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Zusammenfassung

In dieser Arbeit wurde ein neuer Algorithmus zur Detektion rissartiger Anzeigen
in der digitalen Radiographie entwickelt. Klassische lokale Detektionsmethoden ver-
sagen wegen des geringen Signal-Rausch-Verhältnisses (von ca. 1) der Rissanzeigen
in den Radiographien. Die notwendige Resistenz gegen Rauschen wird durch die
Benutzung von globalen Merkmalen dieser Anzeigen erzielt. Das ist aber mit einem
undurchführbaren Rechenaufwand sowie Problemen bei der formalen Beschreibung
der Rissform verbunden. Üblicherweise wird ein übermäßiger Rechenaufwand bei der
Lösung vergleichbarer Probleme durch Anwendung von Heuristisken reduziert. Dazu
benuzte Heuristiken werden mit der Versuchs-und-Irrtums-Methode ermittelt, sind
stark problemangepasst und können die optimale Lösung nicht garantieren. Das
Besondere dieser Arbeit ist anderer Lösungsansatz, der jegliche Heuristik bei der
Suche nach Rissanzeigen vermeidet. Ein globales wahrscheinlichkeitstheoretisches
Merkmal, hier Schätzfunktion genannt, wird konstruiert, dessen Maximum unter
allen möglichen Formen, Längen und Positionen der Rissanzeige exakt (d.h. ohne
Einsatz jeglicher Heuristik) gefunden werden kann. Diese Schätzfunktion wird als
die Summe des a posteriori Informationsgewinns bezüglich des Vorhandenseins eines
Risses im jeden Punkt entlang der hypothetischen Rissanzeige definiert. Der Infor-
mationsgewinn entsteht durch die Überprüfung der Hypothese der Rissanwesenheit
anhand der vorhandenen Bildinformation. Eine so definierte Schätzfunktion ist the-
oretisch gerechtfertigt und besitzt die gewünschten Eigenschaften bei wechselnder
Anzeigenintensität. Der Algorithmus wurde in der Programmiersprache C++ im-
plementiert. Seine Detektionseigenschaften wurden sowohl mit simulierten als auch
mit realen Bildern untersucht. Der Algorithmus liefert gute Ergenbise (hohe De-
tektionsrate bei einer vorgegebenen Fehlalarmrate), die jeweils vergleichbar mit den
Ergebnissen trainierter menschlicher Auswerter sind.



Abstract

A new algorithm for detection of longitudinal crack-like indications in radio-
graphic images is developed in this work. Conventional local detection techniques
give unsatisfactory results for this task due to the low signal to noise ratio (SNR '
1) of crack-like indications in radiographic images. The usage of global features of
crack-like indications provides the necessary noise resistance, but this is connected
with prohibitive computational complexities of detection and difficulties in a for-
mal description of the indication shape. Conventionally, the excessive computational
complexity of the solution is reduced by usage of heuristics. The heuristics to be
used, are selected on a trial and error basis, are problem dependent and do not
guarantee the optimal solution. Not following this way is a distinctive feature of the
algorithm developed here. Instead, a global characteristic of crack-like indication (the
estimation function) is used, whose maximum in the space of all possible positions,
lengths and shapes can be found exactly, i.e. without any heuristics. The proposed
estimation function is defined as a sum of a posteriori information gains about hy-
pothesis of indication presence in each point along the whole hypothetical indication.
The gain in the information about hypothesis of indication presence results from the
analysis of the underlying image in the local area. Such an estimation function is
theoretically justified and exhibits a desirable behaviour on changing signals. The
developed algorithm is implemented in the C++ programming language and testet
on synthetic as well as on real images. It delivers good results (high correct detection
rate by given false alarm rate) which are comparable to the performance of trained
human inspectors.
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List of used symbols

A∗ – Nilson’s generalisation of Dijkstra and Moore ordered graph search
algorithm

a(ni, nj) – arc which connects nodes ni and nj in a graph
C(a, b) – parametric curve of two parameters a and b (Hough Transform)

CD – correct detection rate
c(ni, nj) – cost attached to every arc a(ni, nj) of a graph

c(n) – cost estimation function, which is an estimate of the cost of the best
path through a graph from a start node to an end node constrained
to go through the node n

ci – cost of the graph arc in Martelli’s edge detection algorithm
cur(x, y) or cur(p) – curve curvature in the neighbourhood of point p = (x, y)

D(x, y) – local area centred around point (x, y)
Dmax – maximum optical density of radiographic film

dI1 – a posteriori information gain about hypothesis of indication pres-
ence, dI1 = log P1 post − log P1 prior = log P1 post

P1 prior
, where P1 post

and P1 prior are a posteriori and a priori probabilities of hypothesis
of indication presence

ε – mean-square error
E0 – initial radiation intensity
Ex – intensity of transmitted radiation

e(n) – heuristic estimation of the cost from node n of a graph to a goal
node (c(n) = f(n) + e(n) in A∗)

FA – false alarm rate (false detection rate)
f(n) – cost of the lowest cost path from the start node to node n of a graph

(c(n) = f(n) + e(n) in A∗)
f(·) – impulse response of filter kernel (Canny filter); template function

(profile fit); function under optimisation (dynamic programming)
f∗(·) – path estimation function designed in this work for purpose of detec-

tion of elongated crack indications
f∗ch(·) – path estimation function for model of chained indications
FOM – figure of merit

G(N,A) – directed graph having nodes ni ∈ N and arcs a(ni, nj) ∈ A
Grd(x, y) – image gradient in point (x, y) in direction d

g(x, y) – image grey value in point (x, y)
gbkg(x, y) or gbkg – estimated background grey value



gind(x, y) or gind – estimated indication grey value (not to confuse with indication in-
tensity z(x, y): z(x, y) = gbkg(x, y)− gind(x, y))

H1 or H(h) – hypothesis of indication presence (complements H0 = H(0))
H0 or H(0) – hypothesis of indication absence (complements H1 = H(h))
h(x, y) or h – true indication intensity calculated according to the assumed image

model in the idealised case of absence of noise or the intensity of the
sought indication

K – array of real coefficients (mask, kernel) or binary mask
L(·) – Canny’s localisation criterion
L− – list containing coordinates of the binary mask elements which are

zero for the mask centred around the current point, but set to unity
for the previous mask position (the list contains relative coordinates
of pixels in respect to the current coordinate of the mask centre)

L+ – list containing coordinates of binary mask elements which are set
to unity at the current mask position, but are zero at the previous
one (the list contains relative coordinates of pixels in respect to the
current coordinate of the mask centre)

Lsign – minimal significant length of indication
Lz(h) = ρ(z|h) – likelihood of presence of the indication with intensity h given the

estimation of indication intensity z, see ρ(z|h)
MTF – abbreviation of “Modulation Transfer Function”

µ – radiation linear attenuation coefficient in reciprocal units of thick-
ness

N(x;Mx, σx) – Gaussian (Normal) probability distribution of argument x with
mean Mx and standard deviation σx

ν – random component introduced by noise
O(·) – “order of” - an approximate of its argument up to some factor or

some finite number
P (·) – probability of event
P (h) – a priori probability of occurrence of a crack indication with intensity

h (discrete intensities model)
Pclass(x, y) – probability of membership of image pixel (x, y) to object class class

(relaxation methods)
Ptrans – probability of indication prolongation (in chained indications model)

p = (x, y) – coordinate vector of a point (x, y)
ROC – abbreviation of “Receiver Operating Characteristic”

r(λ, λ′) – compatibility coefficient between a pixel with label λ ∈ Λ and a
pixel with label λ′ ∈ Λ (relaxation methods)

ρ(·) – density of a probability distribution
ρ(h) – a priori probability density of occurrence of a crack indication with

intensity h
ρ(z) – a priori probability density of estimated indication intensity z

ρ(h|z) – (or ρ(h|Z = z)) probability density of presence of the sought dis-
continuity with intensity h given the estimated indication intensity
z



ρ(z|h) – a priori probability density of estimated indication intensity z with
the condition of a true indication presence with intensity h or, if
the dependence from h given z is of primary interest, then – the
likelihood of presence of indication h (now a posteriori) and denoted
as Lz(h) = ρ(z|h)

S – array which stores optimisation information and has the same di-
mensions as the source image (implementation of the algorithm)

SNR – signal to noise ratio
σ – standard deviation of noise

σbkg – standard deviation of estimation of background grey value
σind – standard deviation of estimation of indication grey value

σs – standard deviation of simulated noise
σz – standard deviation of estimation of indication intensity
th – grey value threshold (adaptive segmentation methods)
W – width of a spatial operator

w or wind – width of a crack-like indication
Z – one sample from population of estimated object intensities

z(x, y) or z – estimation of indication intensity (not grey value!) in point (x, y):
z(x, y) = gbkg(x, y)− gind(x, y)





Introduction

Introduction

Cracks are the most dangerous and at the same time the most difficult to detect
material defects. Detection of cracks is the primary purpose of in-service inspection
of welding seams of austenitic steel pipes in power plants. Radiography is a widely
used non-destructive inspection method. During in-service inspection of pipelines big
quantities of welding seams have to be examined routinely. As the visual analysis of
radiographs is labour intensive and subjective there is a demand for automated crack
detection. This work is devoted to the development of an algorithm for automated
detection of longitudinal crack indications in radiographic images of welding seams
acquired during in-service inspection of pipelines.

Crack indications are the recorded local intensity changes of penetrating radiation
which are caused by the presence of cracks in the tested object. Due to the inherent
properties of the radiographic method these crack indications are usually of low
contrast and sharpness and located on a non-homogeneous and noisy background. A
numerical simulation and comparative evaluation of simulated and real radiographs,
performed in this work, showed for typical real radiographic images signal to noise
ratios in the range from one to two. I.e. signals to be detected have an intensity just
slightly higher than the root mean square (RMS) value of the surrounding background
noise.

In such conditions conventional local detection techniques give unsatisfactory re-
sults. Since the crack indications appear as elongated objects which consist of many
connected local crack indications situated along some curve, the usage of some global
(integral) feature will allow a more reliable separation of crack-like indications from
noise instances.

As the spatial shape, position and length of the crack indication are unknown, a
search among all possible shapes, positions and lengths of the indication is necessary.
The indications, which fulfil all detection criteria, could be found during this search.
However, the two-dimensional nature of the crack indication allows a great number
of possible indication shapes and positions and this number grows exponentially
with indication length. The complete enumeration of all possible shapes, positions
and lengths of the indication is not feasible. Therefore the use of optimised search
techniques is obligatory. Thus the task of detection of two-dimensional longitudinal
crack indications is converted into the task of searching for an optimal path in a
weighted graph. The search can be done using graph theoretic methods or dynamic
programming.

In order to accomplish the search, for example by methods of graph theory, it is
essential to define an estimation function of each path in a graph of possible indication
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positions, shapes and lengths. This path estimation function acts as an optimisation
criterion and should reflect the probability, that the path coincides with a crack
indication, i.e. should be adequate. In conventional approaches to the solution of this
problem complex multi-parameter estimation functions are used to ensure adequacy
of the estimation function. However, a complex estimation function causes high
computational complexity of the search. Consequently, strong heuristics [41] must
be applied in order to reduce the computational complexity [13, 20, 35, 36, 37, 59].
A drawback of heuristic search consists in the impossibility to guarantee robustness
and optimality of the solution. Even more: the deviation from the real optimum
remains unknown.

A distinctive feature of the algorithm developed in this work is the introduction
of a path estimation function which enables the use of exact search techniques. The
path estimation function is constructed here as a sum of a posteriori information gains
about the hypothesis of indication presence in all points along the whole hypothetical
indication. The maximum of such an estimation function can be found exactly using
dynamic programming, because the estimation function is a sum of terms, each of
which depends on only a few discrete arguments. The use of dynamic programming
in place of the conventionally used graph theoretic methods is allowable because both
approaches lead to equivalent solutions [38].

The algorithm developed here uses as local operator a modification of the direc-
tional local gradient operator proposed by Rosenfeld [56]. This modified operator
assumes a certain image model in the local area. Its response is proportional to the
intensity of a crack-like indication. Based on the same image model the likelihood
function of presence of a crack-like indication is calculated.

Since the search procedure in the developed algorithm is exact, all heuristic as-
sumptions apply to the path estimation function and the local operator. Whereas
conventionally, heuristics concerning the search itself were necessary. Consequently,
further improvements or adaptations for other applications can be concentrated on
the design of the path estimation function and the local operator, since the optimi-
sation procedure is already exact.

Besides the quality of detection and the speed of execution, the ability of a fully
automated operation is another important characteristic of any detection algorithm.
Unfortunately, the automation and optimality are controversial properties: in the so-
called unsupervised algorithms either all parameters are hard coded for the specific
application case or a non-optimal solution is used which gives mediocre results for
the general case [19, 34]. To account for this, the following parameters are operator
controlled in the developed algorithm (i.e. have to be selected prior to start):

1. the minimum signal to noise ratio of indications of interest (controls algorithm
sensitivity);

2. the a priori probability of indication presence (influences detection of indica-
tions with gaps);

3. the minimal and maximal width of indication (define transversal resolution);
4. the minimal length of indication (defines longitudinal resolution).

By means of these parameters the objects which have to be detected are defined
(within the limits of the model used). The choice of these parameters must be done
by a human inspector on the basis of his experience and requirements of the particular

12 BAM-Dissertationsreihe
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detection task.
The developed algorithm was tested on a set of one hundred real radiographs of

welding seams for which the true defect locations are known, as well as on a set of
synthetic images. The ability of the developed algorithm to perform detection with
a quality comparable to human performance is demonstrated. The processing time
on up-to-date sequential hardware (at the time of writing: 3 GHz Intel CPU) is still
not applicable for interactive processing, but enough for batch execution.

Despite the emphasis on the specific practical application of crack detection, the
developed algorithm can be applied for detection of other elongated objects or con-
ventional edge detection in low signal to noise ratio conditions.

This work is structured in the following way. In the first chapter definitions of
used terms are given, basics of conventional and digital radiography with application
to non-destructive testing are described and the task of this work is formally defined.
Subsequently, in the second chapter, an overview is given of conventional approaches
to object detection found in the literature. Their limitations and applicability to the
task of elongated object detection in low signal to noise ratio conditions is analysed.
In the third chapter the developed crack detection algorithm is described in details.
Experimental results are presented in the fourth chapter. The results obtained from
simulated and real experimental data are compared with humans’ performance. Re-
ceiver Operating Characteristic (ROC) [42] is used as the performance criterion. The
final summary and outlook conclude the description of the new way developed for
detection of crack indications on noisy backgrounds and show directions for further
improvements.
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Chapter 1. Basics of NDT, the task of crack detection

Chapter 1

Basics of non-destructive
radiographic testing,
formulation of the task of
crack detection

1.1 Basics of industrial radiography

Radiography is a widely used method in non-destructive testing (NDT). The ba-
sic principle of radiography is the attenuation of penetrating radiation in materi-
als as a function of radiation energy, material density and material thickness. For
a monochromatic source and the absence of scattering in the test object, the de-
pendence of radiation attenuation from material thickness can be mathematically
presented by the Lambert-Beer’s law:

Ex = E0 e−µx, (1.1)

where E0 represents initial radiation intensity, Ex – the intensity of transmitted
radiation, x – the thickness of absorbing material and µ – the linear attenuation
coefficient in reciprocal units of thickness.

Due to the different attenuation coefficients of various materials and dependence
of attenuation on the material thickness, discontinuities in the test specimen cause
variations in the transmitted radiation intensity. The transmitted radiation beam is
then recorded by some means which forms a radiographic image.

Traditional sources of penetrating radiation are X-rays generators (tubes) and
radioactive isotopes (industrial sources of γ-rays are Ir−192, Co−60 or Se−75). Each
source has its own characteristics and therefore has certain advantages in specific
applications. The selection of the particular energy range of radiation, to be used, is
one of the major factors responsible for penetrating ability and contrast.

The traditional radiation detector is radiographic film. The principle of image
formation is the interaction of the radiation with the silver halide crystals in radio-

14 BAM-Dissertationsreihe



Chapter 1. Basics of NDT, the task of crack detection

Root crack

Figure 1.1: A radiograph of a welding seam with longitudinal root crack.

graphic film forming a latent image. This image in not readily visible, but becomes
so after processing of the film. The greater the radiation intensity, the greater the
number of interactions and the darker the processed film will become. Fluorescent
screens are alternatively used to convert radiation into visible light. They can be
used as standalone detectors in radioscopy systems as well as in combination with
radiographic film since the visible light will expose the film.

Electronic imaging methods in traditional radioscopy are represented by systems
in which the fluorescent viewing screen is observed with a television system (fluoro-
scope). These systems can be improved by special X-Ray image intensifiers. In an
image intensifier the radiation first hits input screen, which emits electrons. These
electrons are accelerated in electrical field and interact with a fluorescent screen at
the output window.

A radiation image detector is characterised by several parameters:

• Sensitivity is defined by exposure necessary for formation of a standard image.
• Contrast is defined as ratio between the change of intensity of recorded signal

and the change of intensity of incident radiation ( (signalchange)
(radiationchange) ) and charac-

terises ability of detector to record small changes of incident radiation.
• Dynamic range is ratio between highest and smallest undistorted signals.
• Spatial resolution of detector is defined by Modulation Transfer Function

(MTF) or Point Spread Function (PSF) and characterises ability of the de-
tector to record small spatial details.

• Noise level, inhomogeneity in general or granularity for radiographic film char-
acterise amount of uncontrolled variation of image intensity.

• Detector size, usage convenience, price and lifetime are another important de-
tector characteristics and there are even more ones.

An example of a radiographic image is given on Fig. 1.1 showing a radiograph
of a welding seam with longitudinal crack. An extensive description of principles
of radiography and an overview of techniques and equipment used in traditional
radiographic NDT can be found in [5].

Concerning defect detection by means of radiography it is necessary to mention
the following characteristic shortcomings of the method:

• Flaw indication on a radiographic image depends strongly on the flaw shape
and position in 3D (Fig. 1.2). Two similar cracks will be differently indicated on

15
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Ia Ib

Figure 1.2: Schematic cracks in a welding seam and their indications.

Object

DetectorSpecimen

unsharpness
Geometrical

Source focal spot

Figure 1.3: Geometrical unsharpness as a result of the central projection and a non-
point radiation source.
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Chapter 1. Basics of NDT, the task of crack detection

the image due to the different spatial orientations. Indication Ia (in Fig. 1.2)
will have lower contrast and worse detectability due to its angular position.
The worst case is a flat 3D object located perpendicular to the direction of
the radiation beam. It also causes another problem: a crack, deflecting in 3D
from its optimal orientation, can partially disappear from the radiograph due
to unfavourable positioning that leads to interpretation errors.

• Central projection in combination with the extended size of the focal spot of
a radiation source (non-point source) cause inevitable geometrical unsharpness
(see Fig. 1.3). This unsharpness can be reduced by minimising the size of the
focal spot, by positioning of radiation source as far as possible and detector
as close as possible to the object. The unsharpness of the resulting image is
the convolution of geometrical unsharpness and the inner unsharpness of the
detector.

• Inhomogeneous material, quantum noise and detector noise cause stochastic
fluctuations of the image intensity which conceal low-intensity indications. Par-
ticularly in many practical applications the noise level is comparable or even
bigger than the useful signal intensity of flaw indications.

1.2 Digital radiography

Digital radiography is an advanced technique which involves computerised methods
of investigation. In digital radiography the image may be directly acquired in digital
form or be converted into by means of digitising of an analogue medium. Since the
image is available as a computer file it can be archived, copied or transmitted to
different places without any loss of image information, digitally processed to enhance
required features or to eliminate interfering ones. The list of available processing
procedures is large and includes: functional transformations of intensity (brightness-
contrast adjustment, histogram transformations), filtering of different kinds (noise
reduction, sharpening), background linearisation and elimination, and finally image
segmentation, object detection and interpretation.

There are several techniques of digital image acquisition:

• Scanning of the traditional radiographic film is an obvious way to achieve digital
images using conventional radiography systems. Because of the high maximum
optical density (Dmax > 5) of NDT films in comparison to films used in visible
light photography and medical radiography, special scanners are designed for
this purpose. At present, this approach is unsurpassed in spatial resolution
and signal-to-noise ratio, but requires film processing and is therefore time
consuming and labour intensive.

• Phosphor imaging plate technology is a replacement for conventional film which
eliminates necessity of dark room processing. They employ a coating of pho-
tostimulable storage phosphor on a flexible plate to capture images. When
exposed to X-rays, radiation sensitive centres inside the phosphor crystals are
excited and electrons are trapped in a semi-stable higher-energy state. A read-
ing device scans the plate by means of a laser beam. The laser energy releases
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the trapped electrons, causing visible light to be emitted. This light is regis-
tered by a photomultiplier and converted into a digital bit stream which encodes
the digital image. After scanning the imaging plate can be erased with surplus
light and reused. The applicable dynamic range of imaging plates is even larger
than NDT films, but resolution and signal-to-noise ratio are inferior.

• Fluorescent and scintillation screens coupled with photo diode matrices provide
means for instant detection (indirect flat panel detectors). Because of optical
scattering within the media, some spatial blurring and increased noise can be
encountered which degrades image quality as compared to film. However, these
systems offer superior performance relative to conventional radioscopy systems
(image intensifiers or fluoroscopes), while exhibiting faster read-out times as
compared to digitised film and imaging plates.

• Most progressive (at present) are direct registration detectors (direct flat panel
detectors). The detector consists of an amorphous selenium (α-Se) or cadmium
telluride (CdTe) photoconductive layer coating a thin film transistor (TFT)
array. X-rays are converted directly into charge carriers. An electrical bias field
is applied to separate the charge carriers and to collect them (no photosensitive
elements as in the indirect approach). For such systems the resolution is only
limited by element size of the TFT matrix (100 µm at time of writing).

A plethora of literature is currently available on digital radiography, eg. [12, 63].

1.3 Task of automated crack detection

In practical application of conventional radiography, as far as in computer aided
systems, the final stage of inspection process, i.e. the radiograph analysis, defect de-
tection and evaluation, is performed by a human inspector. As statistic shows, crack
indications are considerably difficult to evaluate for human inspectors. It is also a
labour intensive process. Unfortunately conventional image processing techniques
fail in this case too or their application for the analysis of radiographs is very limited
[54, 48, 27]. That is due to the characteristic features of radiographic images (un-
sharpness, low signal-to-noise ratio, significant inhomogeneity) as well as the absence
of formal definition of objects to be detected. As a consequence there is a demand
to develop an algorithm giving satisfactory results. Its successful application could
enhance overall quality of radiographic inspection and broaden its application range.

The aim of this work is the development of algorithm for automatic detection
of crack indications, e.g. caused by IGSCC (intergranular stress corrosion cracking)
in welding seams of austenitic steel pipes of nuclear power plants [17]. Only the
detection of crack-like indications arose during in-service time is considered here.
Volumetric defects from production process are out of scope of this work.

Most obviously crack-like indications on radiographs can be defined as objects
characterised by fast local changes of intensity in one direction (local contrast) and
longitudinal shape of the discontinuity in the orthogonal direction. Under ideal con-
ditions a crack appears on a film radiograph as thin curved line of higher optical
density than the surroundings. But a real crack-like indication can be unsharp, dif-
ferently curved, loose and gain intensity along its length, overlap with other, non
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necessary crack-like, indications. So additionally to the cross-section contrast the
shape of the cross-section profile and the 2D shape of the detected (suspected) in-
dication can be analysed. Unfortunately human inspectors are not able to describe
their experience on this topic in formal terms. It is because they are trained to
recognise defects using representative sets of images showing an existing known flaws
(e.g. by reference catalogues of radiographs). Recognition criteria are formed in
the mind of the trainee by themself (except very simple starting premises) on the
basis of physical knowledge about defect phenomena, common sense and human in-
tuition. Additionally, information about welding technique, material properties, etc.,
not available from the radiograph but from testing protocols, are included. So the
first part of the task of automated defect detection is definition of sufficient criteria
allowing successful crack recognition.

