perturbation, Al is its amplitude and Sl 
defines its e-1 radius. The best candidate for the distance function δ would be the Euclidean 
metric 
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but this form would make integral Eq. (2.71) symbolically not integrable and considerably 
increase its computation time. So the following function was used instead, a modified 
version of Eq. (A2.7): 
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where for ( ) ( ]ππηη ,10 −∈−  the ( )10cos ηη −  was approximated with the saw function  
πηη 1021 −− , which equals the effect of keeping the Euclidean metric Eq. (A2.7) but 

modifying slightly the perturbation function Eq. (A2.6). 

Substituting Eq. (A2.6) and Eq. (A2.8) into Eq. (2.71) and changing the order of integration 
over Ω yield: 
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The first and third integrals can be computed analytically: 

(A2.10) 
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where Φ(a,b) is the error function: 

(A2.11) ( ) ∫ −=Φ
b

a

t dteba
2

 2,
π

. 

The remaining one-dimensional integral over [0, R0) has to be computed numerically. 

Using Eq. (A2.10) it is easy to compute numerically the scattered field Eq. (2.73) for a given 
illumination angle α. As it turned out to be highly dependent on the location and size of the 
waveguide’s perturbations, the results had to be averaged for several randomly drawn 
perturbations. For the numerical computations the following perturbation properties were 
assumed: 

• Only the waveguide’s core is perturbed, so R0 = R in Eq. (A2.10). 

• The perturbation centre (ρl, ηl, ξl) is uniformly distributed within the core. 

• The perturbation amplitude Al ~ N(0, A) (was modelled with a Gaussian random 
variable with mean 0 and standard deviation A). As Eq. (A2.10) depends linearly on 
the perturbation amplitude, its exact value does not matter, and all numerical 
computations were made with the constant value A = 0.01. 

• The perturbation size (i.e. its e-1 radius) Sl ~ Sχ1 (was modelled with a random 
variable of chi-square distribution with one degree of freedom and mean S ). 

The perturbed fragment of the waveguide was assumed to have the length z0 = 10 R. The 
computations were made for the following combinations of parameters: 

• The V = 8 waveguide: 
o L=1, S=0.05R, 
o L=1, S=0.25R, 

• The V = 20 waveguide: 

o L=1, S=0.05R, 
o L=1, S=0.25R. 
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In each case 800 (for the V = 8 waveguide) or 400 (for the V = 20 waveguide) computations 
were made and averaged to obtain the average scattering matrix ( )[ ]kmkmrsp ,;, 00  (see 
Eq. (2.72) and Eq. (2.73)). Fig. A2.16 shows in the logarithmical scale the angular 
distributions of the scattered power per solid angle for both waveguides, the scattering 
matrices obtained for the parameters L=1, S=0.25R and the same input angles as on 
Fig. A2.14. 

Fig. A2.16 Angular distribution of the output power of the scattered field in both waveguides, (number 
of perturbations L=1, mean size of the perturbation S=0.25R). 

Using the obtained scattering matrices and Eq. (2.46), Eq. (2.47) the total scattered power 
in dependence on the illumination angle α for both waveguides and all investigated 
perturbation types can be easily computed: 

(A2.12) ( ) ( ) ( ) ( )∑ ∑ ∑ ∑
∈ = ∈ =
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and after normalisation to 1 at the illumination angle 0° plotted as Fig. A2.17: 

 
Fig. A2.17  Normalised total scattered power in dependence on the illumination angle. 
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Fig. A2.17 shows an evident negative correlation between the illumination angle and the 
total scattered power and is used in Part 2.2.2 to construct the formulae for the angle-
dependent scattering model within the raytracing approach. 

A3 Sample measured and simulated FFP graphs 
In this appendix the sample graphs of the measured and simulated (optimised) FFPs of 
set0 (non-aged fibres) and set5 (the most aged fibres: 4467 h at 100 °C / <<50 % RH) are 
shown for comparison. Note the difference of the fit quality between the non-aged (set0) 
and highly aged (set5) samples. According to the target function Eq. (3.1), the optimisation 
procedure described in Part 3.2.3.3 matches two-dimensional FFPs and thus it weights the 
one-dimensional FFPs with the sine of the illumination angle α. Therefore, in the following 
graphs, the higher α, the better the fit quality. The FFP notation is explained in Part 6.2. 

A3.1 ESKA CK-40 fibre 

 
Fig. A3.1 Measured and simulated M-set0-1-24. Fig. A3.2 Measured and simulated M-set0-2-06. 

 
Fig. A3.3 Measured and simulated M-set0-2-15. Fig. A3.4 Measured and simulated M-set0-2-24. 
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Fig. A3.5 Measured and simulated M-set0-3-06. Fig. A3.6 Measured and simulated M-set0-3-15. 

 
Fig. A3.7 Measured and simulated M-set0-3-24. Fig. A3.8 Measured and simulated M-set5-1-24. 

 
Fig. A3.9 Measured and simulated M-set5-2-06. Fig. A3.10 Measured and simulated M-set5-2-15. 
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Fig. A3.11 Measured and simulated M-set5-2-24. Fig. A3.12 Measured and simulated M-set5-3-06. 

 
Fig. A3.13 Measured and simulated M-set5-3-15. Fig. A3.14 Measured and simulated M-set5-1-24. 

A3.2 PGU FB-1000 fibre 

 
Fig. A3.15 Measured and simulated T-set0-1-24. Fig. A3.16 Measured and simulated T-set0-2-06. 
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Fig. A3.17 Measured and simulated T-set0-2-15. Fig. A3.18 Measured and simulated T-set0-2-24. 

 
Fig. A3.19 Measured and simulated T-set0-3-06. Fig. A3.20 Measured and simulated T-set0-3-15. 

 
Fig. A3.21 Measured and simulated T-set0-3-24. Fig. A3.22 Measured and simulated T-set5-1-15. 
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Fig. A3.23 Measured and simulated T-set5-2-06. Fig. A3.24 Measured and simulated T-set5-2-15. 

 
Fig. A3.25 Measured and simulated T-set5-2-24. Fig. A3.26 Measured and simulated T-set5-3-06. 

 
Fig. A3.27 Measured and simulated T-set5-3-15. Fig. A3.28 Measured and simulated T-set5-3-24. 
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A3.3 LUMINOUS TB-1000 fibre 

 
Fig. A3.29 Measured and simulated A-set0-2-06. Fig. A3.30 Measured and simulated A-set0-2-15. 

 
Fig. A3.31 Measured and simulated A-set0-2-24. Fig. A3.32 Measured and simulated A-set0-3-06. 

 
Fig. A3.33 Measured and simulated A-set0-3-15. Fig. A3.34 Measured and simulated A-set0-3-24. 
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Fig. A3.35 Measured and simulated A-set5-1-15. Fig. A3.36 Measured and simulated A-set5-1-24. 

 
Fig. A3.37 Measured and simulated A-set5-2-06. Fig. A3.38 Measured and simulated A-set5-2-15. 

 
Fig. A3.39 Measured and simulated A-set5-2-24. Fig. A3.40 Measured and simulated A-set5-3-06. 
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Fig. A3.41 Measured and simulated A-set5-3-15. Fig. A3.42 Measured and simulated A-set5-3-24. 

A4 Convergence of the von Neumann series 
This appendix contains some considerations concerning the convergence of the von 
Neumann series Eq. (2.64) in the supremum norm. If brought to the end, the existence and 
continuity the series would be proved and the scattered field uscat Eq. (2.64) would be under 
Hypothesis 1 the solution of the Helmholtz equation Eq. (2.57). 

Due to Eq. (2.66) 

(A4.1) ( ) ( ) ( )ξηρξηρϕϕ ,, ,,;,,,, maxmax
2 dVzrgUDkzrT ∫

Ω

≤ , 

where 

(A4.2) 
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ϕ
ϕ

=
=  

To prove the convergence of Eq. (2.64) in the supremum norm it would be enough to prove 
that ||T|| is bounded (by a constant independent of r, φ, z), because then the perturbation 
size Dmax could be always chosen small enough to make Eq. (A4.1) less than 1 and hence 
Eq. (2.64) converge. 