It is also evident that putative detection algorithms cannot be restricted to local
environments, particularly in case of low signal to noise ratios. A global approach
taking into account all indication points is expected to provide a more robust resolu-
tion of this problem, because in this case the local abnormalities caused by noise are
less decisive for the final result. This leads to another problem which must be solved:
the overcoming of excessive computational complexity of global detection algorithms.

The problems described above are typical for crack detection on radiographs, but
are not completely unique to this field. They are also present in slightly different form
in other applications of digital image processing. So, as a consequence, conventional
detection techniques, found in the literature, will be reviewed and analysed in the
next chapter.
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Chapter 2

Overview of conventional
approaches to object
detection

The task of object detection can be expressed in terms of image segmentation into
regions of two possible categories: object (or set of objects) and background. In the
context of this work only longitudinal crack indications are considered as objects of
interest.

Since the task of image segmentation is often difficult to solve and some times
even to define, numerous different techniques have been developed. The literature is
vast. Unfortunately without actually implementing an approach and testing it on a
representative image population, it is impossible to determine if it is appropriate for
the intended application or if it is not. Although the number of image segmentation
techniques available is large, the number of techniques with proved effectiveness is
few and some general classes can be recognised.

For the task of crack detection a classification into local and global methods might
be useful. Local methods take into account only the close vicinity of a current point
in order to make segmentation decision. In the simplest case all image points are
tested in sequence. Alternatively the running points might be selected depending
on the segmentation result in the previous (already examined) points. The overall
segmentation result is then a combination of the outputs of all local results. In a
solely local segmentation algorithm the overall result is just a superposition of local
results. In contrast to local methods, the global methods use information about the
entire image to make a segmentation decision. Methods, which use quite large areas,
comparable to the whole image size, can be considered as global too [16].

If objects to be detected have size much bigger than a single pixel in each di-
mension, another classification is possible: border-based or region-based methods.
Border-based methods detect objects by means of detection of their closed boundary
(border). Region-based methods do not concentrate on boundary analysis, but on
analysis of the whole 2D region supposedly occupied by the object. Because much
more pixels are used at a time by region-based methods than by the border-based
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ones, the noise resistance of the formers is much better. But due to the fact that
crack indications are considered thin in one dimension by definition, the application
of region-based methods is of limited use.

Due to the low thickness of crack indication, the task of crack detection has sim-
ilarities with the task of border detection. In both cases abrupt changes in intensity
have to be detected, but in the case of crack detection these changes are two-sided.
As a consequence of this similarity a number of border detection techniques can be
adopted for the purpose of crack-like indication detection.

In what follows a brief survey of some known techniques of detection of elongated
discontinuities and the evaluation of their applicability for the task of detection of
crack-like indications is given.

2.1 Local methods of detection of grey value dis-
continuities

2.1.1 Gradient filters, boxcar, Laplacian of Gaussian and
Canny filters

A common method to detect discontinuity is differentiation [47]. Abrupt changes of
image intensity are transformed to sharp peaks on differentiated image (also com-
monly called gradient image). Slow changes of image intensity cause low amplitude
response. Succeeding threshold operation marks points with derivatives which exceed
a given limit (threshold).

A general approach to perform differentiation is to convolve the image with a
corresponding mask. For this purpose a differentiation mask is passed through the
image and the following sum is computed for each image point:

Gr(x, y) =
1
N

Xk−1∑
i=0

Yk−1∑
j=0

K[i, j]g(x + i−Xk/2, y + j − Yk/2), (2.1)

where g(·, ·) denotes pixels of the source image, Gr(·, ·) pixels of the resulting gradient
image, K the convolution mask of dimension Xk×Yk and N =

∑Xk−1
i=0

∑Yk−1
j=0 K[i, j].

When the mask is centred around a boundary pixel, the response is computed by
using the corresponding partial neighbourhood. Due to the uniform nature of the
performed operation the algorithm is also called a filter or an operator.

The selection of the mask (mask coefficients K[i, j]) determines the operation to
be performed (see Tab.2.1). Usually partial edge gradients are computed in two or-
thogonal directions (Roberts, Prewitt, Sobel and Frei-Chen operators [49]). Another
approach is to compute gradients in a large number of directions by convolving with
a set of different masks (Prewitt Compass, Kirch, Robinson 3- and 5-level, Nevatia-
Babu gradients [49]). Since the magnitude of the gradient is usually of interest rather
than its direction, the partial gradients can be combined in square root form:

Gr(x, y) =

√√√√ D∑
d=1

Grd(x, y)2 (2.2)
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Table 2.1: Convolution masks (kernels) of some popular differentiation operators.

Operator Row gradient Column gradient

Pixel difference

 0 0 0
0 1 −1
0 0 0

  0 −1 0
0 1 0
0 0 0


Separated pixel diff.

 0 0 0
1 0 −1
0 0 0

  0 −1 0
0 0 0
0 1 0


Roberts

 0 0 −1
0 1 0
0 0 0

  0 −1 0
0 0 1
0 0 0


Prewitt 1

3

 1 0 −1
1 0 −1
1 0 −1

 1
3

 −1 −1 −1
0 0 0
1 1 1


Sobel 1

4

 1 0 −1
2 0 −2
1 0 −1

 1
4

 −1 −2 −1
0 0 0
1 2 1


Frei-Chen 1

2+
√

2

 1 0 −1√
2 0 −

√
2

1 0 −1

 1
2+
√

2

 −1 −
√

2 −1
0 0 0
1

√
2 1


Nevatia-Babu operator reduced to only four partial gradients (0, 30, 60 and 90 de-
grees) :

1
1000


100 100 0 −100 −100
100 100 0 −100 −100
100 100 0 −100 −100
100 100 0 −100 −100
100 100 0 −100 −100

 1
1102


100 −32 −100 −100 −100
100 78 −92 −100 −100
100 100 0 −100 −100
100 100 92 −78 −100
100 100 100 32 −100



1
1102


−100 −100 −100 −100 −100

32 78 −100 −100 −100
100 92 0 −92 −100
100 100 100 78 −32
100 100 100 100 100

 1
1000


−100 −100 −100 −100 −100
−100 −100 −100 −100 −100

0 0 0 0 0
100 100 100 100 100
100 100 100 100 100


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Figure 2.1: Part of typical radiographic image of welding seam. Lead markers (numbers in
white squares) show the circumferential weld position in cm. A crack indication is located
at position 32-39 under the seam.

Figure 2.2: Result of application of Sobel operator to the image from Fig. 2.1 and subse-
quent thresholding operation with manually selected threshold.

Figure 2.3: Result of application of Nevatia-Babu operator to the image from Fig. 2.1 and
subsequent thresholding operation with manually selected threshold.
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or in magnitude form (for the sake of computational simplicity):

Gr(x, y) =
D∑

d=1

|Grd(x, y)|, (2.3)

where D is number of partial gradients. When a sufficiently large number of partial
gradients is computed (> 8), then the maximum of magnitude of the partial gradients
is usually taken:

Gr(x, y) = max
d=1,D

(|Grd(x, y)|) (2.4)

and the edge direction can be determined by the direction of the largest gradient.
Simple pixel differences such as Roberts, Prewitt, Sobel and Frei-Chen opera-

tors are very fast in execution and easy to implement but error-prone in high noise
environments (see Fig. 2.1 and Fig. 2.2). This is a result of the small number of
image pixels involved in computation (for every mask position). Noise resistance
can be achieved by properly extending the size of the area over which the gradients
are computed. Operators of this type are called boxcar operators. Examples are the
operators as proposed by Rosenfeld and Thurson [56] and Nevatia and Babu [49] (see
Tab.2.1 and Fig. 2.3).

A truncated pyramid operator was suggested by Abdou [49] which gives a linearly
decreasing weighting to pixels distant from the centre of an edge. Evolving this ap-
proach Argyle and Macleod [49] have proposed the use of Gaussian-shaped functions
for weighting of neighbourhood area as a mean of noise suppression. These operators,
unlike the boxcar operator, give decreasing importance to pixels more distant from
the centre of the mask.

Extended size gradient operators can be considered to be composite operators in
which a smoothing operation is performed on a noisy image followed by a differenti-
ation operation [49]. Well-known examples of compound gradient operators are the
derivative of Gaussian (DoG) and Laplacian of Gaussian (LoG), in which Gaussian-
shaped smoothing is followed by the differentiation or Laplacian respectively.

All of the differential edge detection operators previously described here have been
heuristically derived. Canny [10] has taken an analytical approach to the design of
such operators. Canny’s development is based on a one-dimensional model of a step
edge (arbitrarily shaped) plus additive white noise with standard deviation σ. It
is assumed that edge detection is performed by convolving a one-dimensional noisy
edge signal g(x) with an anti-symmetric impulse response function f(x), which is of
zero amplitude outside the range [−W,W ]. An edge is marked at the local maximum
of the convolved gradient. The impulse response f(x) is derived from maximising of
the following three criteria:

1. Good detection. There should be a low probability of failing to mark the real
edge point, and a low probability of falsely marking a non-edge point. Since
both these probabilities are monotonically decreasing functions of the output
signal to noise ratio, this criterion corresponds to maximising of the following
functional:

SNR(f) =
|
∫ +W

−W
g(x)f(x) dx|

σ
√∫ +W

−W
f2(x) dx

. (2.5)
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2. Good localisation. Edge points marked by the operator should be as close to
the centre of the edge as possible. The localisation criterion is defined by Canny
as

L(f) =
|
∫ +W

−W
g
′
(x)f

′
(x) dx|

σ
√∫ +W

−W
f ′2(x) dx

, (2.6)

where g
′
(x) is first derivative of the edge signal and f

′
(x) is first derivative of

the impulse response function of the filter.

3. Single response. There should be only a single response to a true edge. Canny
has demonstrated, that if only the two first criteria are used, then the optimal
detector for step edges is a truncated step, or the difference of boxes operator.
However it has a very high bandwidth and tends to exhibit many maxima in its
response to noisy step edges. These extra edges should be considered erroneous
according to the first criterion. The average distance between adjacent maxima
in the noise response of f , denoted as xmax, constraints choice of f according
to the single response criterion:

xmax(f) = kW, (2.7)

where k is a given fraction coefficient and W is the operator width.

Canny has combined these three criteria by maximising the product SNR(f)L(f)
subject to the constraint xmax. The optimisation of the impulse response function
f(x) (values of elements in the convolution kernel) is performed with respect to this
criterion and the model of the discontinuity to be detected.

Because of the complexity of the formulation, no analytic solution was found, but
a variational approach has been developed and optimal operators for some popular
edge models were computed. For low values of xmax Canny operator resembles a
boxcar. In the other limit case (when xmax is large) it can be closely approximated
by a derivative of Gaussian (DoG) impulse response function.

2.1.2 Profile fit

Ideal discontinuities may be viewed as one-dimensional or two-dimensional disconti-
nuities of the form shown on Fig. 2.4. In this case, actual image data can be matched
against, or fitted to, the ideal model. If the fit is sufficiently accurate at a given image
location, a discontinuity is assumed to exist with the same parameters as the ideal
edge model.

In the one-dimensional edge fitting case described by Pratt [49] and illustrated
on Fig. 2.4 the image signal g(x) is fitted to a step function

f(x) =
{

a, if x < x0

a + h, if x ≥ x0
(2.8)

An edge is assumed to be present if the mean-square error

ε =
∫ x0+W

x0−W

[g(x)− f(x)]2 dx (2.9)
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Figure 2.4: One dimensional and two dimensional edge fitting with a function of zero
order.

is below some threshold value (assuming the ideal profile is defined within the
[−W,W ] range). In the two-dimensional formulation the ideal step edge is defined
as

f(x, y) =
{

a, if (x cos θ + y sin θ) < r
a + h, if (x cos θ + y sin θ) ≥ r

(2.10)

where θ and r specify the polar distance from the centre of a circular test region to
the normal point of the edge. The edge fitting error is

ε =
∫∫

overcircle

[g(x, y)− f(x, y)]2 dx dy. (2.11)

The more general approach is fitting to a n×n neighbourhood a surface of degree
m < n2. The best fit is formed by minimising the error between the surface of degree
m and the actual image [47].

Hueckel [25] has developed a procedure which is based on the idea to describe the
image and the ideal edge by a set of two-dimensional basis functions by a Fourier
series in polar coordinates and find the best match based on such a representation.

2.1.3 Analysis of local methods

Profile fitting methods require substantially more computation than derivative-based
edge detection methods, but are capable to produce superior results. While compu-
tational complexity of the profile fitting methods is still within the acceptable limits,
the main problem of their application for the crack detection is the undefined shape
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a b c

x−w/2 x x+w/2

Figure 2.5: a) Noisy edge considered by Canny; b) Canny filter resembles closely first
derivative of Gaussian if single response criterion is of primary importance; c) The
boxcar is the optimal choice if maximum sensitivity is required.

of the profile to fit the image to - this is due to the nature of the images under con-
sideration: a crack can be arbitrary shaped in 3D and projected to the image plane
under arbitrary angles.

The same problem with the varying shape of discontinuity profile decrease effi-
ciency of the Canny filter too. This is due to the impulse response function f(x) of
Canny filter must be optimised to the distinct model of discontinuity profile, which
is not known.

Additionally, it is important that the good detection criterion and the single re-
sponse criterion in Canny filter are contradictory. Giving different weights to these
criteria results in different optimal convolution kernels and consequently in different
properties of the operator [10]. If the single response criterion is of primary impor-
tance, then the optimal kernel closely resembles first derivative of a Gaussian as it
is shown on Fig. 2.5. At the same time this leads to a decreased sensitivity of the
operator. If the single response criterion is not used, the operator resembles a boxcar
and the sensitivity reaches its maximum.

The use of a boxcar for increased operator sensitivity (instead of a smoothed
kernel) causes many maxima in its response to a noisy step edge, since boxcar has a
very high bandwidth. This is usually a problem when detection is performed solely
on the basis of the output of the local operator. But if the boxcar is followed by
a second stage of the detection algorithm which makes decisions on a more global
basis, then multiple responses of boxcar could not be a big problem.

That is why a decision to use boxcar as a local operator is made in this work.
Besides the increased sensitivity, such simple operator has a big performance benefit
– the computationally expensive convolution can be substituted by a relatively fast
normal averaging and even faster recursive averaging (see later in section 3.3).

2.2 Segmentation techniques based on global
statistics

A number of global segmentation techniques are based on the analysis of the im-
age histogram. They include (but are not limited to): p-tile method [14], Mode
method [50], Ostu method [44], histogram concavity analysis method [57], Pun en-
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tropic methods [51, 52], Kapur, Sahoo, and Wong entropic method [29], Johansen and
Bille entropic method [28], Moment-Preserving method [60], Minimum error method
[31]. An overview and comparison of all these methods is given in [58]. In the context
of this work all these methods share one common drawback – they depend solely on
pixels’ grey levels and do not take into account spatial relations between pixels in-
side or outside a class, so an a priori information about spatial features of the object
(both local and global) remains unused. This makes all these methods not acceptable
for the task of crack detection investigated here.

2.3 Grouping techniques

The initial local segmentation step is conventionally followed by grouping algorithms.
The aim of this is to aggregate the local information into more global-like struc-
tures and to discard spurious local segmentation results caused by the noise. These
methods include relaxation algorithms, adaptive thresholding and contour follow-
ing, heuristic graph search and dynamic programming goal function optimisation,
template matching (curve fitting), Hough- and Generalised Hough Transforms.

2.3.1 Relaxation methods

The idea of relaxation was introduced by Southwell [58] to improve the convergence of
recursive solution for system of linear equations. In image segmentation, relaxation
is applied as follows. First, a probability of membership of each image pixel to each
object class is calculated on the base of pixel grey level. This stage is called initial
classification. Then, in several iterations, the probability of each pixel is adjusted
according to the probabilities of the neighbouring pixels. This provides some noise
resistance and the possibility to use image context. Another attractive feature of this
approach is the parallel processing technique.

Initial classification

Initial classification can be done with the application of any global segmentation
method which makes global segmentation on the basis of the grey-level histogram,
but for this specific purpose some special methods were developed. For the case of
binary segmentation Rosenfeld and Smith [55] suggested the following method: Let
d and l be the globally darkest and lightest grey levels, and g(x, y) be the grey level
of a pixel (x, y). Then let

P 0
dark(x, y) =

l − g(x, y)
l − d

, (2.12)

and

P 0
light(x, y) =

g(x, y)− d

l − d
. (2.13)

This method fails in cases where the object and background grey levels do not lie
on the different halves of the grey level histogram. To avoid this problem, the same
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authors propose another initialisation scheme. Let m be the mean grey level. Then,
if g(x, y) > m, let

P 0
light(x, y) =

1
2

+
1
2

g(x, y)−m

l −m
, (2.14)

and if g(x, y) ≤ m, let

P 0
dark(x, y) =

1
2

+
1
2

m− g(x, y)
m− d

. (2.15)

Fekete, Eklundth and Rosenfeld [18] suggest an approach in which they assume
the histogram can be divided into two Gaussian subpopulations so that the grey level
distribution can be written as the sum of two Gaussian distributions. The parameters
of these Gaussian distributions are determined by a method suggested in [11]. There
a faster convergence of the relaxation process was obtained by this method.

Iterative updating of probabilities

As previously mentioned, the updating process consists of adjusting the probabilities
of each pixel based on neighbouring probabilities. Let Λ be the set of class labels
(the classes of dark and light pixels in case of binary segmentation) and r(λ, λ′) a
compatibility coefficient between a pixel with label λ ∈ Λ and a pixel with label
λ′ ∈ Λ. Then r(λ, λ′) is defined as following:

r(λ, λ′) =

 −1, if λ and λ′ are incompatible
0, if λ and λ′ are independent
1, if λ and λ′ are compatible

(2.16)

Zucker, Hummel and Rosenfeld [64] propose the following equation for updating
probabilities:

P k+1
λ (x, y) =

P k
λ (x, y)[1 + qk

λ(x, y)]∑
λ′∈Λ P k

λ′(x, y)[1 + qk
λ′(x, y)]

,

qk
λ(x, y) =

1
8

∑
(x′,y′)∈N(x,y)

∑
λ′∈Λ

r(λ, λ′)P k
λ′(x

′, y′) ,
(2.17)

where N(x, y) is the 8-neighbourhood of (x, y) and k is the iteration number.
The attractive feature of the relaxation methods for the crack-like indication de-

tection is the usage of image context, i.e. probabilities of pixels’ membership are
adjusted depending on the neighbourhood. However, it is difficult to implement
complex shape restrictions in the scheme described above even by expanding size of
the neighbourhood N(x, y) or changing neighbourhood shape from square to some-
thing else. This limits the application of the approach and it is no longer investigated
here.

2.3.2 Adaptive segmentation methods

The idea of adaptation is similar to the idea of relaxation in that way that the image
context is used, i.e. parameters of the image processing algorithm are adjusted

29



Chapter 2. Overview of conventional approaches to object detection

depending on the image contents. Segmentation with a floating threshold is the
most widely used application of this idea. Floating threshold segmentation consists
of the adjusting of the threshold value on the base of the estimation of the signal
intensity of the already segmented part of the object: thi = f(thi−1, zi−1), where thi

and thi−1 are threshold values for steps i and i − 1, and zi−1 is the estimation of
the intensity of the object segmented on the previous steps. This idea is used in the
numerous curve tracing algorithms. A classic example can be found in [16].

Not only the threshold value can be adjusted. For example, Canny [10] has
proposed adaptation of his operator to the image contents in the following way:
instead of the global noise estimation, the noise is estimated in some neighbourhood
of a moving point. This results in a context dependent sensitivity of the segmentation
operator.

Hwang and Haddad [26] proposed to adjust the operator size adaptively for each
image region. This is to optimally solve the dilemma shown by Canny [10] that the
detection process is always a compromise between noise resistance and localisation
accuracy: a bigger operator size increase the noise resistance, but reduce the accuracy
of localisation at the same time.

Palenichka, Alexeychuk and Zscherpel [2, 45] have used structural adaptation for
detection of cracks in radiographic images. A crack indication is considered as a
connected set of elementary indication parts – primitives. Detection is performed in
several steps. First, primitives are detected which with high probability belong to the
object. To exclude false indications on this step, the threshold is set to a relatively
high value. In a second step, hypotheses about continuations of the detected crack
parts are generated and tested. The threshold value as far as the position and the size
of the search area are adjusted according to the available information about the crack
part which is already found and according to the constraints of the assumed object
model. Fig. 2.6 illustrates this process. The radius of the search sector is a function
of the length of the indication part already found: the longer part of crack is found
the bigger area will be searched for a continuation. The opening angle of the search
sector depends on the smoothness of the indication part already found: for smooth
cracks the continuation is searched in a narrow area, if the crack direction fluctuates
significantly – the search area is wider. The threshold is selected by maximising
a posteriori likelihood of correct detection (see [2] for details). Such an approach
works very well at moderate noise levels (signal to noise ratios) and is much faster
than global optimisation techniques described in the next sections. Nevertheless, the
application of this algorithm is impossible for SNR ¡ 3 – so fully global techniques
come into considerations.

2.3.3 Hough Transform

The Hough Transform (HT) [24, 15] is an efficient technique for the detection of
simple parametric curves, such as straight lines, circles, arcs, ellipses, etc. The HT
considers global relationship between pixels.

Consider the Cartesian coordinate space XY and a parametric curve C of two
parameters a and b: C(a, b, x, y) = 0, where x ∈ X and y ∈ Y are independent
variables and a and b are parameters which determine the curve. Image points
which belong to the certain curve C(a′, b′, x, y) = 0 with constant but yet unknown
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start indication

Figure 2.6: A schematic example of structure-adaptive crack tracing. Dashed lines
denote borders and centre lines of continuation search areas. Thick solid line segments
denote elementary start indication and “best candidate” elementary indications in-
side this search areas. Thin solid line corresponds to the indication detected in this
way.

parameters a′ and b′ form a set of curve points {(x′, y′)}. This curve will correspond
to a single point (a′, b′) in the parameter space AB (a ∈ A and b ∈ B). To find this
point one has to consider a and b as independent variables and plot in the parameter
space AB the dependence between a and b for every point (xi, yi) ∈ {(x′, y′)} (one
plot per each (xi, yi)). All of these plots in AB will intersect exactly in the point
(a′, b′). To find parameters of the two-parameter curve (as in this example) it is not
necessary to make a plot for every point (xi, yi) of the curve, but only for two of
them, for a three-parameter curve – for three points, and so on.

The procedure described above allows the determination of parameters, given the
curve on the image. But in practice it is usually necessary to perform both tasks: to
detect the curve and to estimate parameters. For this purpose the parameter space
is subdivided into so-called accumulator cells: each covers some fixed part of the
parameters’ range and is associated with mean value of this range. All accumulator
cells form an array and initially are set to zero. Then for every image point (x, y) we
let the parameter a equal to each of the allowed subdivision values on the A axis and
solve for the corresponding b. The resulting b is then rounded to the nearest allowed
value on the b axis. If a choice of ai results in the solution bi then we increment
the corresponding accumulator cell (ai, bi) by the value of the current image pixel
g(x, y). At the end of this procedure, the searching for the local maxima or minima
in the accumulator cells array with following thresholding operation allow detection
and estimation of parameters of curves which correspond to the used parametric
representation. The accuracy and computational efficiency is determined by the
number of subdivisions of the AB space.