Using Eq. (2.63) 
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where due to the representation of dχm(τ) of Theorem 2.3 and Eq. (A1.6) the most inner 
integral can be majorised as follows: 
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Applying Eq. (A4.4) to Eq. (A4.3) and splitting the range of the integration with respect to τ: 

(A4.5) 
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First summand in Eq. (A4.5) is finite, because there are only finitely many guided modes 
(Theorem 2.1). Therefore, T would be bounded and Eq. (2.64) would converge, if the other 
summands in Eq. (A4.5) were finite and bounded by constants independent of r and z. Thus 
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if the function C(r,τ) was not increasing too strong as 2
1n→τ , and was decreasing 

enough quick as −∞→τ , so that both integrals  
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could not only converge, but also be bounded by a constant independent of r and z (note 
that the same would hold then for the other two integrals of Eq. (A4.5), too). The following 
parts of this appendix contain considerations potentially helpful in proving it. First, two 
auxiliary facts have to be formulated:  
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as 2
1n→τ  (which implies 00 >→ ww  and 01 →w ), where w0 and w1 are 

defined in Eq. (2.19) and depend on τ and w. 

Eq. (A4.8) follows directly from Eq. (A1.6), Eq. (A1.7), Eq. (A1.8), the recurrence relation 
Eq. (A1.7) and Eq. (A1.12). If noted that due to Eq. (2.19) 
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then the expansion of Jm in power series around the point wR yields Eq. (A4.9): 

( ) ( ) ( ) ( ) ( )( )=−+′−+= 2
000 wwOwRJwwRwRJRwJ mmm  

( ) ( ) ( ) ( ) ( )2
1

4
11

0

2
14

11
0

2
1 wOwOwRJ

ww
RwwOwRJ

ww
Rw

mm =+
+

−=+
+

= +− . 

A4.1 Coefficient am(τ) 
Coefficient am(τ) is defined in Eq. (2.28) as: 

(A4.10) ( ) ( ) ( ) ( ) ( )[ ]RwYRwJwRwYRwJwRa mmmmm 110110102
1

++ −= πτ . 

Functions w, w0 and w1 are defined in Eq. (2.19). 

LEMMA A4.1 

(1) ( ) ( )ττ mm aa =− . 

(2) For each m∈Z ( ) 1→τma  as −∞→τ . 
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(3) As 2
1n→τ  

(c) (m=0) If J1(wR)=0, then ( ) ( ) 000 ≠→ wRJa τ  else ( ) ±∞→τ0a . 
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For all other |m|∈Z\{0,1,2} ( ) ±∞→τma . 

PROOF: 

Proof of (1) 

Follows by direct substitution of Eq. (A1.4), Eq. (A1.7) in the definition Eq. (A4.10) of am(τ). 
Thus while proving (2) and (3) it is enough to consider m∈N only. 

Proof of (2) 

Eq. (A1.2) implies that 
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Using asymptotic expansions Eq. (A1.2): 
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where m,n∈N and, for notational clarity, ππϑ
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Proof of (3): 

The Bessel functions Ym(w1R) and Ym+1(w1R) in the definition Eq. (A4.10) of am(τ) will be 
expanded to their power series Eq. (A1.9). Note that 2

1n→τ  implies 00 >→ ww  and 
01 →w . Thus the positive powers of z (i.e. of w1R here) in Eq. (A1.9) can be substituted 

with O(z) as 2
1n→τ . Therefore, the following forms will be used here: 
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Two cases have to be considered: 

• For m=0: 
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There are two possible subcases: 

o J1(wR)≠0. Then ( ) ( ) ±∞→+≅ 2110 2ln CRwCa τ  as 2
1n→τ  for certain 

constants C1 ≠ 0 and C2. 

o J1(wR)=0. Then, according to Lemma A4.1, 
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and (3a) has been proved. 