To extend the classic HT for curves of arbitrary shape (not only parametric)
Ballard [3] has proposed the Generalised Hough Transform (GHT). The GHT uses
a non-analytic representation of model shape. The representation corresponds to
a table (R-table) which stores edge direction and the position of edge points with
respect to an arbitrarily chosen reference point (i.e. vectorial displacement). In the
extraction process, an estimate of the location of a shape is started by selecting the
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entry in the R-table which has the same edge direction as the computed one for the
edge point. Then the reference point which corresponds to this shape location is
determined and the accumulator cell is incremented by the values of image points
defined by the vectorial displacement stored in R-table.

GHT is an efficient method for detecting 2D object shapes if rotation and scale
parameters are known a priori. However, when the orientation and the scale of an
object are not available in advance, GHT exhaustively enumerates all possible rotation
and scale parameters of the given shape. This requires two additional dimensions in
the parameter space.

HT is an original and very interesting idea, but its application to the detection of
crack-like object is combined with some problems. The first disadvantage, common
to all HT-based approaches, is their large computational requirements depending on
the number of parameters in shape representation. Second, in usual implementations
of HT/GHT, each dimension of the parameter space is quantised into a finite num-
ber of intervals – then the computational complexity and storage requirements of the
method depend on the quantisation size of each parameter and increase very fast
if the application task requires some more resolution in the parameter estimation.
Third, as it was studied by Grimson and Huttenlocher [23], a GHT specific drawback
is its relative low noise resistance. But the main disadvantage of HT-like approaches
for the task of crack-like objects detection lies in the absence of suitable parametric
or tabular representation of crack indications. The parametric representation is prin-
cipally possible, but the number of parameters vary and is very large – this prohibits
the application of HT-methods. In case of a tabular representation for GHT it is
necessary to explicitly provide a R-table for all possible indication shapes and this
may be impossible too.

2.3.4 Optimal detection of curves using dynamic program-
ming technique

Montanari [38] has proposed a method for optimal detection of curves with no explicit
description. He makes use of a so-called figure of merit (FOM), which acts as an
optimisation criterion and incorporates heuristic contents of the problem to specify
the properties which a curve must have and their relative weights. Constraints of
various kinds can also be embedded in the FOM.

Because the number of possible curves is usually large and grows exponentially
with the length of the curve it is impossible to explicitly build all possible curves and
calculate the FOM for them. However, using dynamic programming, the optimum
can be found for a large class of FOM’s by performing optimisation separately for
each variable on which FOM depends and then “restore” the curve which gives the
maximal FOM [38]. Dynamic programming is based on the principle of optimality:
any optimal subpath of the graph can be part of the global optimal path, while any
suboptimal path cannot. Optimisation using dynamic programming can be shortly
described as follows.

The figure of merit in its general form is a function of N arguments: FOM =
f(x1, x2, ..., xN ), where xi is discrete and 0 ≤ xi ≤ ni, i = 1, ..., N . The task is to
find the maximum value M of the FOM and values of (x1, x2, ..., xN ) for which this
maximum is achieved. If the FOM is a sum of terms, each of which depends on
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only a few variables, then a multistage optimisation procedure can be applied. For
instance, if

FOM(x1, x2, ..., xN ) = f1(x1, x2) + f2(x2, x3) + ... + fN−1(xN−1, xN ), (2.18)

then the following recursion formula can be used:

f∗1 (x1) = 0,

f∗k+1(xk+1) = max
0≤xk≤nk

(fk(xk, xk+1) + f∗k (xk)),

mk+1(xk+1) = arg max
0≤xk≤nk

(fk(xk, xk+1) + f∗k (xk)),

(2.19)

where k = 1, ..., (N − 1) and nk is the maximum value of k-th argument. The
intermediate values f∗k+1(xk+1) and mk+1(xk+1) must be saved in a table with nk+1

entries. Thus for all k, at the end of this phase, N tables have been stored. The
formula

M = max
0≤xN≤nN

f∗N (xN ) (2.20)

is used to find maximum of the whole merit function. The values of (x1, x2, ..., xN )
for which the maximum is achieved are determined by scanning the stored tables
with the following recursion formula:

xN = mN = arg max
xN

f∗N (xN ),

xk = mk+1(xk+1), k = (N − 1), ..., 1.
(2.21)

This process is called multistage optimisation.
In general, the multistage optimisation method can be described as a step-by-step

elimination of all the variables. For example, let

FOM(x1, x2, x3, x4, x5) = f1(x1, x2)+f2(x2, x3)+f3(x3, x4)+f4(x1, x4, x5). (2.22)

Now we eliminate x2 from the merit function. We get:

f5(x1, x3) = max
x2

(f1(x1, x2) + f2(x2, x3)),

FOM(x1, x3, x4, x5) = f5(x1, x3) + f3(x3, x4) + f4(x1, x4, x5).
(2.23)

After the elimination of the variable x2, an optimisation problem of the same type
is obtained. The remaining variables can be eliminated in the same way.

The computational cost of elimination of a variable xi depends substantially on
the number of variables with which xi is nonlinearly related. (For the example above
there are two variables (f5 is a function of two arguments).) Therefore, the order in
which the variables are eliminated is decisive in determining the amount of computing
time and storage required. Thus, a new optimisation problem arises, which is called
the secondary optimisation problem.

As a practical example of the proposed approach Montanari has suggested a FOM
for the optimal detection of low-curvature curves. It is defined as sum of grey levels
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along the curve minus the sum of the curvatures at every point. If pi = (xi, yi) are
the coordinate vectors of the points of the curve, the figure of merit is:

FOM(pi, ..., pN ) =
N∑

i=1

g(pi)−
N−1∑
i=2

cur(pi),

cur(pi) = (d(pi+1, pi)− d(pi, pi−1))mod 8,

(2.24)

with the constraints:

max(|xi+1 − xi|, |yi+1 − yi|) = 1,

cur(pi) ≤ 1,
(2.25)

where g(pi) is the image grey value in the point pi, cur(pi) estimates curvature of the
curve in the neighbourhood of the point pi and d(pi+1, pi) is the direction from point
pi+1 to point pi in terms of 8-membered neighbourhood (an octal number [16]). A
detailed analysis of the application of the proposed FOM with the multistage optimi-
sation technique is given in the same work of Montanari [38]. Recent application of
the dynamic programming for the task of optimal border/curve detection, compari-
son to the graph searching technique and many references can be found in [8, 61].

As pointed out by Martelli [35] the optimisation by dynamic programming is
“blind”, that is, storage and time required do not depend on the curve contrast and
the amount of noise added to the picture. A more reasonable procedure would finish
faster on quality images and require more time on noisy ones. Although it is true
in general, this drawback is not important in the task of crack detection in digital
radiographs as the noise level on radiographs is usually very high (SNR ' 1).

The described approach is usually very effective if starting and ending points of the
path are known and a suitable FOM is available. Unfortunately, the solution of these
questions is not trivial: no systematic approach is available to build a good FOM for
the general case – the solution must be found for each practical application separately
and the usage of a naive intuitive FOM usually leads to unfeasible computational
complexity of optimisation. Therefore and since:

1. the success of optimisation depends largely on application of a suitable FOM
and

2. no application of the dynamic programming for the task of crack detection is
found in the literature,

it will be tried in this work to create the required FOM and apply dynamic pro-
gramming for the solution of the task of detection of crack-like indications in digital
radiographs.

2.3.5 Optimal detection of curves using heuristic search of
optimal path in a weighted graph

Another approach to curve detection which does not require explicit description of
the sought object is based on a representation of the set of all possible curves by a
directed graph [35]. The graph representation is very intuitive and offers a convenient
way to ensure global optimality of the detected curve.
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The structure of the graph is determined by properties, which the indication
must have. If a point is supposed to belong to a crack indication, then all possible
prolongations of the indication can be represented by a directed graph. Nodes of this
graph correspond to image points through which the prolongations go. Arcs connect
each node with the preceding and the subsequent nodes. Each path in the graph
corresponds to a possible indication in the picture and has an associated weight or
cost. A function which estimates the cost of the path incorporates available criteria
of the sought object. A path has low cost if it is likely to be the true indication.
If the cost estimation function is known, then the lowest cost path can be found by
employing the well-known graph searching techniques [41]. Then the task of optimal
curve detection is transformed to the task of finding an optimal path in the graph.

To build such graph practically, a certain spatial object model has to be assumed
and at least the following tasks have to be solved:

1. Selection of the graph starting point.
2. Definition of the indication (path) prolongation rule.
3. Definition of the path termination criteria.

If the tasks listed above are accomplished and a characteristic is found which estimate
“goodness” of the given path in the graph, then the detection task can be converted
to the task of finding the optimal (in the predefined sense) path through the graph.

1. Where to start the graph: It is possible to exhaustively explore each and ev-
ery point of the image by building graphs with roots in these points. Then
X × Y graphs have to be explored (where X and Y are image dimensions).
Alternatively, graphs can be started only from points which meets certain re-
quirements. For example, pixels which exhibit high indication intensity z. This
reduces computational complexity, but requires definition of such selecting cri-
teria and could compromise the quality of the detection (more on this later in
this chapter).

2. How a given indication can be prolongated: The connectivity relationships be-
tween adjacent pixels in an image array and the chosen 2D model of the indi-
cation shape define the graph. Prolongation of the path which correspond to
a node is called opening of the node. The number of possible prolongations of
the path is called branching coefficient. The branching coefficient characterises
how fast the search tree grows and therefore influences the computational com-
plexity of the search.

3. When a path has to be terminated: It is necessary to define the termination of
a path. If this is not done, then the search may become in a general case com-
putationally inefficient (as unnecessary nodes will be opened). For example,
if a graph of known fixed depth has to be explored, then the path terminates
whenever the path length reaches this predefined value. Such length limitation
may appear artificially for the application considered here, therefore the ap-
proach proposed later makes path termination on a basis of estimation of its
goodness.

4. How to estimate path goodness: It is a question about synthesis and calculation
of the path estimation function. Using the right estimation function is essential,
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but often overseen. Beside adequacy to the application problem, it is important
to have the estimation function in such a form which allows effective usage of
the optimised search techniques. This problem is specially addressed in this
work in Chapter 3.

In general a conventional graph searching algorithm can be represented as follows:

1. Let G(N,A) be a directed graph having nodes ni ∈ N and arcs a(ni, nj) ∈ A.
If an arc is directed from a node ni to a node nj , then the node nj is called
successor of the node ni, and the node ni is called parent of the node nj . A
cost c(ni, nj) is attached to every arc a(ni, nj). A sequence of nodes n1, n2, ...,
nk with each node nj is a successor of nj−1 is called path from node n1 to node
nk. The value

C =
k∑

j=2

c(nj−1, nj) (2.26)

is its cost. In a general case graph can have several starting nodes and several
goal nodes. Goal nodes can be defined explicitly or implicitly, i.e. any node can
become goal if some conditions hold. Start nodes must be defined explicitly.

2. Select a start node n1 and mark it as active. Selection of the start node is made
by an external algorithm.

3. Calculate successors of the active node. This process is called opening of the
node. Pointers are set up from each successor back to its parent node.

4. Check the successor nodes to see if they are goal nodes. If a goal node has been
found, the pointers are tracked back to the start node to produce a solution
path and algorithm terminates. Otherwise (if a goal node has not been found),
the opening process continues.

5. In a general case a parent node has more than one successor. Therefore, in
each iteration there are more than one node been yet not opened. Select one
of the not-yet-opened nodes and mark it as active. Go to step 3. The node
which will be marked as active (and the order in which nodes will be opened)
is determined by the used search algorithm and can differ from algorithm to
algorithm.

Although all possible prolongations of an indication form a directed graph, all
possible paths in this graph form a tree. So far the path goodness is a general function
of all points through which the path goes, the search must be performed on the tree
rather the graph. An example of such a tree is shown on Fig. 2.7. Nodes of this
tree do not correspond to the image points any longer. Instead, the nodes represent
different paths through the tree from the start point to the current one.

The number of possible paths grows exponentially with the length of the paths. A
1 cm long indication corresponds on an image with 50 µm pixel size to a curve of the
length of 200 pixels. This means that search tree depth is 200 stages. For the branch-
ing coefficient 3 the number of all possible paths is in the order of 3200 ' 2.7E95. This
is only for the 1 cm long indication. Thus it becomes clear that exhaustive search
of crack indication is practically impossible, but employing of heuristic information
about the sought object can accelerate the search.
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Figure 2.7: Indication prolongations as a search tree. Ovals represent points in the
image array. Small black circles denote tree nodes which correspond to the different
paths through the image array from the start point to the current one.

Application of A∗ algorithm

The problem of finding the optimal path through the graph was widely explored in the
game theory [41]. Due to the inapplicability of the exhaustive enumeration approach
in this field, several optimised search strategies have been proposed. The optimised
search provides a possibility to find an optimal path by building and exploring only
a part of the search tree, thus reducing the computational complexity of algorithm.
The goal nodes can be defined explicitly (goal image points enumerated) as well as
implicitly. For example, if the optimal path with fixed length N has to be found,
then goal nodes are all nodes which are N steps apart from the beginning node.

The idea of optimised search (some times also called “ordered search”) is as fol-
lows: on each step of the algorithm the node with the best value of the estimation
function is opened (i.e. a “best first search”). Thus paths laying near the optimal
path grow faster than paths laying far from the optimal one. Due to this, only a
small fraction of the whole tree is build before the goal is reached. The meaning of
the phrase “best value of estimation function” depends on the goal of optimisation:
either minimisation or maximisation of the estimation function.

Opening of the node with the most promising perspective on each step requires
additional computational expenses on the searching of the node with the best value
of estimation function. But usually these expenses are a fair trade off for the benefit
of not opening the less perspective nodes. Thus the goal node can be reached faster.

The classic example of the optimised search is finding the minimal cost path
through a graph, where cost of the path is the sum of costs of each step [41, 35,
36, 20]. The step costs are implicitly assumed to be positive, thus the sum grows
monotonically. As the optimised search is also applicable for more general estimation
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functions, it is worth to stress here explicitly: the ordered search ensures optimality
of the solution only if the path goodness estimation is a monotonous function of the
path length and changes in the opposite direction than the goal of optimisation. I.e. if
the estimation function monotonically grows, then the minimum can be found using
ordered search. And in opposite: if the estimation function decreases, then only the
maximum can be found by this method.

The most known and widely used ordered search algorithms are Dijkstra and
Moore algorithms generalised by Nilson in its A∗ algorithm [41]. The A∗ algorithm
makes use of lists for storage of tree nodes. Each node has a pointer which points
to the parent of the node (for start node this pointer is set to null). The node n
selected for opening on each step is chosen according to the cost estimation function
c(n), which is an estimate of the cost of the best path from the start node s to an
end node e constrained to go through n. The A∗ algorithm needs a cost estimation
function c(n) to be constructed in the following way:

c(n) = f(n) + e(n), (2.27)

where n is a node of the graph, c(n) estimates cost of a minimal cost path from the
starting to a goal node going through the node n, f(n) is the cost of the lowest cost
path from the start node to n found so far, e(n) is a heuristic estimation of the cost
from n to a goal node. In general, it is not guaranteed, that the A∗ algorithm finds
the minimum-cost path – its advantage is speed due to the use of heuristics. However,
if the search task consists in the minimisation of c(n) and e(n) is a lower bound on
the cost of the minimal-cost path from the node n to a goal node, the procedure
yields the optimal path to the goal. e(n) can be set to zero if no better estimate
is available: e ≡ 0. Then the procedure reduces to the uniform-cost algorithm of
Dijkstra [41].

The A∗ algorithm can be represented as follows:

1. Put the start node s in the list called Open and calculate the path estimation
function c(s).

2. If Open list is empty, then the algorithm ends without finding any solution.
Otherwise, continue.

3. Select from Open a node n which has the lowest value of c(n) and transfer it
to the list called Closed. If there are several nodes which has the same c, then
n is selected randomly among them, but always preferring goal nodes.

4. If n is a goal node, then the algorithm ends successfully and the optimal path
can found by recursively tracing back pointers to the parent nodes. Otherwise,
continue.

5. Open node n, by building all possible successors. If there are no successors,
then go directly to Step2. Otherwise, for each of the newly created nodes:
calculate c, direct pointer to its parent node n and add the newly created node
to Open list.

6. Go to Step2.

In the A∗ algorithm the selection of a node with the best c(n) from Open list can
be done in two ways. Either the Open list is kept unsorted and the search of the
best node is performed each time a node has to be opened or Open list is maintained
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sorted and the best node is simply the first or the last node in the list. To maintain a
sorted Open list the newly created nodes have to be inserted to the list with respect
to the sort criterion. Both approaches have their advantages and disadvantages.
For example, inserting a node to a sorted list with length N without violating the
sort order requires at maximum log2(N) comparisons and is less computationally
expensive than searching for the best node in an unsorted list which always needs
N comparisons. But if the branching coefficient if big, then much more new nodes
have to be inserted to the Open list than nodes which are taken from it. As far as
the optimal path can be found without opening of all nodes from the Open list, the
maintaining of the sorted list can be more computationally expensive than searching
for the best node in the unsorted list each time when the best node has to be selected.

When the optimum path is clearly distinguished from any of the alternatives,
A∗ is very efficient and can have computational requirements proportional to the
number of nodes in the optimal path. However for real images (and especially for
the noisy images considered in this work) the number of alternatives which must be
examined grows very quickly and the A∗ algorithm has to open more nodes than it
is acceptable in practice. I.e. the application of A∗ algorithm for solution of such
large scale problems as crack detection on hight resolution images is unfeasible as
seen from the computational standpoint.

Application of heuristic search

Additional heuristics can be applied to reduce the search space. This is possible
only at the expense of refusal of the guarantee that the optimal path will be found.
The most frequently used heuristics are staged search, limitation of successors and
tweaking of cost estimations e(n) and f(n) [41].

Staged search If a staged search is performed, the tree (so far generated by the
search) is truncated according to some rule. Truncation can be performed in regular
time intervals, when the available memory is exhausted or when some other conditions
have fulfilled. Truncation usually consists in removing of the non-perspective (in the
predefined sense) nodes from the Open list.

On early stages of this research the A∗ algorithm was implemented in combination
with the staged search approach. One difficulty was noticed which is not mentioned in
the literature. Truncating the Open list results only in a reduction of number of nodes
to be opened, while the Closed list continues to grow quite fast. An additional effort
is necessary to remove from Closed list those nodes which belong to the discarded
paths. For this purpose each node has to maintain a list of its successors (children).
Then, if some node is removed from Open list, it has to be synchronously removed
from the list of successors of its parent. The parent node (which is already in Closed
list) can be removed only if its list of successors is empty. The same procedure must
be performed for the parents of all nodes which are about to be removed. Such
procedure is necessary to ensure that any of the removed nodes does not lie on the
optimal path. It costs the increased average complexity of opening a node and the
increased space necessary to store the node. Overall the efficiency of the staged
search becomes much lower as it could be expected from the first description of this
approach.
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Limitation of successors Another widely used heuristic is the limitation of num-
ber of successors of each node. In other words, it is the reduction of branching
coefficient. Usually the limitation of number of successors to a very low value is re-
quired to be effective. One example is the exploration of only two most perspective of
many possible prolongations of the path. This works some times for low noise levels
and when an absolute optimality of the search result is not required. But in the case
explored in this work, i.e. when noise level is high, such approach can obviously lead
to the missing of the optimal path and therefore can not be used.

Heuristics on e(n) As mentioned above, to ensure that the optimal solution will
be found by the A∗ algorithm, e(n) (the estimate of the path from the current node
to a goal node) has to be a lower bound on the true best path from the current node
to a goal node [41]. To guarantee the optimal solution, e(n) can be set to zero if
no better estimation is available. Choosing e(n) as close as possible to the allowed
lower bound leads to the search which found yet optimal solution while opening the
minimal number of nodes.

The usage of e(n) which is not the lower bound of the estimate of true best
path may lead to a suboptimal solution, but often allows to speed up the search
significantly. This speed up is a result of the more directed search caused by the more
significant contribution of the prognosis function e(n) into overall estimation c(n) and
therefore increased importance of the closeness to a goal node in comparison to the
optimality of the already found path. The amount of this contribution is also called
heuristic power of e(n). The heuristic power of e(n) (and therefore the straightening
of the search tree) and can be adjusted simply by multiplying e(n) with a coefficient
> 1.

Heuristics on f(n) There are several heuristics which allow to influence the esti-
mation of goodness of the solution path. This is done by respective modifications of
the estimation function f(n):

• Adding a positive constant to the cost of each step (adding a new node to
the path) tends to smooth and straighten the path (for tasks of finding the
minimal cost path). This is because as the cost of each step increases, the
length of the path becomes relatively more important in comparison to the
local image properties which are estimated by the local operator [20].

• Raising the cost of the node to a power greater than unity introduces an inhi-
bition against going through a point having a low probability of belonging to
a crack indication [20, 46].

• Taking the logarithm (and inverting the sign of the result) or raising the cost
to a power lower than unity reduces, on opposite, the sensitivity to points with
low probability of belonging to a crack indication [46].

• Weighting the different components of the estimation function with different
coefficients enhances or suppresses the contribution of the respective path fea-
tures.

Application of any of these (or several at a time) heuristics may lead to an improve-
ment of separation of the optimal path from the set of other (suboptimal) paths.
This straightens the search tree and thus reduces the search complexity. But it may
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lead to a missing of the optimal path by following the wrong one – finally these are
heuristics only.

History of application of the heuristic search in a weighted graph for the
detection of curves To the author’s knowledge, Martelli [35] has pioneered the
idea to represent the task of optimal curve detection by finding the optimal path in
a graph. The A∗ algorithm was used.

Several years later Martelli has examined relations between heuristic graph search
and dynamic programming approaches [36]. He stated that the multistage optimisa-
tion process can be considered, in terms of graph search, as a breadth-first method,
i.e. a method, which will open first all nodes on the first level, then on second level,
and so on. While using dynamic programming an algorithm has to open all nodes of
the search graph. A∗ algorithm may open only a small subset of nodes, if heuristic
information is available from the application field. This can lead to substantial re-
duction of computing time. Furthermore, in many applications finding the optimal
solution is not a matter of concern, a “good” solution will satisfy. In this case, more
powerful heuristics can be used, thus obtaining a more efficient search of the graph.
This allows (according to Martelli) to increase the complexity of the c(n) without
substantially affecting the complexity of the search process, thus allowing the terms
c(n) to take into account more complex properties of edges such as their curvature.

While search algorithms are generally problem independent, good investigated
and theoretically well established [41], the construction of a cost estimation function
depends on the particular application and is generally very heuristic. For the purpose
of edge detection Martelli has proposed [35, 36] to consider boundaries between image
pixels as graph’s arcs (edge elements) and the arc cost is defined as:

ci = M −Di + c′i, (2.28)

where Di is the magnitude of the difference between the grey levels of two adjacent
points which build the boundary, M is the maximum possible Di, c′i a term which
express the edge smoothness. The cost of the full path is defined as sum of costs of
all path’s elements. The smoothness is taken into account by assigning a cost to the
curvature of the contour: 8 consecutive edge elements are considered, the tail of the
first element is connected to the head of the fourth element with a straight line and
the tail of the fifth element to the head of the eighth element with another straight
line. The angle α between this two lines is measured and the curvature is considered
to be proportional to this angle

c′i = kα. (2.29)

Using the cost estimation proposed by Martelli, nodes on low levels of the search
graph will have usually a lower cost than nodes on high levels, because nodes on low
levels correspond to shorter edges. If the graph is searched using the A∗ algorithm ,
all nodes whose cost is smaller than the cost of the minimal solution will be opened
and these nodes will be mainly on the first levels of the graph. To speed up the search
Martelli proposes two heuristic approaches [36] (but they do not longer guarantee
the optimal solution):

• if the opened node n1 of cost c1 corresponds to an edge of length l1 and there
is a node n2 not yet opened of cost c2 > c1 corresponding to an edge of length
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l2 < l1, and if l2 ≤ (l1 − t), where t is a given threshold, then n2 is discarded
(will be never opened).

• for each node to be opened a mean cost of the optimal path to this node is
computed – if the mean cost is higher than a given threshold, the node is not
opened.

The second heuristic also acts as a sensitivity control of the the algorithm: if there
is no contour, the relative cost of the nodes will be higher than the threshold and
eventually the list of the nodes to be opened will be empty - so the algorithm will
stop without reaching any goal node.

Fischler, Tenenbaum and Wolf [20] propose further improvements to the scheme
described above:

• Different types of operators for the detection of local contour elements can
be used simultaneously: operators with good classification ability provide a
framework which gets filled in by information supplied by operators which
contribute precise local feature characterisation.

• Using a priori knowledge: adding a constant bias b to each cost value c(ni, nj)
in (2.26) tends to smooth and straighten the path. This is because the length of
the path gains importance as compared to the value returned by a local operator
with increasing bias. Similarly, raising each cost to a power a introduces a very
strong inhibition against going through a point which has a low likelihood of
being a part of the contour.

Sankar and Sklansky [59] have proposed to use a priori information about the
contour to build an approximated plan of the boundary. The heuristic search algo-
rithm shall follow the plan when very little edge information is present, but tends to
ignore this plan when a great amount of edge information is available. A correspond-
ing heuristic cost estimation function was proposed for detection of lung nodules in
medical radiographs.

Mérő [37] has proposed to organise the search in the following way. First, points
which are centres of possible path bifurcations are detected by a simple criterion.
Second, the algorithm creates a sort of potential field around the bifurcation points.
The midpoints of the desired paths are found where two potential values originated
from different bifurcations are adjacent and their sum attains a local minimum. The
paths can be determined by tracing back the growth of the potential field from the
midpoints.

Dobie and Lewis [13] propose a special graph representation for the specific prob-
lem of searching minimum cost paths in images. In a general formulation of search
for the minimum cost path, the graph’s nodes are arranged in ordered or non-ordered
lists and links between parent and children nodes are installed explicitly. Updating of
cost requires a search of the corresponding node in the lists or each node has to store
a list of references to all its parents and children. If each graph node corresponds
to a point in the image and the image itself is represented as a grid of points, it is
proposed to represent the graph as the grid too. The links between nodes are not
stored explicitly but are implicit in the locations of nodes within the grid. A queue of
coordinates of nodes to be opened is maintained in parallel. Besides path information
each node keeps flag which indicates if the node is currently in the queue.
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Summary on heuristic search in a weighted graph Dijkstra’s algorithm and
ideas described here regarding acceleration of graph search were implemented (with
minor variations from original descriptions) by the author on early stages of this
research. The gained experience (which is not detailed in this work but can be found
in [2, 45]) has led to the refuse from the heuristic search (but not from the graph
theoretic methods in general). This is due to the following:

1. heuristic search could be unstable, i.e. minor variations in the source data can
cause completely different solution found by the algorithm;

2. heuristics are usually very problem orientated and can not be reused for another
(even similar) tasks;

3. all of the heuristic methods gain search acceleration at the cost of the cancel-
lation of guarantee of the optimal solution;

4. the deviation of the solution found with use of heuristics from the really optimal
solution remains unknown and can not be controlled.

2.3.6 Template matching

More recently, the dynamic programming and heuristic graph search cost minimi-
sation approaches to curve detection have been reworked in the idea of snakes [30],
which find a local solution to the minimum cost path problem given an initial path
by the user. Snake-type approaches appear in the literature under different names
which include: deformable contours, active contours, dynamic contours and finally
deformable templates [33, 53]. The term “template” will be used in this work. Tem-
plate matching (rather than object tracing) allows to reduce computational complex-
ity of the detection algorithm (in comparison to dynamic programming and graph
theoretic optimisation approaches) and becomes especially effective when the objects
to be detected are heavily occluded by noise, but sufficient prior knowledge of the
object geometry is available.

In the original version [30], deformable templates operate by minimising an en-
ergy function composed of an internal elastic-type term and an external attraction
potential. The internal elastic-type term increases with the contour deformations.
The external attraction potential links the contour with the image. The aim is to
reach a compromise between contour smoothness and an adequate fit to the observed
data. If the resulting local minimum does not correspond to the south object, ad-
ditional terms can be added interactively to the cost function to force the template
toward the correct position.

From the point of view of Bayesian estimation, deformable templates are in-
terpretable as maximum a posteriori estimators [19]. The internal energy and the
external potential terms are associated with the a priori probability function and
the likelihood function, respectively. The Bayesian estimation perspective has the
advantage of giving sense to all of the involved entities.

Despite recent improvements and modifications which allow to overcome limi-
tations of the traditional model such as sensitivity to initialisation and inability to
parametrise itself during the deformation process (see [33, 53] and references therein),
the existence of an explicit object template remains essential. It is different to se-
rial optimisation techniques, such as graph theoretic and dynamic programming ap-
proaches. For them the object model can be defined by means of set of rules, i.e.

43



Chapter 2. Overview of conventional approaches to object detection

implicitly. Such an implicit model is much simpler to realise for irregular objects
like crack indications. Thus the graph theoretic and the dynamic programming ap-
proaches are preferred to the template matching in this work.

2.4 Summary

An overview of the conventional approaches to border and curve detection is given
in this section. No algorithm designed for general purpose segmentation and for
border detection particularly is found suitable for the detection of crack-like flaws in
NDT radiographs. However, the concept of evaluation of local discontinuities and
searching for groups of such local indications which can form an object of “macro”
size (in limits of the object’s model) will be used further in the next chapter.

The grouping stage of such an approach has to have a global character, i.e. the
segmentation decision has to be made at the very end of the grouping process. This
is due to the low signal to noise ratio of sought objects. On the other side, the
algorithms which require explicit object description (such as Hough Transform and
template matching) are generally of very limited applicability here, because it is
difficult to create such explicit description for crack-like objects. This suggests the
usage of dynamic programming optimisation and graph theoretic approaches. Both
of them also have some problems, and appropriate solutions can not be found in the
literature. The core problems to be solved here are the construction of a suitable cost
estimation function (figure of merit) and the reduction of computational complexity
of the search.

Since the segmentation decision has to be made at the end of the grouping process,
no segmentation is required in the local operator domain. The local operator should
calculate the likelihood of presence of an elementary crack indication in the local
area, instead of performing a segmentation. This prevents information losses on this
early stage of detection due to the too early segmentation.

Design of this local operator, the global grouping technique, the cost estimation
function and description of whole algorithm of detection of crack-like indications on
NDT radiographs will be done in the next chapter.

44 BAM-Dissertationsreihe



Chapter 3. Detection of crack-like indications

Chapter 3

Detection of crack-like
indications by global
optimisation of a probabilistic
estimation function

As it is shown in the previous chapter, the detection of local discontinuities fol-
lowed by a grouping algorithm is a rather common approach to border detection
in noisy images. Such a processing schema is generally adopted for this work too.
However, the evaluation of local discontinuities and grouping them into macro ob-
jects are considered not as two serial steps of detection, rather as two logical layers.
The developed local operator does not detect a discontinuity (e.g. generate the two
responses “present” or “absent”), but calculates the likelihood of presence of a dis-
continuity of a given type. Such an operator provides an abstraction of the physical
image to the grouping algorithm and prevents information loss, which may occur in
the case of local detectors. The development of this local operator, which is suited
preferentially for the task of crack-like defect detection, is described in this chapter.

The likelihood of local indications resulting from the local operator serves as an
input for the grouping part of the developed algorithm. The idea behind this is
conventional: a global (or integral) feature calculated on a set of consecutive points
along the full indication length will be less influenced by the noise than a single local
estimation. This allows more accurate detection of the indications with low SNR.

Such a global object feature is called here the estimation function and is con-
structed in such a way, that it reflects the probability of presence of a crack indication
along the involved pixels. Arguments of the estimation function are coordinates of
the involved image points over which it is calculated. These coordinates are unknown
and have to be found. Therefore the task of indication detection is reformulated as a
task of finding a set of image coordinates, which maximises the estimation function
over all possible positions, shapes and lengths of the indication.

In a general case the computational complexity of such search is enormously high
for any practical application. In the presented work the problem of excessive compu-
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tational complexity is solved by design of the special object estimation function. The
proposed estimation function is constructed as the sum of a posteriori information
gains in each point along the indication. This allows to find the optimum of the
estimation function in a sequential way using serial dynamic programming and to
avoid the problem of excessive computational complexity.

The crack detection algorithm developed in this work and described in this chapter
is therefore characterised by the following key features:

• the elementary discontinuities are evaluated using a local operator which cal-
culates the likelihood of presence of an indication of the given intensity in the
given image point instead of a single yes/no-decision;

• a piecewise linear background model and uncorrelated zero-mean Gaussian
noise model are assumed;

• crack indications are recognised by only the two most important features: the
rapid stepwise change of the intensity in one direction and the elongated shape
of discontinuity in the orthogonal direction;

• the Bayesian model [62] is used for calculating the probability of indication
presence;

• the original task of detection of crack indications is posed as a task of maximi-
sation of an informative integral feature of the crack indication (the estimation
function) over all possible positions, shapes and lengths of the indication;

• as such an integral feature (estimation function) the sum of the a posteriori
information gains in all points along the indication is introduced;

• serial dynamic programming is used for the maximisation of the designed es-
timation function; this can be done within a reasonable and a priori known
computing time and without application of any heuristics (i.e. exactly).

In that follows the developed algorithm is described in details.

3.1 Image model in the local area

The definition of an image model is an essential step in the process of developing
an optimal local operator. Several aspects are to be considered here: models of the
image background intensity and of the indication intensity in the direction orthogonal
to the crack direction, the shape of a crack indication in the image plane and a model
of the noise added to the image.

3.1.1 Background model

There are not only crack indications depicted on the real radiograph – indications of
other defect types and images of other objects such as lead marks, wire type image
quality indicators (IQI), etc. may be present too. In this work indications of such
objects are not treated separately and are not included in the image model at all.
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They will be classified depending on their appearance on the radiograph as crack-
like indications (i.e. false detections will occur) or as a background with additional
noise. There are two reasons for such a decision: a) the detection/recognition of
other defect types (i.e. porosity, slag inclusion, root undercut, etc.) is a subject of its
own and is out of scope of this work; b) the objects like lead marks or image quality
indicators are placed at different locations than the flaw suspected areas, so with a
correct interpretation of results no confusion between flaws and IQIs or lead marks
should occur.

The background intensity changes are mainly determined by the geometry of the
setup and the test specimen. For the pipe inspection a common setup consists of
a radiation source and a detector which are located outside of the test object and
on different sides of it. In this setup effective attenuation of radiation rays which
pass through the centre of the pipe perpendicular to the pipe wall is the lowest.
The path through the material and therefore attenuation is much bigger for the rays
which penetrate pipe walls with angles apart from 90 degree. This results in a high
dynamic range of the film radiographs: very dark and very bright background areas
can be present within the same image. However these intensity changes are usually
gradual and rarely abrupt. This allows an approximation of the background intensity
in a local restricted area by a linear model.

3.1.2 Model for indication intensity

The intensity plot of a real crack indication perpendicular to crack propagation is
shown in Fig. 3.1.d. Such plots are commonly called profiles. The crack indication
and the linear trend of the background intensity are good visible in Fig. 3.1.d. The
crack indication reveals itself as a trough in the background. This intensity change
is of small spatial dimension due to the narrow width of the crack imaged on the
radiograph under optimal radiography conditions. An ideal indication is shown in
Fig. 3.1.b. It corresponds to an ideal regularly shaped 3D crack (Fig. 3.1.a) radio-
graphed in the direction parallel to its propagation in the test specimen. Such a
direction of projection is considered to be optimal. If the radiograph is done in a
different direction which differs from the optimal, the indication will have reduced
contrast (depth of the trough) and a broader width as it is shown on Fig. 3.1.c. Real
cracks are not ideal objects of a regular shape. Radiographic conditions vary. So
indications may appear on the radiograph very differently. Image unsharpness, as a
result of the central projection (see Fig. 1.3), and scattering effects considerably add
to the resulting indication. As a consequence it is unrealistic to use the shape of a
given profile as an informative feature. Therefore in this work only the estimated
indication intensity z is taken into account. The indication intensity is defined as the
difference between the indication grey value calculated on the image area of width
w (indication width) and the background grey value estimation calculated on the
surrounding of the crack indication, as it is shown in Fig. 3.1.e.

3.1.3 Indication shape in the image plane

Due to the different shape of cracks in individual specimens and varied projection
conditions, it is not possible to assume a deterministic model for the global shape of
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Figure 3.1: a) An ideal regularly shaped crack-like object radiographed in two direc-
tions. b-e) Intensity plots (profiles) of crack indications in the direction orthogonal
to the crack direction: b) an ideal indication of the ideal crack-like object; c) an ideal
indication of the ideal crack-like object under suboptimal radiographic conditions;
d) a real crack indication with high SNR; e) estimation of the intensity z of the
indication of width w according to the assumed model.
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a crack indication in the image plane. It is also not necessary, while only a restricted
local area is used for the estimation of elementary indications. Therefore the following
assumption is enough for the estimation of elementary indications: in a local area
the crack indication can be approximated by a straight line.

3.1.4 Noise model

There are several sources of noise which contribute to the digital radiographic image:
test specimen irregularities, radiation quantum noise, film granularity (in case of a
film based system) and electronic noise of the detector or noise of a film scanner.
These noise sources are inevitably present in any radiography system.

The electronic noise is a result of thermoelectric fluctuations in electronic com-
ponents of the analog part of the detector. In an appropriately built system, and for
the typical exposure times or film densities, the electronic noise can be neglected as
compared to the radiation quantum noise.

Quantum noise is a result of the dual nature of radiation. At the energies used
for radiography the corpuscular character becomes relevant and the radiation beam
shall be considered as a stream of discrete photons. The amount of photons ni which
is emitted by the radiation source or hits a given area of the detector over a given
period of time is random and can be described by the Poisson probability distribution
[21]:

P (ni) =
λni

i

ni!
e−λi , (3.1)

where λi is the mathematical expectation of ni. The detector itself does not register
all incident photons: each photon can be detected with a certain probability pd,
which describes the detector efficiency, or missed with probability (1-pd). For the
solid state detectors as far as for the film based systems without reciprocity failure,
the detections of photons are independent from each other. Therefore the number of
detected photons n can be described by the binomial distribution [4]:

P (n|ni) = Cn
ni

pn
d (1− pd)(ni−n). (3.2)

Then:

P (n) =
∞∑

ni=0

P (n|ni)P (ni) =
(pdλi)n

n!
e−pdλi . (3.3)

In other words P (n) is simply Poisson distribution with λ = pdλi. For large λ, the
Poisson distribution statistically approaches the normal distribution. These statis-
tical properties of quantum noise are related to the temporal domain. To be useful
for the image analysis, an additional assumption about process ergodicity has to
be made. This means that statistical properties of noise in the spatial domain are
assumed equal to the statistical properties in the temporal domain.

For the film-based systems the film graininess has to be considered. Film grain-
iness is a result of the finite size of the silver halide crystals (grains), which form
latent image on the radiographic film. Contribution of the film graininess to the
overall system noise becomes significant if the film scanning aperture is of compa-
rable size as of the grains, i.e. by scanning with a very high resolution [4]. Such
high resolution scans are not used in industrial radiography because the resolution
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is limited in practice by the inherent unsharpness of the radiographic system (see
Fig. 1.3). Due to this fact the film graininess noise can be ignored.

The inherent unsharpness of the radiographic system (see Fig. 1.3) and the scat-
tering of the radiation in the test specimen will cause that each point of the detector
will be affected by some part of the specimen volume (not by an abstract line as it is
usually shown on illustrations). Although there is no possibility to make any prac-
tical assumptions about irregularities in the test specimen or surface imperfections,
the influences from all imperfection from a certain volume (due to the considerations
above) will be summed on the detector surface.

Scattering effects in the image detector have an additional impact on the resulting
average signal intensity and the noise component. The resulting image will be a
convolution of the image on the input of the detector and the modulation transfer
function (MTF) of the detector, i.e. signal from every element of the detector will
be a weighted sum of incident radiation intensities over some neighbourhood. This
results in some correlation between neighbour pixels. As this correlation is usually
minor, it is not included in the noise model used here.

The considerations given above allow the assumption of Gaussian zero-mean dis-
tribution of the noise in the radiographic image.

3.2 Probability of indication presence

Given the image model, it is possible to calculate for each image point (x, y) and
given indication width wind the estimated indication intensity z(x, y). The certain
values of z(x, y) in different image points are instantiation of a random variable Z.
Z is a sample from population of estimated object intensities. Z is a random due to
the noise, added to the image:

Z = h + ν, (3.4)

where ν is the random noise component (Gaussian zero-mean) and h is the true
indication intensity. Under the true indication intensity h the defect intensity is
meant which is calculated according to the assumed image model in the idealised
case of absence of the noise.

For an ideal system without noise (ν = 0), the estimation of indication intensity
z(x, y) is sufficient, since it already equals to h(x, y). But for a system with noise the
estimation of z(x, y) alone is not enough to describe a discontinuity since indications
of different intensities h may result in the same estimation z due to the noise fluctua-
tions. And vice verse: different h may be estimated as the same z. In such non-ideal
system the most complete but yet not excessive information about discontinuity is
given by the probability distribution of presence of the sought discontinuity with in-
tensity h given the estimation z(x, y). This probability distribution is characterised
by its density function ρ(h|Z = z(x, y)). Or shortly: ρ(h|z).

From the Bayesian point of view ρ(h|z) is the a posteriori distribution because
it has to be calculated for known z(x, y). The composite probability formula can be
used for the calculation of ρ(h|z):

ρ(z)ρ(h|z) = ρ(h)ρ(z|h) ⇒ ρ(h|z) =
ρ(h)ρ(z|h)

ρ(z)
, (3.5)
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where: ρ(z) is density of the a priori probability distribution that the estimated
indication intensity Z takes the value z; ρ(h) is density of the a priori probability
of occurrence of a crack indication with an intensity h; and ρ(z|h) is density the a
priori probability that Z takes the value z with the condition of a true indication
presence with intensity h.

The term ρ(z|h) of (3.5) is also called likelihood of presence of indication h and
denoted as Lz(h) = ρ(z|h). The difference between the notations ρ(z|h) and Lz(h)
is that the former looks like a function of z for a given h and has to be considered
as a priori probability. But in reality z can be estimated from the image and the
dependence of ρ from h is of primary interest. This leads to necessity of consideration
of ρ(z|h) as a posteriori probability distribution. Therefore the second notion is more
intuitive since Lz(h) is explicitly written as a function of h. The likelihood of presence
of the crack indication Lz(h) in a given image point (x, y) can be calculated from
the image using the assumed image model without any additional assumptions or
simplifications.

For calculation of ρ(h|z) a knowledge of the a priori probability distribution ρ(h)
is essential. The difficulty consists in the usually unknown ρ(h) in practice and the
impossibility of its estimation from the image under consideration. In the case of
unknown ρ(h) the making of certain assumptions becomes inevitable. Such assump-
tions about density of the a priori probability distribution of indication intensity
ρ(h) is made in this work too (see later in Section 3.5). The assumptions made here
are not hard-coded in the algorithm, instead of this the end-user has the possibility
to adjust them to fit the particular application best.

3.2.1 Likelihood of indication presence

We denote the image data in the local neighbourhood of the running point (x, y) as
{g(x, y)}. The estimation of indication intensity z(x, y) can be calculated accord-
ing to our image model as a function of the local image data {g(x, y)}: z(x, y) =
f({g(x, y)}). Denoting the estimation of the mean square deviation of the image
noise by σ, the likelihood of presence of the crack indication of intensity h can be
written a function of z, σ and h:

Lz(h) = ρ(z|h) = f(z, σ, h) = f({g(x, y)}, σ, h). (3.6)

Let us consider a profile of an indication of width wind located on a changing
background (Fig. 3.2). According to the used image model the background can be
represented by a straight line:

gbkg(i) = a + k(i− x), (3.7)

where gbkg is the estimated intensity of the background, a and k are parameters of
the linear model and x is the coordinate of the indication centre (Fig. 3.2).

The parameters of the background model can be estimated by minimising the
sum of squared differences between the calculated background intensity gbkg(i) and
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Figure 3.2: Estimation of intensity of a crack indication.

real pixel intensity g(i) (least square method):

(a, k) = arg min
(a,k)

ε, (3.8)

ε =
∑

i

(g(i)− gbkg(i))2 =
∑

i

(g(i)− a− k(i− x))2. (3.9)

Two areas are used for background estimation, each of width wbkg/2, symmetrically
located on different sides of the crack indication:

i ∈ [x− wind

2
− wbkg

2
, x− wind

2
] ∪ [x +

wind

2
, x +

wind

2
+

wbkg

2
]. (3.10)

The criterion ε reaches its extremum at the point where its partial derivatives
simultaneously become zero:

∂ε

∂a
= 0,

∂ε

∂k
= 0, (3.11)

After solving for a:

a =
∑

i g(i)− k
∑

i (i− x)
wbkg

. (3.12)

The term
∑

i (i− x) identically equals zero because of the symmetry (around x) of
the interval on which gbkg is considered. Therefore:

a =
1

wbkg

∑
i

g(i). (3.13)
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To calculate the intensity of the crack indication it is necessary to know the
background intensity in the centre point x only:

gbkg(x) = a + k(x− x) =
1

wbkg

∑
i

g(i). (3.14)

As gbkg(x) is defined solely by a, the estimation of the parameter k can be omitted.
Since the background estimation gbkg(x) is a sum of wbkg normally distributed

random values, it will be normally distributed too. The mean square deviation of
gbkg(x) will be √wbkg times smaller than mean square deviation of noise added to
each image pixel:

σbkg =
σ

√
wbkg

. (3.15)

The same considerations are valid for the estimation of the indication grey value
and the result is as follows:

gind(x) =

∑
j g(j)

wind
, j ∈ [x− wind

2
, x +

wind

2
], (3.16)

σind =
σ

√
wind

. (3.17)

The estimation of the indication intensity z is the difference between the back-
ground grey value and the indication grey value:

z(x) = gbkg(x)− gind(x) =
∑

i g(i)
wbkg

−
∑

j g(j)
wind

,

i ∈ [x− wind

2
− wbkg

2
, x− wind

2
] ∪ [x +

wind

2
, x +

wind

2
+

wbkg

2
],

j ∈ [x− wind

2
, x +

wind

2
].