• For m>0, using the limiting forms of Eq. (A1.11): 
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10101

RwwORwJwORwJ m
m

m
m

 

( ) ( ) ( )[ ] ( ) +⎟
⎠
⎞

⎜
⎝
⎛+−+ +

m

mmm
RwRwJ

m
RwJRwRwJRwwO

2!
1 1

0010101
 

( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−⎟

⎠
⎞

⎜
⎝
⎛−−+ +

−−

=
∑ RwJRwRwJkmRw

k
km

mm

mkm

k
0100

2
1

1

0 2
1

2!
! 1  

as 2
1n→τ . Estimating further and using the recurrence relation Eq. (A1.7) one can 

obtain 

(A4.11) 

( ) ( ) ( ) ( )[ ] ( )+−= +
m

mmm wO
Rw

wORwJRwJa 1
12

1001 2
lnτ

 
( ) ( ) ( )[ ] ( ) ( )++−+ +

m
mmm wORwJRwJRwRwJRwwO 10010101  

( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞

⎜
⎝
⎛−−+ −

−−

=
∑ RwkJRwJRwRw

k
km

mm

mkm

k
0010

2
1

1

0 2
1

2!
! 1   
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as 2
1n→τ . Consider even m and odd m separately: 

o (odd m) Let m:=2n+1, n∈N (n≥0). Substituting the positive powers of w1R 
with O(w1) in the series Eq. (A4.11): 

( ) ( ) ( ) ( )[ ] ( )+−= +
+++

12
1

12
101202212 2

ln n
nnn wO

Rw
wORwJRwJa τ

 
( ) ( ) ( )[ ] ( ) ( )++−+ +

+++
12

1012012102201
n

nnn wORwJRwJRwRwJRwwO  

( ) ( ) ( ) ( )1012020

122
1

0 2
1

2!
! 2 wORwkJRwJRwRw

k
kn

nn

nkn

k
+⎥⎦

⎤
⎢⎣
⎡ −⎟

⎠
⎞

⎜
⎝
⎛−+ +

−−

=
∑  

as 2
1n→τ . Assume that there exists a finite limit of a2n+1(τ) as 2

1n→τ . 
Then all coefficients in the square brackets of the power series, as 
corresponding to the negative powers of w1, have to be ( )122

1
++− nkwO  as 

2
1n→τ , which implies they have to equal zero for 2

1n=τ  (w0 = w), i.e.: 

( ) 02 =wRRwJ n  (for k = 0) and  

( ) ( ) 02 122 =− + wRkJwRRwJ nn  (for k = 1, …, n and n ≥ 1). 

The first condition can hold only if J2n(wR) = 0. For all n ≥ 1 the second 
condition would have to hold, too. But then it would imply 
J2n+1(wR) = J2n(wR) = 0, a contradiction to Eq. (A4.8). Thus, if n ≥ 1, then 
a2n+1(τ) → ±∞ as 2

1n→τ . Therefore, a finite limit of a2n+1(τ) as 2
1n→τ  is 

potentially possible only for n = 0, i.e. m = 1 and J2n(wR) = J0(wR) = 0. In 
this case, due to Eq. (A4.9), 

( ) ( ) ( )2
10002 wORwJRwJ n ==  

as 2
1n→τ . 

Substituting it into the formula for a2n+1(τ) = a1(τ): 

( ) ( ) ( ) ( ) ( )[ ] ( ) +−==+ 1
12

10102112 2
ln wO

Rw
wORwJRwJaa n ττ

 ( ) ( ) ( )[ ] ( ) ( ) ( )11010110201 wOwORwJRwJRwRwJRwwO ++−+  

as 2
1n→τ . Due to Eq. (A4.8) J2(wR) ≠ 0. Hence, if J0(wR) = 0, then  

( ) ( ) 0ln 111 →= wwOa τ  as 2
1n→τ . 