(3.18)

And:

σz =

√(
σ

√
wbkg

)2

+
(

σ
√

wind

)2

= σ

√
wbkg + wind

wbkgwind
. (3.19)

Since the presence of a real indication of intensity h in the point x is assumed,
the case that z(x) 6= h is only a result of added noise which causes an inaccuracy
of estimation. But the mathematical expectation M(Z) equals h because of the
zero-mean noise model. That means:

Z ∼ N(z;h, σz), (3.20)

where N(z;h, σz) denotes the Gaussian distribution of argument z with mean h and
standard deviation σz. Therefore the sought ρ(z|h) is just the density of probability
that a normally distributed Z possesses value z:

Lz(h) = ρ(z|h) =
1√

2πσz

e
− (h−z)2

2σz2 . (3.21)

Expression (3.21) shows the necessity and importance of a correct estimation of
σz and h. For example, two likelihoods Lz(0) = ρ(z|0) (likelihood of “no indication”)

53



Chapter 3. Detection of crack-like indications

and Lz(h′) = ρ(z|h′) (likelihood of indication with intensity h′) have to be computed
and compared. Overestimation of σz tends to diminish the difference between Lz(0)
and Lz(h′) and both likelihoods are lowered in comparison to the correct values.
This can be explained as follows: if the estimation of noise level is very high, then
any closeness of estimation of the crack intensity z to 0 or h′ can be considered
as random and the respective likelihoods are low. Underestimation of σz will, on
opposite, amplify the difference between the estimated likelihoods since any closeness
to 0 or h′ must be considered as appropriate.

The correct estimation of h′ is even more important since the sign in comparison
Lz(0) ≶ Lz(h′) is defined by the sign in comparison |z − 0| ≶ |z − h′|. For the same
estimation z and the noise level σz the Lz(0) or the Lz(h′) can become bigger or lower
depending of the intensity of the expected indication h′. For example, let us consider
z = 3σz (SNR = 3). For h = 0 (“no indication” hypothesis), the probability that z
takes a value outside the interval (∞, 3σz) can be estimated applying for normally
distributed Z the rule of “three sigma”:

P (z>3σz | h=0) = 1−P (z≤3σz | h=0) ≈ 0.0014. (3.22)

This is a rather low value, so, without taking into account h′, the presence of an
indication can be assumed. Unfortunately this assumption is wrong if the expected
indication h′ is taken into account and h′ > 2z:

P (z>3σz | h=0) > P (z<3σz | h=h′), (3.23)

As a consequence, the absence of the indication becomes more likely.

3.3 Implementation of the local operator

3.3.1 Size and shape of the operator

As 3.19 shows, the accuracy of ρ(z|h) estimation depends on the size of the areas
used for the estimation of background and indication grey levels. These areas can
be defined on practice as conventional: by masks. The bigger the masks in use – the
less the estimation will be influenced by the noise. At the same time: the bigger the
linear mask size – the more probably the real image, covered by the mask, will differ
from our background and indication models.

The calculations given above are made on an one-dimensional image profile. One
of the ways to enlarge the mask without making it too wide is to extend the mask
in the second dimension in the direction orthogonal to profile (see Fig. 3.3). Until
both masks for background calculation have the same size and remain symmetric in
the xy-plane in respect to the running point (x, y), the calculations given above for
1D profiles will be also valid for the 2D case. So the estimation of the background
intensity gbkg in the running point (x, y) is the average of pixels covered by the
background masks:

gbkg(x, y) =
1

2Nbkg

Xbkg−1∑
i=0

Ybkg−1∑
j=0

Kbkg[i, j]× g(x +
Xbkg

2
− i, y +

Ybkg

2
− j), (3.24)
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Figure 3.3: Extension of an one-dimensional mask to the second dimension.

where Kbkg denotes an rectangular binary mask, wherein non-zero elements define
the required area for background estimation, Xbkg and Ybkg are the dimensions of
the Kbkg and Nbkg is the number of non-zero elements in Kbkg.

Similarly, for the indication grey level:

gind(x, y) =
1

2Nind

Xind−1∑
i=0

Yind−1∑
j=0

Kind[i, j]× g(x +
Xind

2
− i, y +

Yind

2
− j). (3.25)

The 2D operator defined in this way is directionally selective, i.e. it responds
optimally if indication direction and operator direction coincide. It is a desirable
feature. Finding an operator with maximum response over a set of differently oriented
operators gives not only information about the indication magnitude but also about
the indication direction. Another side of this approach is the necessity of sampling
of the 360 degree circle to a set of discrete directions and providing background
and indication masks for each of them. An accurate representation requires a big
number of discrete directions, a big number of masks and hence high computational
complexity.

On Fig. 3.4.a examples of masks of size 3 and 4 for the angles from 0◦ till 90◦

are given. An additional space is introduced between the indication mask and back-
ground masks. This space is addressed to eliminate the influence of the transitions
areas between indication and background on the estimation of indication intensity.
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An rectangular mask rotated to some degree will not fit perfectly to the discrete
image raster (dashed masks on Fig. 3.4.a). Therefore the rotated rectangular masks
can be approximated by some complex-shaped masks in the best possible way (solid
masks in Fig. 3.4.a). The necessity of generation, storage and calculation of masks
for every direction can be completely eliminated by the following approximation:
only one rectangular mask, which has all element set to unity, is used for estimation
of indication and background grey levels. The borders of the mask remain parallel
to the coordinate axes for all directions and only the position of the mask centre is
changed with respect to the running point as a function of the required direction. This
is illustrated in Fig. 3.4.b. This approach has a significant computational benefit:
since for the given indication size wind all masks have the same size and shape
wind × wind, it is possible to average an image with this mask only once and then
take the required value “on demand” by algebraically calculating the coordinates of
centres of background masks for the given position of the running point and direction
of the operator.

3.3.2 Recursive calculation of estimation of background and
indication grey values

Further acceleration can be achieved by recursive calculation of the moving average
[1]. In the conventional approach to the calculation of moving average the sums
are calculated independently from each other for each mask position. The recursive
approach makes use of the overlapping of masks centred at two neighboured pixels.
This allows to use the sum calculated for the previous mask position and “update”
it for the current position. A general approach which works for masks of arbitrary
shape is proposed here.

On the preprocessing step two lists are build. The first list (let us denote them as
L−) contains coordinates of the binary mask elements which are zero for the mask
centred around the current point i, but set to unity for the previous mask position
i − 1. The second list (L+) contains coordinates of elements which are set to unity
at the current mask position, but are zero at the previous one (Fig. 3.5). The lists
contain relative coordinates of pixels in respect to the current coordinate i of the
mask centre. This allows reuse of the lists for arbitrary mask positions.

The recursive calculation of moving average S in the position (x, y) is made by
subtraction of grey values of image pixels from L− and addition of grey values of
pixels from L+ to the moving average calculated in the previous position (x− 1, y):

S(x, y) = S(x− 1, y)−
∑

(i,j)∈L−

g(i, j) +
∑

(i,j)∈L+

g(i, j). (3.26)

For a rectangular binary mask without zero elements with borders parallel to the
coordinate axes the L− is simply the first column of the mask at the (i− 1) position
and L+ is the last column of the mask at the i position.

The described approach can be called one-dimensional recursion, because over-
lapping only in one dimension is used. However, it is possible to recursively calculate
moving sums during changing of both coordinates.

For this purpose it is necessary to calculate and store partial one dimensional

56 BAM-Dissertationsreihe



Chapter 3. Detection of crack-like indications

dx

dy

r

dx/dy = 2/4 dx/dy = 2/3 dx/dy = 3/3dx/dy = 1/4

alpha

r

dx/dy = 4/4dx/dy = 3/4dx/dy = 3/5dx/dy = 2/5dx/dy = 1/5

a

b

Figure 3.4: Two approaches for calculation of the background and indication grey
levels. The dotted mesh denotes image raster, grey squares denote pixels in the cen-
tres of the respective masks, dashed squares denote ideal rotated masks. a) Explicit
definition of binary masks which approximate the ideal masks to the image raster in
the best way (borders are shown by solid lines). b) Averaging by a single rectangular
mask and taking the value for a required direction “on demand” by algebraically
calculating centre coordinates of the best suited rectangle. This conserves memory
and improves calculation speed significantly.
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Figure 3.5: Illustration of L− and L+ lists idea used for recursive calculation of
moving average. Pixels designated by “-” are added to L− list, pixels designated by
“+” - to L+.

sums:

S′(x, y, i) =
Yk−1∑
j=0

K[i, j]g(x, y − Yk

2
+ j),

y =
Yk

2
, x ∈ [0, X), i ∈ [0, Xk),

(3.27)

where K[i, j] denotes the (i, j) element of the mask, Xk and Yk are dimensions of the
mask and X and Y are image dimension. Then the sum of interest can be computed
recursively along the x axis as before (while y is unchanged):

S(x, y) = S(x− 1, y)−

− S′(x− Xk

2
− 1, y, 0) + S′(x− Xk

2
+ Xk − 1, y,Xk − 1),

y ∈ (
Yk

2
, Y − Yk +

Yk

2
), x ∈ (

Xk

2
, X −Xk +

Xk

2
).

(3.28)

The partial sums S′(x, y, i) are updated recursively too. This has to be done after
each increment of the y coordinate (y is incremented first after the sums S(x, y) are
calculated for all x coordinates):

S′(x, y, i) = S′(x, y − 1, i)−

−K[i, 0]g(y − Yk

2
− 1, x) + K[i, Yk − 1]g(y − Yk

2
+ Yk − 1, x),

y ∈ (
Yk

2
, Y − Yk +

Yk

2
), x ∈ [0, X), i ∈ [0, Xk).

(3.29)

The computational complexity of the conventional calculation of moving average
for an image of size X × Y with a mask size Xk × Yk is O(XY XkYk). The compu-
tational complexity of the described algorithm which uses two-dimensional recursion
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does not depend on the size of the mask and is only O(XY ). The advantage is
therefore proportional to the number of kernel elements and can be huge for large
kernels.

3.3.3 Workflow for calculation of likelihood of presence of in-
dication in the local area

The range of indication widths, usable for the given application, has to be provided
as an input parameter. This range can be limited (by the user) from the upper side
by using a priori information about the sought indications and from the lower side
using knowledge about limits of the acquisition technique in use. Then, the moving
average is recursively calculated for each width of the indication mask.

After experimenting with different masks, it have been found that the usage of
the same mask for indication and background estimation gives sufficient accuracy.
Obviously, this mask is differently centred for indication and background estimation,
but has the same shape and size (see Fig. 3.4.b). That means that the moving average
calculated for estimation of the indication grey level can be used for background grey
level estimation too. This speeds up the calculations considerably.

After the moving average is computed, the likelihood of indication presence can be
calculated for an arbitrary image point (x, y) using (3.21) and (3.19). The operator
needs input values as follows: the indication width w and the direction α to calculate
z(x, y, w, α), the estimation of noise intensity σ to calculate σz(w) and the a priori
indication intensity h:

Lh(x, y, w, α) = ρ(z|h) =
1√

2πσz(w)
e
− (h−z(x,y,w,α))2

2(σz(w))2 ,

z(x, y, w, α) = gbkg(x, y, w, α)− gind(x, y, w) =

=
gm(x− dx, y + dy, w) + gm(x + dx, y − dy, w)

2
− gm(x, y, w),

σz(w) =

√
5
4

σ

w
,

(3.30)

where α defines the operator direction as it is shown on Fig. 3.4.b, gm(x, y, w) is
the mean grey value calculated with the w × w mask centred at the point (x, y),
dx = round(r sinα), dy = round(r cos α) and r = w + 1.

3.4 Detection of elongated objects as optimisation
problem

Only a local estimation of probabilities of indication presence is not enough for re-
liable crack detection. This is, as it was already mentioned before, due to the low
signal to noise ratio of the sought objects. Therefore in the developed crack detection
algorithm, described in this work, the crack indications are detected on a global basis.
A global indication characteristic called estimation function will be designed in this
section. The arguments of the estimation function are coordinates of the involved
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image points over which it is calculated. Careful design of the estimation function
allows to pose the task of detection of crack indications as a task of finding a set of
image coordinates which maximises the estimation function.

It is necessary to impose some restrictions on the arguments of the estimation
function in order to keep the task of optimisation of the estimation function adequate
to the task of crack detection. This is, first of all, the requirement for connectivity
of the involved points. In other words, the points have to form a continuous curve.
Then, it is possible to define the preferred crack direction (vertical or horizontal
cracks), to require certain smoothness of the crack indication or to prohibit sharp
turns of the indication shape.

Despite of the restrictions on the indication shape, the maximisation of the estima-
tion function by means of exhaustive enumeration of all possible combinations has a
restrictively huge computational complexity. As a consequence, numerous optimised
search techniques have been proposed in last decades (see Chapter 2 an references
therein). The common feature of the most of those techniques is the employment of
heuristics in order to reduce the search complexity. This is the basic difference of the
approach developed in this work: the optimum of the estimation function designed
here can be found without heuristic assumptions during optimisation procedure, i.e
exactly. The known techniques such as graph searching and dynamic programming
(Chapter 2) can be applied successfully for this optimisation.

3.5 Synthesis of the estimation function

3.5.1 An optimised estimation function from the graph theo-
retic point of view

As it is shown in Chapter 2, the optimisation of the estimation function in the
general form (as an arbitrary function of all path points) is connected in practice
with prohibitive computational complexity. This is due to the fact that the original
graph of possible indication prolongations must be converted to a tree of unique
paths through this graph. To bring the search complexity into the real world limits
some strong heuristics are usually applied. The problem of such an approach is,
that unpredictable differences can occur between the solution obtained with usage of
heuristics and the really optimal solution.

The search complexity can be reduced not only by the usage of heuristics. This
can be done if the tree of unique paths is considered as the tree of unique values
of the estimation function (finally we want to find the maximum of the estimation
function) and some restrictions are posed on the estimation function formula.

The main idea is as follows. If the estimation function f∗ can be represented as

f∗(p1, .., pn) = f(f∗(p1, .., pn−1), pn−m+1, pn−m+2, .., pn), (3.31)

i.e. the value of f∗ in each point of the path depends only on the value of f∗ in the
previous point and some number m of previous points, where m � n and n is length
of the path, then the size of the search tree can be dramatically reduced. This is
due to the following: among several paths which coincide in the last m points (see
Fig. 3.6) only the one path which has the biggest value of the estimation function have
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n−m+1 : ... ...

......

......n :

n−m+2 :

Figure 3.6: If the estimation function f∗ depends only on the last m path nodes,
then among paths which coincide on the last m steps only the one which has the best
f∗ has to be continued – the others can be discarded.

to be further explored. All other paths with lower estimations can be discontinued
at this point, since they coincide with the best path in the last m points, have lower
values of the estimation function and therefore have no chances to outperform the
best path. An illustration is given on Fig. 3.6.

The smaller the m, the smaller the search tree becomes (which has to be explored).
The border case arise if m ≤ 2 (m = 1 or m = 2). Then the size of the search tree
reduces down to the size of graph of possible paths, which is the absolute minimal
tree which is necessary to explore to get a strict solution. The same result can be
obtained considering optimisation of the estimation function from the point of view
of dynamic programming.

3.5.2 An optimised estimation function from the dynamic
programming point of view

Besides the graph searching, the optimum (maximum or minimum) of an estimation
function can be found using other optimisation methods. An interesting case arise if
the estimation function f∗ (which is a function of pixel coordinates through which
the path goes) can be represented as a sum of terms each of which depends on only
a few variables:

f∗((x0, y0), (x1, y1), ..., (xi, yi), ..., (xN , yN )) = f∗(p0, p1, ..., pi, ..., pN ) =
= f∗0 (pk0 , ..., pl0) + f∗1 (pk1 , ..., pl1) + ...f∗j (pkj , ..., plj ) + ... + f∗M (pkM

, ..., plM ),
(3.32)
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where pi denotes coordinate pairs (point) (xi, yi) and the indices kj and lj define a
range of arguments on which each component function f∗j depends. Since the pixel
coordinates xi, yi are discrete, the optimum of f∗ can be found by a multistage
optimisation process called serial dynamic programming.

Principles and an example of function optimisation using serial dynamic pro-
gramming are already reviewed in Chapter 2. Dynamic programming is a general
optimisation technique which can be used for different purposes, extensive literature
exists on this topic [6, 32, 38]. Here we focus only on one aspect relevant for the cre-
ation of an effective detection algorithm: analysis of the computational complexity
and the storage requirements of the dynamic programming approach.

In general, a multistage optimisation method can be described as a procedure in
which the optimisation is carried out separately for each variable pi. Of course, this
optimisation must be performed for all the values of the independent variables pj

which are non-linearly connected with the variable pi, i.e. it exists at least one term
of the estimation function which depends on both pi and pj . For example:

f∗(p0, p1, p2, p3, p4) = f∗0 (p0, p1) + f∗1 (p0, p1, p2) + f∗2 (p2, p3) + f∗3 (p2, p3, p4), (3.33)

where f∗j are component functions which cannot be represented as sum of terms.
Now we carry on optimisation with respect to say variable p0. The variables p1 and
p2 are non-linearly connected with p0. So the following substitution can be made

f∗∗0 (p0, p1, p2) = f∗0 (p0, p1) + f∗1 (p0, p1, p2) (3.34)

and then f∗ can be rewritten as

f∗(p0, p1, p2, p3, p4) = f∗∗0 (p0, p1, p2) + f∗2 (p2, p3) + f∗3 (p2, p3, p4). (3.35)

In the last expression the terms f∗2 and f∗3 do not depend on p0. Thus the optimisation
with respect to p0 can be made independently for f∗∗0 :

f∗∗0 opt(p1, p2) = max
p0

f∗∗0 (p0, p1, p2). (3.36)

After that f∗∗0 can be substituted by f∗∗0 opt. By this substitution the variable p0 is
“eliminated”, so f∗ can be rewritten again as a function of only p1, p2, p3 and p4:

f∗(p1, p2, p3, p4) = f∗∗0 opt(p1, p2) + f∗2 (p2, p3) + f∗3 (p2, p3, p4). (3.37)

The cost of this operation (in computing time and storage requirements) is dependent
on the number of variables K which constitute the domain of function f∗∗0 opt (K = 2
for this example) and number P of possible values each variable can take.

The multistage optimisation can be seen as a step-by-step elimination of all vari-
ables. So the computational complexity of this process is therefore O(NPK), there
N is number of arguments in f∗ and thus number of necessary eliminations. The
obtained estimation of computational complexity helps to analytically define the re-
quirements to the construction of the estimation function in order to be easy to
optimise.
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3.5.3 On the computational complexity

The above given considerations about the computational complexity of optimisation
of the estimation function result in the following statement: if the estimation function
can be represented as a sum of simple independent terms, then its maximum can
be found exactly (without any heuristics) and with an acceptable computational
complexity.

This approach has its drawback: holding the requirement to be representable as a
sum of simple terms makes it difficult to incorporate certain features in the estimation
function. Nevertheless it was decided to use this approach to the construction of the
estimation function and to see what is possible to reach in this way. The motivations
are:

• all heuristic assumptions are located in the estimation function – the algorithm
which searches for the optimum is free of any heuristics and therefore has
predictable behaviour;

• the adequacy of the estimation function to the application problem can be
checked and adjusted independently of the search algorithm;

• if some feature cannot be included in the estimation function, then we know,
at least, what has been omitted. However, if some features are included, then
we know that they have been fully utilised (since the optimisation procedure is
exact).

From this point of view the simple average contrast over the indication length
can not be used as an estimation function. This is because a representation of the
average contrast as a sum of independent terms is not possible (due to the unknown
indication length, which is present in each term of the sum).

3.5.4 On shape features

The estimation function which uses global indication context can theoretically utilise
more information as only grey values of points along the indication. These are, first
of all, several features which characterise the indication shape. For example, the
first and the second centred moments of a path curvature: the mean curvature along
the full path and the mean square of variations of local curvatures from the mean
curvature. A small mean square variation of local curvatures could be a sign of an
undercut, because the undercut indication often appears as a straight line. On the
opposite, a big variation of local curvatures could be a sign of false detection caused
by a random conglomerate of noise fluctuations.

As another shape feature the presence of bifurcation points can be used. A
bifurcation point occurs when an indication splits into branches that continue in
two different direction. This is characteristic for crack indications. Therefore the
presence of bifurcation points is a sign which allows to distinguish between false
crack-like objects (i.e. undercuts) and the real crack indications.

Unfortunately humans (inspectors) have difficulties with formal expression of their
experience on this topic. This is the same for the curvature analysis as far as for the
bifurcation detection.
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From the other side it is difficult to embed shape features in the estimation func-
tion in such a way that it still can be represented as a sum of simple components.
This is due to the global character of shape features. This leads to increased compu-
tational complexity of optimisation of the estimation function.

Instead of guessing about the necessity of applying additional shape restrictions
and how they have to be formulated, because adding further shape restrictions over
and over inevitably results in cumbersome algorithm, an alternative route have been
followed here. This work is focused on the research of the detection potential of
an algorithm which takes into account only the indication intensity z and requires
connectivity of the detected curve. I.e. no shape features are considered.

3.5.5 Parameter estimation vs. hypothesis testing

From the informational standpoint the best to do on solving of the detection task
while observing an indication of a certain estimated intensity z is to build a distribu-
tion of probabilities of presence of a real indication with intensity h: ρ(h|z) [62]. This
does not only apply to local estimations. The probability distribution of presence of
an indication h along the full hypothetical path can be calculated too. Based on this
distribution the most probable indication intensity can be found:

h∗ = arg max
h

ρ(h|z). (3.38)

The most probable intensity along the path indication can be used as an estimation
function, thus the search procedure which maximise this value will find the path
through the image which corresponds to the most intensive indication.

Unfortunately, and this was already addressed in section 3.2 of this chapter, the
calculation of ρ(h|z) is not possible without making assumptions about the a priori
distribution of h: ρ(h). In a general case ρ(h) is a function which has to be defined
for all possible h. Therefore the a posteriori distribution ρ(h|z) has to be calculated
for all h too. This introduces an additional dimension into, already without that,
big search space. Therefore a reduction to a simpler model is desirable from the
computational standpoint.

Due to this, the following statistical model of the indication intensity is assumed:
the indication of the known intensity h can be present with a priori probability P (h)
or absent with a priori probability (1 − P (h)). The values P (h) and h must be
externally provided to the algorithm.

If such a discrete model of the indication intensity is assumed, the calculation
of the most probable intensity h∗ is reduced to the calculation of the a posteriori
probabilities of two possible cases: indication presence P (h|z) and absence P (0|z)
with subsequent comparison of them. This can be formulated in terms of hypotheses
testing: the hypothesis of indication presence H1 = H(h) is complemented by the
hypothesis of indication absence H0 = H(0).

3.5.6 The proposed estimation function

Let us denote P (H(h)) = P (H1) = P1 and P (H(0)) = P (H0) = P0 - the
probabilities of hypotheses of indication presence and absence respectively. The
P (H1(p1, p2, .., pn)) = P1(p1, p2, .., pn) and P (H0(p1, p2, .., pn)) = P0(p1, p2, .., pn) are
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the joint a posteriori probabilities of indication presence and absence in all points
along a hypothetical path respectively.