In all other cases ( ) ±∞→+ τ12na  as 2
1n→τ  and (3b) has been proved. 

o (even m) Let m:=2n, n∈N+ (n≥1). Substituting the positive powers of w1R 
with O(w1) in the series Eq. (A4.11): 

( ) ( ) ( ) ( )[ ] ( )+−= +
n

nnn wO
Rw

wORwJRwJa 2
1

12
1020122 2

lnτ

 
( ) ( ) ( )[ ] ( ) ( )++−+ +

n
nnn wORwJRwJRwRwJRwwO 2

10202101201  
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( ) ( ) ( ) +⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞

⎜
⎝
⎛−−+ −

−−

=
∑ RwkJRwJRwRw

k
kn

nn

nkn

k
020120

22
1

1

0 2
1

2!
! 12

 

( ) ( ) ( )2
10201202

1 wORwJRwJRw
n nn +−+ −

 

as 2
1n→τ . Assume again that there exists a finite limit of a2n(τ) as 

2
1n→τ . Then, as in the previous case of odd m, all coefficients in the 

square brackets of the power series, as corresponding to the negative 
powers of w1, have to be ( )nkwO 22

1
+−  as 2

1n→τ , which implies that they 
all have to be equal to zero for 2

1n=τ  (w0 = w), i.e.: 

( ) 012 =− wRRwJ n  (for k = 0) and  

( ) ( ) 02 212 =−− wRkJwRRwJ nn  (for k = 1, …, n-1 and n > 1). 

The first condition can hold only if J2n-1(wR) = 0. For all n > 1 the second 
condition would have to hold, too. But then it would imply  
J2n-1(wR) = J2n(wR) = 0, a contradiction to Eq. (A4.8). Thus, if n > 1, then 
a2n(τ) → ±∞ as 2

1n→τ . Therefore, a finite limit of a2n(τ) as 2
1n→τ  is 

potentially possible only for n = 1, m = 2 and J2n-1(wR) = J1(wR) = 0. In 
this case, due to Eq. (A4.9), 

( ) ( ) ( ) ( ) ( )2
1

4
12

0

2
1

01012 wOwOwRJ
ww

RwRwJRwJ n =+
+

−==−
 

as 2
1n→τ . Substituting it into the formula for a2n(τ) = a2(τ): 

( ) ( ) ( ) ( ) ( )[ ] ( )+−== 2
1

12
1020322 2

ln wO
Rw

wORwJRwJaa n ττ

 
( ) ( ) ( )[ ] ( ) ( )++−+ 2

1020210301 wORwJRwJRwRwJRwwO  

( ) ( ) +⎥
⎦

⎤
⎢
⎣

⎡
+

+
−⎟

⎠
⎞

⎜
⎝
⎛+

−
4
12

0

2
1

0

2
1

2
1

2
wOwRJ

ww
RwRwRw  

( ) ( ) ( )2
102

2
1 wORwJwO +−+  

as 2
1n→τ . Due to Eq. (A4.8) J2(wR) = -J0(wR) ≠ 0 and J3(wR) ≠ 0. 

Hence, if J1(wR) = 0, then  

( ) ( ) ( ) ( ) ( ) ( )wRJwRJwOwRJwRJ
ww

wa 02122
0

0
2 222

=−→+−
+

−=τ  

as 2
1n→τ . In all other cases ( ) ±∞→τna2  as 2

1n→τ  and (3c) has 

been proved. 

Combining the results for even and odd m proves (3d).                 
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A4.2 Coefficient bm(τ) 
Coefficient bm(τ) is defined in Eq. (2.28) as: 

(A4.12) ( ) ( ) ( ) ( ) ( )[ ]RwJRwJwRwJRwJwRb mmmmm 011001112
1

++ −= πτ . 

Functions w, w0 and w1 are defined in Eq. (2.19). 

LEMMA A4.2. 

(1) ( ) ( )ττ mm bb =− . 

(2) For each m∈Z ( ) 0→τmb  as −∞→τ . 

(3) As 2
1n→τ  

(c) (m=0) If J1(wR)=0, then ( ) ( ) 02
10 →= wOb τ  else ( ) ( ) 210 wRwRJb πτ −→ . 

(d) (|m|>0) If Jm+1(wR)=0, then ( ) ( ) 02
1 →= +m

m wOb τ , 

(e) else ( ) ( ) 01 →= m
m wOb τ . 

(4) For each ( ]2
1,n∞−∈τ  ( ) 0→τmb  as ∞→m . 

PROOF: 

Proof of (1) 

Follows by direct substitution of Eq. (A1.4), Eq. (A1.7) in the definition Eq. (A4.12) of bm(τ). 
Thus while proving (2), (3) and (4) it is enough to consider m∈N only. 

Proof of (2) 

( ) ( ) ( ) ( ) ( )[ ] =−= ++ RwJRwJwRwJRwJwRb mmmmm 011001112
1 πτ  

( ) ( ) ( ) ( )[ ]+−= ++ RwJRwJRwJRwJwR mmmm 01101112
1 π  

( ) ( ) ( )RwJRwJwwR mm 011012
1

+−+ π  

The second term clearly converges to zero as −∞→τ  (see Eq. (A1.2) and the proof of 
Lemma A4.1(2)). Thus considering the limiting value the second term can be dropped. 
Further estimating and using asymptotic expansions Eq. (A1.2): 

( ) ( ) ( ) ( ) ( )[ ] ≅−≅ ++ RwJRwJRwJRwJwRb mmmmm 01101112
1 πτ  

⎢
⎣

⎡ +⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≅

42
cos

42
1cos 01

2
1

0

1 ππππ mRwmRw
w
w  

=⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −+−⎟

⎠
⎞

⎜
⎝
⎛ −−−

42
1cos

42
cos 01

ππππ mRwmRw  
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⎢
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⎠
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⎠
⎞

⎜
⎝
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⎠

⎞
⎜⎜
⎝

⎛
=

42
cos

42
sin 01

2
1

0

1 ππππ mRwmRw
w
w  

=⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −−−

42
sin

42
cos 01

ππππ mRwmRw  

( ) ( )( )⎢
⎣

⎡ +−−⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= RwwmRww

w
w

1010

2
1

0

1 sin
2

sin
2
1 ππ  

( ) ( )( ) =⎥
⎦

⎤−−⎟
⎠
⎞

⎜
⎝
⎛ −−+− RwwmRww 1010 sin

2
sin ππ  

( )( ) 0sin 10

2
1

0

1 →−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= Rww

w
w  

as −∞→τ . 

Proof of (3a): 

Using Eq. (A1.11) 

( ) ( ) ( ) ( ) ( )[ ][ ]2
101000110 1

2
1 wORwJwRwJwOwRb +−= πτ  

If J1(wR) = 0, then according to Eq. (A4.9) 

( ) ( )2
101 wORwJ =  as 2

1n→τ , 

thus in this case 

( ) ( ) ( ) ( )[ ][ ] ( ) 01
2
1 2

1
2
1

2
1

2
10 →=+−= wOwOwOwORb πτ  as 2

1n→τ .
 

If J1(wR)≠0, then simply 

( ) ( ) ( ) ( ) ( )[ ][ ]=+−= 2
101000

2
10 1

2
1 wORwJwRwJwORb πτ

 

( ) ( ) ( )wRwJRwORwJwR 1
2
1010 2

1
2
1 ππ −→+−=  as 2

1n→τ . 

Proof of (3b): 

Using Eq. (A1.11). 

( ) ( ) ( ) ( ) ( )[ ]=−= +
+ m

m
m

mm wORwJwwORwJwRb 1010
1

1012
1 πτ  

( ) ( ) ( )[ ] ( )m
mm wORwJwwORwJR 1010

2
102

1
+−= π  as 2

1n→τ . 

Hence if Jm+1(wR) ≠ 0, then 

( ) ( ) 01 →= m
m wOb τ  as 2

1n→τ . 
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If Jm+1(wR) = 0, then according to Eq. (A4.9)  

( ) ( )2
101 wORwJm =+  as 2

1n→τ ,  

and in this case 

( ) ( ) 02
1 →= +m

m wOb τ  as 2
1n→τ .

 
Proof of (4): 

Follows directly from Eq. (A1.15).                    