The a posteriori probabilities of both hypotheses for a path of some length n
(n > 1) can be expressed via local probabilities in each point of the path:

P1(p1, p2, .., pn) = P1(p1)P1(p2)..P (pn) =
n∏

i=1

P1(pi), (3.39)

P0(p1, p2, .., pn) = 1− P1(p1, p2, .., pn), (3.40)

where P1(pi) is the a posteriori probability of indication presence. Expression (3.5)
can be used for calculation of P1(pi) by substituting of the probability densities of
the continuous distribution of by the probabilities of different states of the discrete
distribution:

P1(pi) = P (H1(pi)) = P (h)ρ(z(pi)|h)
ρ(z(pi))

,

ρ(z(pi)) = P (h)ρ(z(pi)|h) + (1− P (h))ρ(z(pi)|0).
(3.41)

Here, an assumption is made about statistical independence of adjacent pixels and
the join probability searched for is just a product of the independent local estima-
tions. A more promising solution would be to assume a dependence of the a priori
probability of crack presence in each next point of the path from the a posteriori
probability of crack presence in the previous point of the path (see below).

Expression (3.39) could be used already as the estimation function, but
for the sake of easy optimisation the logarithm of P1(p1, p2, .., pn) is preferred:
f∗(p1, p2, .., pn) = log P1(p1, p2, .., pn). The logarithm converts the product in the
right part of (3.39) to a sum:

f∗(p1, p2, .., pn) =
n∑

i=1

log P1(pi). (3.42)

In this sum each term depends only on one variable pi. So it can be easily optimised.
Nevertheless, the estimation function f∗ calculated according (3.42) has one big

disadvantage: the joint probability of indication presence P1(p1, p2, .., pn) monoton-
ically decreases with increased n. The reason is obvious: the probabilities under
the product sign are always less than unity. This means that the joint probability
of indication presence can be smaller for a path which coincides with an intensive
and long indication, than for a path which coincides with a less intensive but short
indication. Such behaviour does definitely not meet our requirements. A weighting
of f∗ by the path length is not possible without substantial increase in the computa-
tional complexity of the optimisation. This is similar to the average contrast over the
indication length: the representation as a sum of independent terms is not possible
because the unknown indication length is present in each term.

An elegant solution can be found if not only the a posteriori probability P1(pi) is
used in each point of the path, but the a posteriori probability is compared with the
a priori probability of indication presence P1 prior. This can be elegantly expressed
in terms of entropy and a posteriori information gain:

dI1(pi) = log P1(pi)− log P1 prior = log
P1(pi)
P1 prior

. (3.43)
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Thus the cumulative information gain along the path is used in this work as an
estimation of path “goodness”:

f∗(p1, p2, .., pn) =
n∑

i=1

dI1(pi) =
n∑

i=1

(log P1(pi)− log P1 prior). (3.44)

The a posteriori probability in each point is calculated as before using (3.41) and
P1 prior = P (h). Then (3.43) can be written as follows:

dI1(pi) = log P (h|z(pi))− log P (h). (3.45)

And (3.44) converts to:

f∗(p1, p2, .., pn) =
n∑

i=1

[log P (h|z(pi))− log P (h)] =

n∑
i=1

[log ρ(z(pi)|h)− log [(P (h)ρ(z(pi)|h) + (1− P (h))ρ(z(pi)|0))]].

(3.46)

This is the path estimation function which is used in the developed algorithm.

Model for chained indications

The assumption about statistical independence of neighbour pixels is made above.
A more promising solution is to assume a dependence of the a priori probability of
crack presence in each following point of the path from the a posteriori probability
of crack presence in the previous point of the path. For example:

P1 prior(pi) = PtransP1(pi−1), (3.47)

where i is step number, P1 prior(pi) is the a priori probability of indication presence
for point pi, Ptrans is a probability of indication prolongation, and P1(pi−1) without
additional index is the a posteriori probability of indication presence in the previous
point.

As the a priori probability for each point depends (according to (3.47)) on the a
posteriori probability in the previous point, the joint probability P1(p1, p2, .., pn) can
be calculated only recursively:

P1 prior(p1) = P1 prior,

P ∗
1 (pi) = P1(pi;PtransP

∗
1 (pi−1)),

P1(p1, p2, .., pn) =
n∏

i=1

P ∗
1 (pi).

(3.48)

Then (3.44) converts to:

f∗ch(p1, p2, .., pn) =
n∑

i=1

(log P1(pi;PtransP
∗
1 (pi−1))− log P1 prior). (3.49)
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Each term of this sum depends now on two variables: pi and P ∗
1 (pi−1). The strict

optimisation of f∗ch(p1, p2, .., pn) by means of dynamic programming is not longer
possible, because values of P ∗

1 (pi−1) are not discrete.
An approximated solution could be possible if some heuristics are introduced. For

example, quantisation of continuous range of values of P ∗
1 (pi−1) into a fixed number

of discrete values. But since one of the ideas of this work is to explore possibilities of
object detection without usage of any heuristics, this approach is not of our primary
interest.

3.5.7 Analysis of the estimation function

The designed estimation function (3.46) is characterised by the following properties:

• It has a theoretical background and a physical meaning.
• The value of the estimation function can increase or decrease depending on the

relation of intensity of the sought object h and the estimated contrast z.
• The amount of increase or decrease of the estimation function does not only

depend on the difference between h and z but also on the estimated noise level
and the a priori assumed probability of presence of the sought object.

• It can be represented as a sum of simple terms, so it can be easy optimised.

For calculation of f∗ the values h and P (h) (and Ptrans if used) must be supplied
externally. They act as the algorithm’s control parameters. In that follows we analyse
their influence on the behaviour of the estimation function.

Object intensity h

The object intensity h and the a priori probability of its occurrence define the sta-
tistical model of the objects searched for. As it is evident from (3.21) the value of h
defines the likelihood of which hypothesis (H1 or H0) becomes bigger for the given
indication estimation z. If z > h/2 then Lz(h) > Lz(0) (ρ(z|h) > ρ(z|0)). And vice
versa: if z < h/2 then Lz(h) < Lz(0). So the expected object intensity h acts as a
primary sensitivity control.

A priori probability of hypothesis of presence (P (h))

An analysis of (3.45) can reveal an unexpected dependency, for the first look, between
the information gain dI1 and the a priori probability of indication presence. Namely:
increasing of P (h) leads to the decreasing of dI1. This behaviour is a property of
Shenon’s definition of information and is already discussed in [62]: the big a priori
knowledge cannot be significantly improved, thus leading to small dI1, but a small a
priori knowledge can, thus allowing big dI1.

Fig. 3.7 demonstrates the dependence of the a posteriori information gain dI1(pi)
versus signal estimation z/σ for hypothesis h = 3σ and different a priori probabilities
P (h). The same estimated signal intensity z influences the information gain dI1

differently depending on the P (h):

1. Low P (h) (P (h) = 0.01): The information gain is nearly proportional to the
estimated indication intensity z in the range 0..h (h = 3σ for the example) and
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Figure 3.7: A posteriori information gain dI1(pi) vs. signal estimation z/σ for hy-
pothesis h = 3σ and different a priori probabilities P (h). dI1 is negative for z < h/2
and positive for z > h/2. The information gain dI1 is nearly proportional to z for
small P (h) and substantially nonlinear for bigger P (h).

stabilise swiftly to a constant value for bigger z. This example demonstrates
an important fact: an increase in the signal to noise ratio adds a value to the
estimation function only until some SNR is reached - a further increase in SNR
brings little additional information. It is a desirable and logical behaviour.

2. Middle P (h) (P (h) = 0.5): The information gain stabilises even faster for
z > h/2, but a weak observed signal (z < h/2) still adds negative value to the
estimation function as it is expected from the common sense. The plot of dI
vs. z/σ is sloper, compared to the case of P (h) = 0.01, which shows decrease
of sensitivity.

3. High P (h) (P (h) = 0.99): Information gain is close to zero in range z ∈ (σ, inf)
(slightly higher than zero for z > h/2 and slightly lower than zero for z < h/2)
due to the a priori knowledge of the object presence – the a priori information
is too strong (P (h) → 1) to be influenced by the observed signal. Only a very
week z (� σ) is able to change this a priori assumption and cause substantially
negative dI1. The sensitivity is the lowest.

This asymmetric behaviour of dI1 (and the path estimation function f∗) ensures
the following properties of the developed algorithm:

1. the a priori probability of indication presence P (h) is used to control whether
an indication with gaps (areas with low z) will be detected as a single continuous
indication or as separate shorter ones;
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2. very intensive parts of indication (high z) do not contribute excessively to the
path estimation function f∗ (while dI1 stabilises fast after z exceeds h/2).

The interesting case arise if P (h) → 0. In this case an usage of probabilities
becomes difficult because the a posteriori probability approaches zero too:

lim
P (h)→0

P (h|z) = lim
P (h)→0

P (h)ρ(z|h)
P (h)ρ(z|h) + (1− P (h))ρ(z|0)

→ 0. (3.50)

Nevertheless the information gain dI1 remains finite:

lim
P (h)→0, Pi(h)→0

dI1(pi) =

lim
P (h)→0, Pi(h)→0

(
log

Pi(h)ρ(z(pi)|h)
Pi(h)ρ(z(pi)|h) + (1− Pi(h))ρ(z(pi)|0)

− log P (h)
)

=

log
ρ(z(pi)|h)
ρ(z(pi)|0)

= ... =
z2(pi)− (h− z(pi))2

2σ2
=

h2

2σ2

(
2z(pi)

h
− 1

)
. (3.51)

So the information gain in this case reduces to the comparison of likelihoods of both
hypothesis and then to comparison of intensities z(pi) and h.

Probability of indication prolongation (Ptrans) (if the chained indication
model is used)

According to (3.47) Ptrans (probability of indication prolongation) defines the influ-
ence of the a posteriori probability in some point of the path on the a priori proba-
bility for adjacent points. This way a large value of Ptrans results in fast increasing
of dI1(pi) if an indication is met and slow decreasing of dI1(pi) if the indication
disappear. So the separated indication segments can be connected into a continuous
line and the small gaps between separated indications tend to be ignored. On the
opposite, a small value of Ptrans results in slow increasing of dI1 if some indication
is found and fast decreasing of dI1 if the indication is lost. This leads to an in-
creased sensitivity to interruptions of the crack indication, so small gaps can cause
the detection of two or more separate indications rather than a single continuous one.

A special case is Ptrans ≤ P (h). Then Pi(h) = PtransP (h|z(pi−1)) < P (h)
(because P (h|z) is always less than unity) - the starting a priori probability P (h)
becomes bigger than the running a priori probability Pi(h) caused by the analysis of
neighbour pixels. So the pixels are considered as they are independent.

In case of the chained indication model and Ptrans � P (h) the probability of
indication prolongation Ptrans has more influence on the continuity of the detected
curve rather than P (h). The a priori probability of indication presence influences
in this case more the sensitivity of the algorithm rather than the continuity of the
detected curve.

Nevertheless, the considerations about influence of Ptrans on the behaviour of the
path estimation function remain unused in this work since the chained indication
model is not used for the developed algorithm.
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3.6 Implementation of object detection via optimi-
sation of estimation function

3.6.1 ROI tracing vs. full search

As intended, optimisation of the estimation function described above can be achieved
serially. The optimisation starts from some initial hypothesis about the presence of
an indication at a given point. Then hypotheses about prolongations of the indication
are made and the estimation functions for each of these hypothesis are calculated.
There are at least two approaches to the selection of the starting point.

An obvious approach is to start a new search at the point with the biggest proba-
bility of object presence – at the so called region of interest (ROI). Normally there is
a possibility that more than one indication or some other objects like lead marks or
quality indicators may be present in the image. Therefore it is necessary to select not
a single point but a set of starting points which have a high probability of indication
presence. Then, all possible indications which originate from them (paths) have to
be investigated. This approach works as long as the objects to be detected have
high signal to noise ratios. But if the sought signal is heavily occluded with noise,
such distinctly visible points cannot be found or do not correspond to the objects of
interest any more. Then this approach fails.

Another possibility (which is used here) is to explore all possible paths. I.e. to
assume the beginning of a path in every image point and test prolongations. If it
is done in an ordered way, for example from left to right or from top to bottom,
then the computational expenses of such approach are not significantly higher than
in the case of ROI-tracing. This is due to the fact that several search trees, growing
not very far from each other, start to overlap very fast. In case of starting of many
trees from neighbour points the trees start to overlap after the first step and the
computational expenses are minor.

3.6.2 Basic search algorithm

First, the local operator designed in this chapter is applied to the image. Then, an
array S is created which has the same dimensions as the source image and stores
optimisation information. Each element of this array is a data structure and cor-
responds to the image point with the same coordinates. This data structure stores
information about the best (so far found) path which reaches the associated point:

• the value of the estimation function f∗ for the path;
• the length ln of the path;
• the coordinates of the previous point pprev in the path.

Initially the fields of these structures storing path length are initialised by zero and
the estimation function fields – by minus infinity.

The goal of the search is to find the maximum of the estimation function. So
the maximum value of the estimation function f∗max reached from the beginning of
search and the coordinates of the respective point pmax are stored in two additional
variables. The f∗max is initially initialised by minus infinity.
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If horizontal indications have to be detected the search starts from the right or
the left image side (arbitrary which) and paths which grow in the direction of the
opposite image side are investigated. If vertical objects are of interest, then search
can be done from top to bottom or bottom to top.

For the sake of simplicity of description but without any lose of generality we
assume that the horizontal indications are of interest and perform the search in the
direction of increasing of the x coordinate. Then for every image column x, starting
from the first one, and for every pixel (x, y) in this column, chosen in the arbitrary
order:

1. Calculate the a posteriori probability of indication presence P1(x, y) =
P (h|z(x, y)) using the output of the local operator and (3.5). Test only hori-
zontal orientation of indications.

2. Calculate the respective information gain using (3.45).

3. If the calculated information gain dI1 exceeds the value stored in the f∗-field
of the respective element of S, then update S with the calculated dI1 and set
ln to one. Otherwise, discard new dI1.

4. Independently of the result of the previous step compare f∗max with the value
of f∗ for the current point stored in S. If the current f∗ exceeds f∗max, then
update f∗max = f∗(x, y) and pmax = (x, y).

5. Build and test all prolongations. Because the indication path has to be continu-
ous there are only three possible prolongations: to point (x+1, y), (x+1, y+1)
and (x + 1, y − 1).

(a) Calculate the a posteriori probability and the information gain dI(x +
1, yprol) in the prolongation point (x+1, yprol). Use the direction from the
current point to the prolongation point as the direction of local indication
for the local operator.

(b) Compare f∗(x, y) + dI(x + 1, yprol) (the sum of f∗ for the current point
and the information gain in the prolongation point) with f∗(x + 1, yprol)
(the value of f∗ for the prolongation point stored in S). If f∗(x, y) +
dI(x + 1, yprol) > f∗(x + 1, yprol), then update stored f∗(x + 1, yprol) to
f∗(x, y)+dI(x+1, yprol), ln(x+1, yprol) to ln(x, y)+1 and pprev(x+1, yprol)
to (x, y).

After all points from the current column are processed, the same algorithm is
applied to the next column. This continues until the last column is reached. Then,
f∗max is analysed and if it is positive, the best path is tracked back from point pmax

using pprev stored in each element of S.
The path tracked back from the point pmax represents the indication which im-

prove the probability of indication presence from the initial a priori level to the a
posteriori level most significantly (in limits of the assumed crack model and for the
used parameters wind, h and P (h)). This is because the estimation function f∗ is
defined as the sum of information gains at points along the traced path and the
maximum of f∗ is found by the algorithm described above.
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The path tracked back from the point pmax is the detection result at first approx-
imation. The basic search algorithm described above is represented in its simplest
form to keep workflow clear. Some useful refinements can be made. These are de-
scribed in that follows.

3.6.3 Minimal significant length

Fluctuations of local image intensity caused by the added noise may randomly gen-
erate conglomerates which look similar to the true crack indications. These noise
formations can have a rather big intensity and this becomes a problem when de-
tection of objects with low SNRs is of interest. However the noise formations can
be distinguished from the true crack-like indications by their short length. This is
because the probability of random formation of a crack-looking artifact decreases
drastically with increasing length of the artifact.

Therefore the limitation of a minimal significant indication length appears to be
useful. So the path with a length less than the minimal significant length should
not be considered as a possible result (but continue to grow). According to this,
step 4 of the basic optimisation algorithm (as described above) has to be modified as
follows: “. . . compare f∗max with the value of f∗ for the current point stored in S. If
the current f∗ exceeds f∗max and the length of the current path exceeds the minimal
significant length, then update f∗max = f∗(x, y) and pmax = (x, y)”.

3.6.4 Multiresolution

As it is mentioned already before, the local operator, designed in Chapter 3.3, which
uses a mask size wind×wind, optimally responds to indications of width wind. Unfor-
tunately it is not possible to predict the width of the object to be detected. Moreover
the width of indication usually changes along the indication length due to variations
of crack orientation in a 3D space.

Hence, it is necessary to specify externally the range of the useful widths which
are of interest and can be imaged by the used acquisition technique. All indication
widths which fit in this range from wmin to wmax have to be tested. As the window
size for the estimation of indication grey value defines the spatial resolution of the
operator, we call the technique which uses different window sizes – multiresolution.

If multiresolution is used, then each element in the indication path is defined not
only by pixel coordinates but also by the used window size. So the variable window
size adds an additional dimension to the search. Fortunately the range of useful
indication widths is not too big, so the optimisation with the increased complexity
is still feasible.

The multiresolution-implementation requires the following changes in the basic
search algorithm:

• To the array S a new dimension is added so hypothesis can be made about the
presence of indications of different width.

• Each element of the array S is extended by a new variable wprev which stores
the width of the previous element in the “best yet found” path. This variable
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has to be updated accordingly each time when coordinates pprev of previous
element are changes.

• The step 1 of the basic search algorithm is modified as follows: “. . . Test
only horizontal orientation of indications in all resolutions from range wmin

to wmax”.

• The step 5 of the basic search algorithm is modified as follows: “Build and test
all prolongations. Because the indication path has to be continuous there are
three possible prolongations for each resolution: to point (x+1, y), (x+1, y+1)
and (x + 1, y − 1). The prolongations in different resolutions (the current w,
increased w − 1 and decreased w + 1 ones) have to be tested. w − 1 must not
sink below wmin and w + 1 must not exceed wmax”. So the overall number of
prolongations now totals to nine at biggest.

3.6.5 Multipass

The result of the basic search algorithm (including the check for the minimal sig-
nificant length and the multiresolution extension) is a set of connected image points
(path), on which the estimation function takes its maximum (for the given image,
the chosen search direction, image and path prolongation model, model parame-
ters). The result of the search algorithm depends on the chosen direction of path
growing: left-to-right/right-to-left or top-to-bottom/bottom-to-top. So generally a
second iteration of the algorithm is necessary to explore paths growing in the opposite
direction. For this purpose the array S and variable f∗max are initialised by their start
values again and the same search procedure is performed from the opposite image
side in the opposite direction. Finally both results (from both opposite directions)
are superimposed (added).

Furthermore: normally not only the best path is of interest, but all paths have to
be found which improve the a priori probability of indication presence. So after the
first pass is completed, the path has to be visualised and the points belonging to it are
marked as “used”. Then the next pass can be executed in which the marked points
will be not used neither for beginning nor for the prolongations of the hypothesis. The
second pass will end up with a smaller f∗max. The result obtained is superimposed
on the result of the previous pass. The iterations have to be continued until f∗max

decrease below the predefined limit (in this implementation it is “0”). Then the
algorithm terminates and the visualisation of the found paths is returned to user.

3.6.6 Noise level estimation

The noise model is considered already during design of the local operator because an
assumption of a certain noise distribution is necessary for a correct estimation of the
likelihood of indication presence in local area. Here it is described how the parameter
σ of this noise model is estimated.

As long as a small local area of the radiographic image is considered, the assumed
linear background model appears to be adequate. The mean square variation of noise
fluctuations σ in a local neighbourhood of a point (x, y) can be directly calculated if

73



Chapter 3. Detection of crack-like indications

the background grey value estimation is available:

σ(x, y) =
1

N − 1

∑
(i,j)∈D(x,y)

(g(i, j)− gbkg(i, j))2, (3.52)

where D(x, y) denotes a local area centred around point (x, y), N is number of pixels
in the local area D, g(i, j) is the image grey value and gbkg(i, j) is the background
grey value estimation for point (i, j).

Estimations of σ calculated as shown above are stored in an array which has the
same dimensions as the source image. Some of these local estimation may be too
high if not only the background is present in the local area D. I.e. the presence
of a crack-like indications influences the noise estimation substantially. In order to
suppress this, the array of estimations of σ can be filtered using median or averaging
filter (the averaging is used here) which uses a relatively big square window. Here the
smoothing window size is chosen equal to the minimal significant indication length
(which is an externally supplied parameter). Storing of the noise estimations in the
array associated with the source image provides context sensitive noise estimations
(in opposite to a single σ for the whole image). As far as σ(x, y) is known the value
of σz(x, y) which is a function of wind and wbkg can be calculated using (3.19).

3.6.7 Algorithm control parameters

As it is already mentioned during the description of the algorithm, several control
parameters have to be provided externally. They are necessary to specify parameters
of the used models and hence the objects which have to be detected. The choice of
correct parameters is essential and must be done by the human being (operator) ac-
cording to requirements of the particular detection task and on the basis of operator’s
experience. The full list of operator controlled parameters is as follows:

1. a priori object SNR h/σz in hypothesis of presence controls algorithm sensitiv-
ity;

2. a priori probability of hypothesis of presence P (h) influences detection of ragged
indications (indications with gaps);

3. minimal and maximal width of indication (size in the direction orthogonal to
crack orientation) wmin and and wmax define transversal spatial resolution;

4. minimal length of indication Lsign defines longitudinal resolution.

3.7 Estimation of memory requirements and com-
putational complexity

3.7.1 Memory requirements

The array S, which stores optimisation information (information about the best path
(found so far) reaching the associated point), has dimensions (wmax − wmin + 1) ×
X × Y , where X and Y are the image dimensions and wmax and wmin define the
range of usable indication widths. Each element of S stores (for images which are
smaller than 216 points in each dimension):
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• the value of the estimation function f∗ as a floating point number,
• the length of path ln as two-byte integer number,
• the coordinates of the previous point of path pprev as a pair of two-byte integers,
• the resolution (indication width) in the previous point of path wprev as a one-

byte integer.

As long as a single precision floating point number fits in four bytes, each element of
S occupies 11 bytes. Therefore the whole S occupies:

MemS = 11bytes× (wmax − wmin + 1)×X × Y. (3.53)

The local operator, which estimates Lz(h) = ρ(z|h), needs to store the respective
grey value estimation (an average calculated on square window) for each image point
and indication width. The grey value estimation can be stored as a 16-bit (two-bytes)
integer, so:

MemL = 2bytes× (wmax − wmin + 1)×X × Y. (3.54)

It is convenient to pre-calculate the noise estimations and store the result in the
same way as the grey value estimations (for each image pixel and indication width).
However, noise estimations are stored as floating point values:

Memσ = 4bytes× (wmax − wmin + 1)×X × Y. (3.55)

The array which is used for multipass procedure and which contains labelling what
a point is already included in a detected indication, needs one byte per source image
pixel. Visualisation of the search results is made in the one byte per pixel image.
Therefore the approximate memory requirements of the presented implementation of
the search algorithm are

Mem = 2bytes×X × Y + Memσ + MemL + MemS =
= (2 + 17× (wmax − wmin + 1))×X × Y bytes (3.56)

– proportional to the source image size and nearly proportional to the range of
indication widths. This results, for example, in about 350 MByte of memory for a
4 MPixel image and a range of indication widths from 2 to 6 and in about 1.7 GByte
for a 20 MPixel image and the same widths range. The 20 MPixel image size is,
therefore, nearly a limitation for computing architectures which use 32 bits address
space (all Intel Pentium CPUs, for example). Bigger images require bigger address
space.