A4.3 Term am2(τ) + bm2(τ) 
Respective parts of Lemma A4.1 and Lemma A4.2 can be combined to obtain: 

LEMMA A4.3. 

(1) ( ) ( ) ( ) ( )ττττ 2222
mmmm baba +=+ −−

. 

(2) For each m∈Z ( ) ( ) 122 →+ ττ mm ba  as −∞→τ . 

(3) As 2
1n→τ  

(c) (|m|=0) If J1(wR)=0, then ( ) ( ) ( ) 02
0

2
0

2
0 ≠→+ wRJba ττ , else 

( ) ( ) ∞→+ ττ 2
0

2
0 ba . 

(d) (|m|=1) If J0(wR)=0, then ( ) ( ) ( ) 0ln 1
22

1
2

1
2
1 →=+ wwOba ττ , else  

( ) ( ) ∞→+ ττ 2
1

2
1 ba . 

(e) (|m|=2) If J1(wR)=0, then ( ) ( ) ( ) 04 2
0

2
2

2
2 ≠→+ wRJba ττ , else  

( ) ( ) ∞→+ ττ 2
2

2
2 ba . 

(f) In all other cases ( ) ( ) ∞→+ ττ 22
mm ba .                 

LEMMA A4.4 Let 

( ) ( ) ( )[ ]ττε
τ

22

,
  inf:

2
1

mm
n

m ba +=
∞−∈

 

Then 

(1) εm≥0 
(2) εm=0 iff |m|=1 and J0(wR)=0. 

Proof: 

Part (1) is obvious from the definition of εm. The proof of (2) will be given in three steps: 

Step 1: ( ) ( ) 022 >+ ττ mm ba  for each m∈Z and ( )2
1, n∞−∈τ . 

Proof of Step 1: Assume the opposite, i.e. that there exist such m0∈Z and ( )2
10 , n∞−∈τ  

that ( ) ( ) 00
2

0
2

00
=+ ττ mm ba . Then ( ) ( ) 000 00

== ττ mm ba  and thus also each their linear 

combination: 
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( ) ( ) ( ) ( ) =+= 0101 0000
0 ττ mmmm bRwYaRwJ  

( ) ( ) ( ) ( ) ( )[ ]=−= ++ RwYRwJRwYRwJRwJRw mmmmm 11111101 000002
1 π

 ( )RwJ m 00
= , 

due to Eq. (A1.1). In a similar way 

( ) ( ) ( ) ( ) =+= ++ 011011 0000
0 ττ mmmm bRwYaRwJ  

( ) ( ) ( ) ( ) ( )[ ]=−= +++ RwYRwJRwYRwJRwJRw mmmmm 111111010 000002
1 π

 
( )RwJ

w
w

m 01
1

0
0 += . 

Therefore ( ) ( ) 0010 00
== + RwJRwJ mm , a contradiction to Eq. (A4.8). Thus, ( ) ( )ττ 22

mm ba +  

is positive for each m∈Z and ( )2
1, n∞−∈τ . 

Step 2: Implication “⇐” in (2) holds. 

Proof of Step 2: Follows from Lemma A4.3(3b). 

Step 3: Implication “⇒” in (2) holds. 

Proof of Step 3: Assume the opposite, i.e. that there exist m0∈Z and a sequence 
{ } ( )2

1, nkk ∞−⊂∈ Nτ  such that  

( ) ( ) 022
00

→+ kmkm ba ττ  as k→∞  

and (|m0|≠1 or J0(wR)≠0). Due to the Bolzano-Weierstrass lemma [27], there exists such a 
subsequence { } { }kk n

n
ττ ⊆∈ N  that as n→∞ either: 

−∞→
nkτ  

or ττ ′→
nk  for a given finite ( )2

1, n∞−∈′τ  

or 2
1n

nk →τ . 

First possibility contradicts Lemma A4.3(2), the second contradicts Step 1 of this lemma 
and the third (with the condition (|m0|≠1 or J0(wR)≠0)) contradicts Lemma A4.3(3).             
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