3.7.2 Computational complexity

The execution time of the developed algorithm depends largely on the program-
ming language used, compiler and computing hardware. An analytical estimation
of computing time is therefore complicated and beyond the scope of this work, but
measurements of the execution time of the existing implementation can be easily
made. For example, the current implementation, compiled with GCC 3.3, needs on a
3 GHz Intel Pentium-4 CPU about 80 seconds for detection of one the most intensive
indication on a 2.5 MPixel image (widths from 2 to 6 pixels). However detection of
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all suspicious crack-like indications on the same image can take up to one hour de-
pending on the selected algorithm sensitivity, SNR and number of indications really
present in the image. An analysis of the computational complexity of the algorithm
can explain these differences of execution time.

The computational complexity can be estimated as follows. Important that opti-
misation is performed serially from one image side to another. At the moment when
a path has to be prolongated from a given point at a given resolution (indication
width), all possible paths to this point are already built and the optimal path to this
point is found. This means that the prolongation of the optimal path from every
image point at every resolution has to be done only once per algorithm execution
(pass).

For the assumed prolongation model there are only nine prolongations of the op-
timal path possible: the three adjacent pixels at three resolutions each. In addition,
a hypothesis has to be tested about the beginning of a path from each point. Al-
together this gives 10 calculations of estimation function per image pixel and per
indication width (resolution). Two logarithms have to be taken for the calculation of
the proposed estimation function (see (3.45),(3.5),(3.30)) as well as several floating
point multiplications and additions.

An important consequence from these considerations is the independence of the
the computational complexity of one pass of the algorithm from the image contents. It
depends only (and linearly) on the image size and the range of the indication widths.
As the detection of a fixed number of the most intensive crack indications requires
exactly the doubled number of algorithm executions, its computational complexity
does not depend on the image contents too. Thus the computing time is predictable
a priori.

However, if all crack indications (paths) have to be found for which the estima-
tion function exceeds a certain given threshold, then the computational complexity
becomes dependent on the image contents as it is not possible to estimate in advance
the number of such indications and therefore the number of necessary algorithm
executions.
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Chapter 4

Experimental evaluation

4.1 Algorithm implementation

For experimental evaluation of the developed algorithm, it was implemented in stan-
dard C++ programming language. The program can be compiled on most UNIX-like
systems as well as in the MS-Windows Win32 environment. It is a command line
tool and can be executed directly from the command shell or used as computational
engine by other applications (for example graphic user interfaces).

The source code is listed in Appendix A. The code is distributed over several files
correspondent to the functionality:

• local.h and local.cpp - interface and implementation (respectively) of the esti-
mation of local indication contrast z;

• combine.h and combine.cpp - noise level estimation, calculation of Lz(h) for each
image point, global optimisation of the estimation function f using dynamic
programming, multipass and multiresolution enhancements, visualisation of re-
sult;

• conf.h and conf.cpp - a class which performs parsing of command line and takes
care of storage and correctness of the algorithm control parameters;

• cognition.cpp - binds the parts of the code described above into an end-user
program. The executable is called cognition.

4.2 ROC as a performance criteria

Each execution of the cognition program results in a image which has the same
dimensions as a source image and shows locations of the found crack indications.
Influences of the control parameters on the quality of detections can be estimated
from this result images visually, i.e subjectively and qualitatively.

More interesting and useful would be to express the detection quality objectively
and quantitatively. This can be done by the detection of known crack indications.
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Using the truth about the crack positions, the following detection cases can be dis-
tinguished: true positive, true negative as well as false positive and false negative
detections. The result is conveniently expressed graphically by the “Receiver Oper-
ating Characteristic” (ROC). The applicability of ROC to describe the performance
of a NDT weld inspection system is discussed in [42].

The ROC represents the dependence of the rate of correct detections vs. the rate
of false detections. For the ROC analysis of the detection algorithm the source image
has to be partitioned (virtually) into some number of measurement areas for which
a decision about the presence of a defect must be made. The correct detection rate
is defined as the ratio between the number of areas correctly labelled as defective
Ndetected def to the number of truly defective areas Ntrue def on the image:

CD =
Ndetected def

Ntrue def
. (4.1)

The false detection rate (false alarm rate) is defined as the ratio between the number
of false detections Nfalse detections to the number of truly defect-free areas (Nall −
Ntrue def ) (where Nall is whole number of areas on the image):

FA =
Nfalse detections

(Nall −Ntrue def )
. (4.2)

The ROC representation allows to describe a system at different sensitivity levels.
Two or more different systems or the behaviour of the same system for different values
of control parameters can be compared by using ROCs. Principally a ROC is shown
on Fig. 4.1. The strait line on this plot which runs straight from (0, 0) to (1, 1)
describes a system which made decisions just randomly, i.e. without usage of the
source data at all. In this case the rate of correct detections will be statistically
equal to the rate of false alarms. A detection system which wrongly interpret the
source data can have a characteristic which lies beneath the random decisions line. On
opposite, a good system which is able to extract useful information from the source
data and makes correct decisions, will have a ROC which lies above the random
decision line. The better the detection system is, the further away from the random
decision line its ROC will be positioned. This automatically means that for the
same rate of false alarms the better system has a higher rate of correct detections as
compared to the worse system or a smaller rate of false alarms can be reached for
the same rate of correct detections (see Fig. 4.1). The perfect system (not shown on
illustration here) would detect all defects without making any false detections, i.e.
would give CD = 1 for FA = 0.

4.3 Use of synthetic images for algorithm testing

In order to build a ROC of the developed algorithm, the complete information must
be available about the positions of true indications in the source image. This can
be achieved, for example, by synthetic (simulated) images. The advantage of using
simulated images is the ability to control all image properties and to observe how
they effect the detection. This allows to study the abilities of the algorithm in a
quantitative form. For the generation of such synthetic images a simulation software
was developed.
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Figure 4.1: Some examples of receiver operating characteristics (ROCs): A - ran-
dom decision system; B - wrong decision system; C - correctly operating system of
moderate efficiency; D - highly efficient system.
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4.3.1 Synthetic image generation

Synthetic images of crack indications which visually look very similar to the real
radiographs can be simulated, if the influencing properties of the radiographic system
are taken into account. These properties are:

• geometrical unsharpness due to the focal size of the X-ray tube;
• presence of noise of high intensity (additive, zero-mean, normally distributed,

uncorrelated);
• imperfect MTF of image detector (detector point spread function).

In addition to the properties of the radiographic system, the object grey-level
and spatial models have to be included. Taking all these factors into account the
generation of synthetic images can be done in the following steps:

1. According to the assumed background model and the the spatial indication
model a synthetic indication is simulated as a sharp continuous curve (randomly
directed) laying on a linearly changing background (Fig. 4.2.a). Sharp turns
in direction are not allowed. The difference between indication grey level and
background grey level (contrast) as well as the curve width are known, fixed
and constant.

2. The image is smoothed in order to simulate the geometrical unsharpness of
radiographic system (Fig. 4.2.b). To achieve a visually similar effect the size
of the smoothing kernel must significantly exceed the indication width. Due
to the smoothing the indication contrast on the image will be reduced. This
reduced contrast is referred as the true indication intensity hs.

3. Normally distributed noise (spatially independent, zero mean) is added to the
image (Fig. 4.2.c). The noise intensity (which is given by the root mean square
deviation σs) is calculated according to the required signal to noise ratio SNR:

σs =
hs

SNR
(4.3)

4. Finally the detector unsharpness is simulated. For this purpose the image is
convolved with the point spread function of the detector. Resulting image is
shown on Fig. 4.2.d. The same image with a stretched histogram is presented
on Fig. 4.2.e for demonstration purpose.

For simulation of realistic images it was essential that the two convolutions (for
simulation of the geometric unsharpness and the detector unsharpness) have to be
done separately. One before and another after the noise addition. This reflects the
physics of image formation correctly.

Using the scheme described above a simulated radiographic image can be created.
However, the simulation of the detector unsharpness (step 4) slightly changes the
intended signal to noise ratio SNR of the crack indication. This is due to the unequal
influence of the smoothing on the indication and the noise intensities. So the signal
to noise ratio of the final image will be slightly different from the intended value.
The real signal to noise ratio can be precisely measured as follows. Two additional
images have to be generated. In generation of the first one the Step 3 is omitted,
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a) b)

c) d) e)

Figure 4.2: Generation of synthetic images with a crack indication. Steps of simula-
tion: a) indication shape only; b) geometrical unsharpness is added; b) noise is added;
c) detector unsharpness is added; d) contrast is increased for better representation.

i.e. an image without noise is generated. Then indication intensity can be measured
just by examining of the indication profile (no disturbing noise). The second image
is generated omitting Step 1, i.e. an image without the indication itself but with the
added noise. While the background before addition of noise is known and it is not
influenced by the detector unsharpness, the resulting standard deviation (intensity)
of the noise can be easily found. In this way the real SNR of the simulated image
can be measured.

4.3.2 Analysis of algorithm performance on synthetic images

The algorithm of synthetic image generation, described above, was used to create
several sets of synthetic images. Each of these sets contains one hundred images.
Images inside one set show different indication shapes, but images with the same
number between different sets show the same indication. The same noise pattern
was used for images with the same number. The difference between these sets is
the different signal to noise ratio. For the performance analysis of the developed
crack detection algorithm three sets were generated with SNR = 0.86, 1.7 and 3.4
(measured). On Fig. 4.3 images with the same number (i.e. same crack indication)
but belonging to the different sets (i.e. different noise intensity) are shown.

These sets were processed by the developed detection algorithm with different
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a) b) c)

Figure 4.3: The same artificial crack indication which is simulated with different
intended signal to noise ratios: a) SNR = 0.86; b) SNR = 1.7; c) SNR = 3.4

combination of control parameters. Each combination of control parameters results
in a set of hundred result images which contain results of detection.

As the true positions of the simulated indications are know in every set of source
images, the correct detections (CD) and false alarms (FA) rates can be found for
every set of result images using (4.1) and (4.2). An additional utility program was
written for this purpose. The utility takes two set of images as input (images of true
indications and results of detection) and outputs the CD and FA rates for a certain
partitioning into measurement areas. These values (CD and FA) define one point
on ROC which describes performance of the algorithm for the used combination of
control parameters and source signal to noise ratio.

A change of one or more control parameters of the detection algorithm results in
an other set of results. Corresponding CD and FA can be calculated and plotted on
ROC as a next point. In a such way the influence of each control parameter on the
performance of the detection algorithm can be investigated.

Fig. 4.4 shows an example of detection results obtained at different values of
expected indication intensity h for one source image with SNR = 1.7 (measured).
Fig. 4.5 shows the ROC of the detection algorithm for the set of one hundred source
images with SNR = 1.7 and varying expected indication intensity h. The CD and
FA rates were calculated for 3 pixel high and 150 pixel wide measurement areas.
Other algorithm control parameters remain constant for this experiment and were:
min and max indication width (wmin and wmax) - 1 and 3 pixels, a priori probability
of indication present P (h) - 0.1, significant indication length Lsign - 128 pixels. It
can be seen from this plot that with the expected indication intensity h = 2.3σ the
algorithm is able to correctly find more than 95% of defect indications while the false
alarm rate stays lower than 0.6%.

If the source image set has SNR = 3.4, the detection quality improves even more
(Fig. 4.6) and CD > 98% can be obtained with FA < 0.2%. This result can
be obtained in range of the expected indication intensities h = 2.4 . . . 2.8σ with
wmin = 1, wmax = 3, P (h) = 0.1, Lsign = 128.

If, on opposite, the source image set has SNR = 0.86 (Fig. 4.7), the algorithm per-
formance characteristics decrease rapidly (see Fig. 4.8). As the ROC of the developed
algorithm approaches the random decision line it is concluded that the developed al-
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a) b) c)

d) e) f)

Figure 4.4: a) Source image with SNR = 1.7; b-f) Detection with varying sensitivity h
and constant (for this experiment) other control parameters: min and max indication
width wmin and wmax are 1 and 3 pixels, a priori probability of indication present
P (h) is 0.1, significant indication length Lsign is 128 pixels. b) h = 2.7σ - too low
sensitivity results in no detection - the algorithm fails; c) h = 2.6σ - result is better,
but CD rate is still insufficient; d) h = 2.5σ...2.3σ - the range of optimal sensitivities
which results in perfect detection with completely no false alarms (for this concrete
source image), ROC plot on Fig. 4.5 shows the optimum average performance for
this sensitivities too; e) h = 2.2σ - some over-detection can be seen; f) h = 2.1σ -
too high sensitivity results in wast false alarms - the result is unacceptable.

83



Chapter 4. Experimental evaluation

 h=2.3 σ
 h=2.4 σ

 h=2.5 σ

 h=2.6 σ

 h=2.7 σ

 h=2.2 σ

C
or

re
ct

 d
et

ec
tio

n 
ra

te

False alarm rate

 0

 0.2

 0.6

 0.8

 1

 0  0.004  0.008  0.01 0.002  0.006

 0.4

Figure 4.5: ROC of the detection algorithm. FA axis is scaled to 1% false alarms.
Each point on the plot describes the average algorithm performance for a certain fixed
combination of control parameters and the set of one hundred source images with
SNR = 1.7. Different points on the ROC are obtained by changing of the expected
indication intensity h (which control algorithm sensitivity) and processing the same
dataset. Other control parameters remain unchanged as for Fig. 4.4.
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Figure 4.6: ROC of the detection algorithm for the the set of one hundred source
images with SNR = 3.4. FA axis is scaled to 1% false alarms. Each point on the
plot describes the average algorithm performance for a certain fixed combination of
control parameters. Different points on the ROC are obtained by changing of the
expected indication intensity h (which control algorithm sensitivity) and processing
the same dataset. Other control parameters remain unchanged as for Fig. 4.4.
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Figure 4.7: Some examples of synthetic images with SNR = 0.86. The indications
are hardly visible even for a human due to the highly intensive noise.

gorithm fails for SNRs lower than 1.0. So this is the limit of applicability of the
proposed approach. This is in good correspondence with visual evaluation of 2D
images. At this noise level human beings have serious difficulties in the correct inter-
pretation of the images too. For trained inspectors the limit of visibility of signals is
about SNR = 1.0.

It is possible to see from the figures given above, that the expected indication
intensity h influences significantly the CD and FA rates produced by the algorithm.
Let us investigate the influence of the other control parameters of the algorithm
on its performance. On Fig. 4.8 and Fig. 4.9 the series of similarly labelled points
correspond to the same combination of all algorithm parameters except the expected
indication intensity h, which is varied inside a series. So inside the series of the
same labels only h is changed, whereas between different series the other control
parameters are changed too.

It is possible to constitute from Fig. 4.8 and Fig. 4.9, that points on the plot which
correspond to different combinations of control parameters are grouped around some
curve (obvious on Fig. 4.8 and represented by a dashed line on Fig. 4.9). This
allows us to expect that nearly all influences on the CD and FA rates from the
suboptimal Lsign (the minimal significant length) and P (h) (the a priori probability
of indication presence) can be compensated by the corresponding change of h (the
expected intensity of indication) in order to get the required CD or FA figures. I.e.:

• reasonable defaults can be selected for other algorithm control parameters
(which ensure satisfactory performance over the selected class of images);

• only the algorithm sensitivity (h) has to be changed in order to get the required
FA or CD rates.

This is valid at least for the image in experiment: a solid and relatively long
indication. In case of a ragged (dashed) indication or a relatively short indication
the role of the minimal significant length Lsign and the a priori probability of object
presence P (h) becomes more important. In that case the usage of default values may
become unsatisfactory and adjustments of Lsign or P (h) become necessary.
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Figure 4.8: ROC of the detection algorithm for the set of one hundred source images
with SNR = 0.86. FA axis is scaled to 100% false alarms. Each point on the plot
describes the average algorithm performance for a certain fixed combination of control
parameters. The points labelled by “�” are obtained for Lsign = 128, P (h) = 0.01
and different values of expected indication intensity h = 2.1 . . . 2.3σ. The “+”-points
correspond to Lsign = 128, P (h) = 0.50 and varied h = 1.8 . . . 1.9σ, “�” - to Lsign =
256, P (h) = 0.01 and varied h = 2.1 . . . 2.3σ, “×” - to Lsign = 256, P (h) = 0.50 and
varied h = 1.75 . . . 1.85σ.
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Figure 4.9: ROC of the detection algorithm for the set of one hundred source images
with SNR = 1.7. FA axis is scaled to 1% false alarms. Each point on the plot
describes the average algorithm performance for a certain fixed combination of control
parameters. The points labelled by “�” are obtained for Lsign = 128, P (h) = 0.01
and different values of expected indication intensity h = 2.2 . . . 2.7σ. The “+”-points
correspond to Lsign = 128, P (h) = 0.50 and varied h = 2.0 . . . 2.3σ, “�” - to Lsign =
256, P (h) = 0.01 and varied h = 2.3 . . . 2.7σ, “×” - to Lsign = 256, P (h) = 0.50 and
varied h = 1.9 . . . 2.3σ.
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4.3.3 Summary on synthetic images

The use of synthetic images generated according to the assumed image model allows
to investigate the detection potential of the proposed algorithm. The figures ob-
tained for images with SNR = 1.7 (SNR = 1.0 intended) show very good algorithm
capabilities in detection of indications with such low signal to noise ratios. I.e. the
algorithm was able to correctly detects 95% of indications while the probability of
false alarms does not exceed 0.5%. It is necessary to stress that these figures are only
valid for images which perfectly fit in the assumed image model. This may be not
completely true for the case of real radiographs, so in the next section the algorithm
performance will be investigated on real images.

4.4 Analysis of real-world radiographs

The experimental set of real images consists of one hundred of digitised real radio-
graphs of austenitic steel pipes from nuclear power plants. The radiographs were
taken at standard conditions according to EN1435, testing class B (160 kV X-ray
source, C5 system class film according to EN584-1). They were digitised with 70 µm
pixel size and 12 bits grey value resolution (with a CCD NDT scanner produced by
DBA Systems).

The true data are known for this image set while after the non-destructive testing
the welds were explored destructively by means of grinding [39].

An example of a such radiograph and a result of detection are shown on Fig. 4.10
and 4.11. The detection algorithm was applied with the following control parameters:
wmin = 2 pixels, wmax = 6 pixels, Lsign = 128 pixels, P (h) = 0.05 . . . 0.5 and
h = 2.0 . . . 3.5σ. All indications are marked for which a positive information gain
about hypothesis of presence of an indication (dI(h)) was estimated. The sensitivity
of the algorithm was adjusted by changing of the expected indication intensity h
(Fig. 4.12).

Because the positions of existing defects in this set are known the correct detection
and false alarm rates can be found. They are presented in a ROC plot on Fig. 4.13.
The same plot (Fig. 4.13) includes the CD and FA rates of several experienced in-
spectors [7, 39]. They have visually analysed the same set of digitised radiographs
using conventional image processing means. Defects were detected with 1 cm res-
olution in length direction. The whole set of one hundred images was analysed by
each inspector. Each point on the ROC plot indicates the CD and FA rates of each
inspector averaged over the whole image set. Despite the lower CD and higher FA
rates, as compared to synthetic images, the developed algorithm performs compara-
bly to visual (manual) inspection made by human beings. Although some inspectors
slightly outperform the developed algorithm, the algorithm is able to deliver more
consistent results, which are easily reproducible.

The Fig. 4.13 shows, additionally to the human results and results obtained with
the developed algorithm, the ROC of an other algorithm which was applied to the
same dataset [27]. This algorithm uses back-propagation neural network and was
trained on the images from the same dataset. The neural network algorithm uses
responses of many different local operators as its input. It was designed to discrim-
inate between real crack indications, crack-looking indications which are not cracks
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Figure 4.10: Example of a radiograph of a weld. Lead markers (numbers in white
squares) are used as references during radiograph interpretation. Grid if thin black
lines is presented on this image only for illustration purpose (crack detection algo-
rithm needs as input the clean original image): horizontal line shows centre of the
welding seam, vertical lines separate measurement boxes (1cm wide). Decision on
success of detection is made by analysing of results for each of the measurement boxes
separately.

Figure 4.11: Result produced by the developed crack detection algorithm from the
radiograph shown on Fig. 4.10. True positive detections in boxes 32-39 produced by
the algorithm for this image result in 100% correct detection rate. Overdetections
were made for boxes 39,40 (below the seam) and 32 (above the seam) which result
in 18.75% false alarm rate. The false detections in the upper image part are caused
by the lead markers and are not taken into account as they are not inherent to
radiographic images and obviously do not belong to the region of interest (the welding
seam).
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Figure 4.12: Detection of crack indications in real radiographs with different expected
indication intensities h. Changing of h influences the algorithm sensitivity and leads
therefore to different amounts of found objects. Parameters used: wmin = 2 pixels,
wmax = 6 pixels, Lsign = 128 pixels, P (h) = 0.1 and h = {2.0σ, 2.5σ, 3.0σ}
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in reality and noise instances. The algorithm works solely in local domain [27].
There is a reason in this trial for the imperfect performance of humans, neural

network algorithm [27] as well as the developed algorithm. The radiographs of test
specimens have been made only from one direction (only one projection was taken
of each part of the weld). Due to that it is very likely that not all crack defects
were radiographed from the optimal direction and therefore they are not imaged
completely on the radiographs and can not be detected completely. On the opposite,
the grinding allows to find all arbitrary located defects inside of each cut, but only
at the position of this cut. So the number of correct detections will be referred to
the whole number of defect areas even if they are not imaged on the radiographs. As
a consequence the CD rates of humans as well as the algorithm can not reach 100%.

From another side, the grinding has been made with 1 cm spacing: it provides no
information about defects between the cuts. I.e. if a short crack is located between
the cuts, it will be not counted as a true defect and the calculated FA rate will be
affected (both for humans and the detection algorithm).

It is also worth to mention again that the developed algorithm detects all elon-
gated crack-like indications. This means that real crack indication and crack-like
looking objects, i.e. root undercut from the welding process, which are not crack
defects in reality, cannot be distinguished by the algorithm. At the same time, the
trained inspectors are able to do so without difficulties. Cracks and undercuts can be
easily distinguished in destructive tests too. This may be a reason why the developed
algorithm does not perform absolutely better than humans.

4.5 An example of another application

The crack detection algorithm described in this work was designed mainly having
weld inspection in mind. Nevertheless the universality of the algorithm for other
applications was retained as far as possible and the algorithm has been found useful
for the detection of other elongated objects or cracks in other specimens too. Here,
the algorithm has been applied to the examination of radioactive waste containers.

The vitrification of high level radioactive waste from nuclear reprocessing facilities
is used as the standard method of immobilisation of such waste for a long period of
time. The melted glass containing about 15 weight-% of the high level radioactive
waste (HLW) is poured into thick walled steel canisters in several charges. As the
melt cools down, the inner part solidifies last raising internal tensions that might
release forming cracks in the glass body. In the scenarios of long range storage water
contact is postulated as a potential risk. Consequently, the surface of contact of the
glass block is subject to corrosive attack (lixiviation) and should be avoided or as
small as possible. For a determination of the surface area of the vitrified waste the
evaluation of the crack length is essential.

Several canisters produced with different cooling procedures were analysed at
BAM using the BAM-designed universal tomograph. Details about the experimental
setup and other related information can be found in [22] and the references therein.
Fig. 4.14.a shows an example of reconstructed slice of the test glass canister. The
pixel grey values encode the linear attenuation coefficient µ of the material. Multiple
crack indications are visible.
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Figure 4.13: Operating characteristic of the current crack detection algorithm in
comparison to the performance of several experienced inspectors. The ROC was
obtained on the set of one hundred real radiographs for which the true data are
known. “+” - human results (different inspectors, one point per inspector, CD and
FA averaged over the image set), “�” - neural networks algorithm [27], “�” - the
developed algorithm (each point for different combinations of control parameters).
The algorithm control parameters used: wmin = 2, wmax = 6, Lsign = 128, P (h) =
0.05− 0.5 and h = 2.0− 3.5
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The developed crack detection algorithm was used to automatically label the crack
indications. The present implementation of the algorithm searches only either for
horizontal (±45◦ from horizontal) or vertical (±45◦ from vertical) directions. These
search directions and allowed variations of direction are not inherent property of the
proposed approach but are specific for the current implementation (which was made
for the detection of longitudinal cracks in welding seams). Nevertheless difficulties
with detection of curves, which change their global direction in more than 90 degrees,
are inherent for the used search procedure and therefore for the detection algorithm
at all. This means that (semi)circular structures which are visible on Fig. 4.14.a
cannot be detected in a single step.

Therefore the algorithm was applied for horizontal (Fig. 4.14.b) and vertical
(Fig. 4.14.c) directions in series and then these results combined in a single image
(Fig. 4.14.d). Algorithm control parameters were chosen as follows: several profiles
of average crack indication were taken to estimate minimal and maximal allowed
indication width, a priori probability is left at default 0.1. Then several tests were
made for different significant indication lengths (Lsign = {64, 128} pixels) and differ-
ent sensitivities (h = {3, 4, 5, 6, 7}σ) to reveal useful combinations. The combination
of both search directions reveal successfully all significant flaws in this tomorgam.
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a) b)

c) d)

Figure 4.14: a) An example tomogram of the test glass canister [22]. b)-d) Cracks
automatically marked by the developed algorithm: b) horizontal pass, c) vertical
pass, d) results b and c merged together. Algorithm control parameters: minimal
and maximal indication width (wmin and wmax) 2 and 5 pixels, a priori probability
of indication present P (h) is 0.1, significant indication length Lsign is 64 pixels and
expected SNR is 5.0 (h = 5.0σ).
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Chapter 5

Summary and outlook

The task of automatic detection of crack-like defect indications in digital radiographs
of welding seams has been considered in this work. This task is not trivial due to the
inherent properties of radiography (Chapter 1): low signal to noise ratio and absence
of formal definition of crack shape are the most difficult obstacles. The literature
analysis given in Chapter 2 has revealed that certain conventional approaches, i.e. all
purely local methods (various gradient thresholders, indication profile analysers, etc.)
as well as segmentation techniques based on global pixel statistics, are not suited to
the solution of this detection task. On the other hand, the approaches which use
structural global features of the objects sought for look promising. This is first of
all the integration of an informative feature over the whole indication length, as it
allows to eliminate the random component caused by the noise.

Methods which use integration to suppress noise are commonly in use for decades
in the field of information transmission and radar [62]. However, their direct appli-
cation for the detection of crack indications is connected with certain difficulties. In
radar or information transmission, the transmitted signal is always one dimensional
(evolving over time) and usually of known length. The task consists in the location
of the signal in time (one unknown). In the task considered in this work the signal is
two dimensional and its spatial shape and length are unknown. Therefore, many un-
known variables have to be handled. This introduces high computational complexity
of the detection.

In the presented work the problem of excessive computational complexity is solved
by design of the object estimation function of a special form. The proposed estimation
function is constructed as the sum of a posteriori information gains in each point
along the indication. This allows to find the optimum of the estimation function in
a sequential way using serial dynamic programming and thus avoiding the excessive
computational complexity.

The developed algorithm is tested on several sets of synthetic as well as real ra-
diographs. Several ROCs were plotted on the basis of the experimental evaluation
and used for the assessment of the algorithm performance. The ROCs show how the
percentage of correct detections (CD) and the percentage of false detections (false
alarms, FA) made by the algorithm depend on the control parameters and different
source images. It is shown, that for synthetic images, which are generated accord-
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ing to the assumed image model, the developed algorithm demonstrates very good
performance. It detects correctly 95% of indications with an SNR = 1.7, while the
probability of false alarms does not exceed 0.5%. Experiments with real radiographs
of welding seams show CD and FA rates which are comparable to the results of
human inspectors having analysed the same image set (Fig. 4.13). This is considered
as a good result, although the absolute numbers for real radiographs are naturally
not as good as for the synthetic images.

Despite the reported good performance, the following improvements of the devel-
oped algorithm can be investigated in the future:

• Approximation of the background by surfaces of higher order may be more
adequate for images with a fast changing background (rather than the piecewise
linear model presently used).

• The chained spatial statistical indication model (as introduced in Section 3.5.6)
looks more appropriate for the description of crack propagation than the model
which assumes statistically independent local indications (from the physical
point of view). However, if such a model is used, the exact optimisation using
dynamic programming becomes problematic.

• Shape features more specific for crack indications can be used. For example, the
presence of a bifurcation point (point where the crack splits into two cracks)
helps to distinguish the real crack indication from the crack-like ones (e.g.
undercut).

• Currently, detection of all suspicious crack-like indications on a image with a
size 2000 × 8000 pixels can take (depending of the number of indications and
noise level) from 10 minutes up to 2-3 hours on a 3 GHz Intel CPU. A decrease
of the execution time to 3-5 minutes is desirable for practical applications. An
implementation on parallel hardware (e.g. computing clusters) is the simplest
way to satisfy this requirement.
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Appendix A

C++ implementation

// local.h:

#ifndef _LOCAL_

#define _LOCAL_

#include <math.h>

#include "ip.h"

class Retina

{

u_short Wmin;

u_short Wmax;

ip::RasterImage<ip::gv16bpp> * masks;

public:

Retina (const ip::RasterImage<ip::gv16bpp> & source,

const u_short Wmin, const u_short Wmax);

~Retina (void) { delete [] masks; }

const u_short GetWmin (void) const { return Wmin; };

const u_short GetWmax (void) const { return Wmax; };

const u_long GetXSize (void) const { return (masks!=NULL) ? masks->GetXSize() : 0; };

const u_long GetYSize (void) const { return (masks!=NULL) ? masks->GetYSize() : 0; };

// dir = child_x - parent_x -> if dir==0 it means "vertical"

const float getcontrast_3point_0order (const u_long x, const u_long y,

const u_short w, const signed short dir) const; // 3-point null-order

const float getcontrast_3point_1order (const u_long x, const u_long y,

const u_short w, const signed short dir) const; // 3-point 1st-order

const float getcontrast_5point_1order (const u_long x, const u_long y,

const u_short w, const signed short dir) const; // 5-point 1st-order

};

#endif

// end of local.h

// local.cpp:

#include <stdio.h>

#include "ip.h"
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#include "local.h"

Retina::Retina (const ip::RasterImage<ip::gv16bpp> & source,

const u_short _Wmin, const u_short _Wmax)

{

try

{

if (_Wmin > _Wmax) throw std::invalid_argument

("Wrong cells range is given to Retina’s constructor.");

masks = NULL;

masks = new ip::RasterImage<ip::gv16bpp> [_Wmax - _Wmin + 1];

if (masks == NULL) throw iddqd::memory_allocation_fault ();

Wmin = _Wmin, Wmax = _Wmax;

for (u_short w = Wmin; w <= Wmax; w++) ip::RunningMean(source, w, w, masks+w-Wmin);

}

catch (...)

{

delete [] masks;

masks = NULL, Wmax = Wmin = 0;

throw;

}

}

// retina’s model is "null-order aprox. by 3 points"

const float Retina::getcontrast_3point_0order

(const u_long x, const u_long y, const u_short w, const signed short dir) const

{

ip::RasterImage<ip::gv16bpp> * w_image = masks + w - Wmin;

s_int e1 = s_int(w_image->getelement(x+w,y-dir)) - s_int(w_image->getelement(x,y));

s_int e2 = s_int(w_image->getelement(x-w,y+dir)) - s_int(w_image->getelement(x,y));

return (e1 < e2) ? e1 : e2;

}

// retina’s model is "1st-order aprox. by 3 points"

const float Retina::getcontrast_3point_1order

(const u_long x, const u_long y, const u_short w, const signed short dir) const

{

ip::RasterImage<ip::gv16bpp> * w_image = masks + w - Wmin;

return (float(w_image->getelement(x+w,y-dir)) + w_image->getelement(x-w,y+dir))/2 -

w_image->getelement(x,y);

}

// retina’s model is "1st-order aprox. by 5 points"

const float Retina::getcontrast_5point_1order

(const u_long x, const u_long y, const u_short w, const signed short dir) const

{

ip::RasterImage<ip::gv16bpp> * w_image = masks + w - Wmin;

s_int e1 = 2*int(w_image->getelement(x+w,y-dir)) -

int(w_image->getelement(x+2*w,y-2*dir)) - int(w_image->getelement(x,y));

s_int e2 = 2*int(w_image->getelement(x-w,y+dir)) -

int(w_image->getelement(x-2*w,y+2*dir)) - int(w_image->getelement(x,y));

return (e1 < e2) ? e1 : e2;

}

// end of local.cpp

// combine.h:

#ifndef _COMBINE_

#define _COMBINE_
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#include "conf.h"

#include "local.h"

void Trace (const Conf * const conf, const Retina * const retina,

ip::RasterImage<ip::gv8bpp> * const result);

#endif

// end of combine.h

// combine.cpp:

#include <stdio.h>

#include <string.h>

#include <math.h>

#include "ip.h"

#include "conf.h"

#include "combine.h"

#define GETCONTRAST getcontrast_3point_1order

static const u_short NOT_A_COORD = 0xFFFF;

static const u_char NOT_A_WINSIZE = 0xFF;

struct Node

{

float info;

float P1;

u_short ln;

u_short father_x;

u_short father_y;

u_char father_w;

Node (void) { Clear(); }

void Clear (void)

{ info=-FLT_MAX, P1=0, ln=0,

father_x=father_y=NOT_A_COORD, father_w=NOT_A_WINSIZE; }

void Set (float _info, float _P1)

{ info=_info, P1=_P1, ln=1, father_x=father_y=NOT_A_COORD, father_w=NOT_A_WINSIZE; }

void Set (float _info, float _P1, u_long _ln, u_long x, u_long y, u_short w)

{ info=_info, P1=_P1, ln=u_short(_ln),

father_x=u_short(x), father_y=u_short(y), father_w=u_char(w); }

};

class Grid

{

u_long Xsize;

u_long Ysize;

u_short Wmin;

u_short Wrange;

iddqd::vector<Node> nodes;

public:

Grid (u_long Xsize, u_long Ysize, u_short Wmin, u_short Wmax);

void Clear (void);

Node * get (u_long x, u_long y, u_short w)

{ return (nodes.GetRaw() + (y*Xsize+x)*Wrange + w - Wmin); };

};
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Grid::Grid (u_long X, u_long Y, u_short Wminimum, u_short Wmaximum)

{

try

{

Xsize = X, Ysize = Y, Wmin = Wminimum, Wrange = Wmaximum - Wminimum + 1;

nodes.Create(Xsize*Ysize*Wrange);

}

catch (...)

{

Xsize = Ysize = Wmin = Wrange = 0;

throw;

}

}

void Grid::Clear (void)

{

nodes = Node();

}

static const u_char Nothing = 0;

static const u_char Up2Down = 1;

static const u_char Down2Up = 2; // (Up2Down & Down2Up) must be 0 <- empty intersection

class Tracer

{

// life-time stable group (all coordinates are REAL!)

const Conf * const conf;

const Retina * const retina;

ip::RasterImage<ip::gvAnalog> * context_energy_map;

ip::RasterImage<u_char> status_map;

// call-to-call variating group

bool reverseY;

Node best_path_top;

Grid grid; // <- y-coordinate is virtual: if (reverseY==true)

// then retina/status_map/context_energy_map.y = Ymax-1-grid.y

// procs

float GetP1post (float P1prior, float snr_est)

{

register float tmp = snr_est-conf->signal;

float L1 = P1prior * exp(-0.5*tmp*tmp);

float L0 = (1-P1prior) * exp(-0.5*snr_est*snr_est);

return L1/(L1+L0);

}

float GetInfoGain (float Pprior, float Ppost)

{

return (-log(Pprior) - (-log(Ppost)));

}

// search is performed in virtual coordinates!

void MakeRoot (const u_long x, const u_long y, const u_short w);

void MakeChild (const u_long father_x, const u_long father_y, const u_short father_w,

const u_long x, const u_long y, const u_short w);

void OpenNode (const u_long to_open_x, const u_long to_open_y,

const u_short to_open_w);

public:
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Tracer (const Conf * const _conf, const Retina * const _retina,

const u_short context_size);

~Tracer (void) { delete [] context_energy_map; }

Node FindNextCurve (const byte search_direction);

void Visualize (ip::RasterImage<ip::gv8bpp> * const result);

};

Tracer::Tracer (const Conf * const _conf, const Retina * const _retina,

const u_short context_size)

: conf (_conf),

retina (_retina),

context_energy_map (NULL),

status_map (_retina->GetXSize(), _retina->GetYSize(), Nothing),

grid (_retina->GetXSize(), _retina->GetYSize(),

_retina->GetWmin(), _retina->GetWmax())

{

context_energy_map =

new ip::RasterImage<ip::gvAnalog> [retina->GetWmax()-retina->GetWmin()+1];

for (u_short w = retina->GetWmin(); w <= retina->GetWmax(); w++)

{

// make a map of indications distribution

ip::RasterImage<ip::gvAnalog> indication_map;

indication_map.Create(retina->GetXSize(), retina->GetYSize());

for (u_long y = retina->GetWmax(); y < retina->GetYSize()-retina->GetWmax(); y++)

{

ip::gvAnalog * pim = indication_map.GetRaw() +

y*retina->GetXSize() + retina->GetWmax();

for (u_long x = retina->GetWmax(); x < retina->GetXSize()-retina->GetWmax(); x++)

{

iddqd::averager local_est (0, 0);

for (s_short dir = -w; dir <= w; dir+=w)

local_est.add (retina->GETCONTRAST(x, y, w, dir));

*(pim++) = local_est.get();

}

}

// smooth indications map, but preserve unsmoothed version too

ip::RasterImage<ip::gvAnalog> smoothed_indication_map;

ip::RunningMean (indication_map, context_size, context_size,

&smoothed_indication_map);

// make a map of deviations distribution

ip::RasterImage<ip::gvAnalog> * cur_noise_map = context_energy_map +

w-retina->GetWmin();

ip::RunningDisp (indication_map, smoothed_indication_map,

context_size, context_size, cur_noise_map);

ip::RunningMean(*cur_noise_map, context_size, context_size, cur_noise_map);

ip::gvAnalog * pp = cur_noise_map->GetRaw();

for (u_long l = 0; l < retina->GetXSize()*retina->GetYSize(); l++, pp++)

*pp = sqrt(*pp);

}

}

void Tracer::MakeRoot (const u_long x, const u_long y, const u_short w)

{

u_long real_y = reverseY ? (retina->GetYSize()-1-y) : y;

float P1post = GetP1post (conf->apriori_prob,

retina->GETCONTRAST(x, real_y, w, 0) /

(context_energy_map+w-retina->GetWmin())->getelement(x,real_y));

float new_info = GetInfoGain (conf->apriori_prob, P1post);

Node * place_to_store = grid.get(x, y, w);
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if (place_to_store->info < new_info) place_to_store->Set (new_info, P1post);

}

void Tracer::MakeChild (const u_long father_x, const u_long father_y,

const u_short father_w, const u_long x,

const u_long y, const u_short w)

{

u_long real_y = reverseY ? (retina->GetYSize()-1-y) : y;

Node * father = grid.get(father_x, father_y, father_w);

float P1prior = father->P1 * conf->prolongation_prob;

if (P1prior < conf->apriori_prob) P1prior = conf->apriori_prob;

float P1post = GetP1post (P1prior, retina->GETCONTRAST(x, real_y, w,

s_short(s_int(reverseY?(father_x-x):(x-father_x))*w)) /

(context_energy_map+w-retina->GetWmin())->getelement(x,real_y));

float new_info = father->info + GetInfoGain (conf->apriori_prob, P1post);

Node * place_to_store = grid.get(x, y, w);

if (place_to_store->info < new_info)

place_to_store->Set (new_info, P1post, father->ln+1, father_x, father_y, father_w);

}

void Tracer::OpenNode (const u_long to_open_x, const u_long to_open_y,

const u_short to_open_w)

{

for (s_char dw = -1; dw <= 1; dw++)

{

byte w = to_open_w + dw;

if (w >= retina->GetWmin() && w <= retina->GetWmax())

{

MakeChild (to_open_x, to_open_y, to_open_w, to_open_x-1, to_open_y+1, w);

MakeChild (to_open_x, to_open_y, to_open_w, to_open_x, to_open_y+1, w);

MakeChild (to_open_x, to_open_y, to_open_w, to_open_x+1, to_open_y+1, w);

}

}

}

Node Tracer::FindNextCurve (const byte search_direction)

{

best_path_top.Clear(), grid.Clear();

reverseY = (search_direction == Down2Up);

for (u_long y=2*retina->GetWmax(); y<retina->GetYSize()-2*retina->GetWmax(); y++)

for (u_long x=2*retina->GetWmax(); x<retina->GetXSize()-2*retina->GetWmax(); x++)

if ((status_map.getelement(x, y) & search_direction) != search_direction)

{

for (u_short w = retina->GetWmin(); w <= retina->GetWmax(); w++)

{

MakeRoot (x, y, w); // try to start new path from here

OpenNode (x, y, w); // open current node

Node * node_here = grid.get(x, y, w);

// remember best_path

if (node_here->ln >= conf->length_min && node_here->info > best_path_top.info)

best_path_top.Set(node_here->info, node_here->P1, node_here->ln, x, y, w);

}

}

return best_path_top;

}

void Tracer::Visualize (ip::RasterImage<ip::gv8bpp> * const result)

{

if (best_path_top.ln == 0) return;
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u_char path_mask = reverseY ? Down2Up : Up2Down;

u_long x = best_path_top.father_x;

u_long y = best_path_top.father_y;

u_short w = best_path_top.father_w;

while (y != NOT_A_COORD)

{

u_long real_y = reverseY ? (retina->GetYSize()-1-y) : y;

result->setelement (x, real_y, 0xFF);

for (s_int dy = -s_int(w); dy <= s_int(w); dy++)

for (s_int dx = -s_int(w); dx <= s_int(w); dx++)

if (hypot(dx,dy) <= w)

{

status_map.SetElement

(x+dx, y+dy, status_map.GetElement(x+dx, y+dy) | path_mask);

if (result->GetElement(x+dx, real_y+dy) < 0x7F)

result->SetElement (x+dx, real_y+dy, 0x7F);

}

Node * this_node = grid.get(x, y, w);

x = this_node->father_x, y = this_node->father_y, w = this_node->father_w;

}

}

void Trace (const Conf * const conf, const Retina * const retina,

ip::RasterImage<ip::gv8bpp> * const result)

{

result->Create(retina->GetXSize(), retina->GetYSize(), 0);

Tracer tracer (conf, retina, conf->length_min/2);

// do Up2Down trace

Node top_of_path = tracer.FindNextCurve (Up2Down);

while (top_of_path.info > 0)

{

tracer.Visualize (result);

top_of_path = tracer.FindNextCurve (Up2Down);

}

// do Down2Up trace

top_of_path = tracer.FindNextCurve (Down2Up);

while (top_of_path.info > 0)

{

tracer.Visualize (result);

top_of_path = tracer.FindNextCurve (Down2Up);

}

}

// end of combine.cpp

// conf.h:

#ifndef _CONF_

#define _CONF_

#define SEARCH_VERTICAL 1

#define SEARCH_HORIZONTAL 2

struct Conf

{

bool verbose;

char source [128];
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char result [128];

signed int search; // SEARCH_VERTICAL or SEARCH_HORIZONTAL constants

unsigned int width_min;

unsigned int width_max;

unsigned int length_min;

float signal;

float apriori_prob;

float prolongation_prob;

Conf (int argc, char** argv);

};

#endif

// end of conf.h

// conf.cpp:

#include <stdio.h>

#include <math.h>

#include <string.h>

#include "iddqd.h"

#include "conf.h"

Conf::Conf (int argc, char** argv)

{

verbose = 0;

strcpy (source, "");

strcpy (result, "");

search = SEARCH_HORIZONTAL;

width_min = 2;

width_max = 6;

length_min = 128;

apriori_prob = 0.50;

prolongation_prob = 0.95;

signal = 3;

if (argc < 2)

{

iddqd::messager->info((std::string("\nUsage: ") + argv[0] + " <args>\n" +

"Args:\n" +

" source:<filename> - Set source image (mandatory). \n" +

" result:<filename> - Set result image (mandatory). \n" +

" search-horizontal | \n" +

" search-vertical - Set approx. direction of objects to search for.\n" +

" width-min:<pix> - Set minimal width of objects to look for. Def.2\n" +

" width-max:<pix> - Set maximal width of objects to look for. Def.6\n" +

" length-min:<pix> - Set minimal length of object to consider. \n" +

" Default is 128\n" +

" apriori-prob:<prob> - Apriori probability. Default is 0.5 \n" +

" prolongation-prob:<prob> - Prolongation probability. Default is 0.95 \n" +

" signal:<SNR> - Define hypothesis of presence. Default is 3.0 \n"

).c_str());

}

for (int i = 1; i < argc; i++)

{

if (strcmp(argv[i], "verbose") == 0)
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{

verbose = true;

continue;

}

char key [128];

strcpy (key, "source:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

strcpy(source, argv[i]+strlen(key));

continue;

}

strcpy (key, "result:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

strcpy(result, argv[i]+strlen(key));

continue;

}

if (strcmp(argv[i], "search-vertical") == 0)

{

search = SEARCH_VERTICAL;

continue;

}

if (strcmp(argv[i], "search-horizontal") == 0)

{

search = SEARCH_HORIZONTAL;

continue;

}

strcpy (key, "width-min:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

unsigned int ui = 0xFFFF;

sscanf (argv[i] + strlen(key), "%u", &ui);

if (ui < 0xFFFF) width_min = ui;

continue;

}

strcpy (key, "width-max:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

unsigned int ui = 0xFFFF;

sscanf (argv[i] + strlen(key), "%u", &ui);

if (ui < 0xFFFF) width_max = ui;

continue;

}

strcpy (key, "length-min:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

unsigned int ui = 0xFFFF;

sscanf (argv[i] + strlen(key), "%u", &ui);

if (ui < 0xFFFF) length_min = ui;

continue;

}

strcpy (key, "signal:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

float f = -1;

sscanf (argv[i] + strlen(key), "%f", &f);

if (f > 0) signal = f;

continue;

}
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strcpy (key, "apriori-prob:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

float f = -1;

sscanf (argv[i] + strlen(key), "%f", &f);

if (f >= 0 && f <= 1.0) apriori_prob = f;

continue;

}

strcpy (key, "prolongation-prob:");

if (strncmp (argv[i], key, strlen(key)) == 0)

{

float f = -1;

sscanf (argv[i] + strlen(key), "%f", &f);

if (f >= 0 && f <= 1.0) prolongation_prob = f;

continue;

}

fprintf (stderr, "Ignoring unknown option \"%s\"\n", argv[i]);

}

if (strcmp(source,"")==0)

throw std::runtime_error ("Mandatory argument ’source:<filename>’ is not set!");

if (strcmp(result,"")==0)

throw std::runtime_error ("Mandatory argument ’result:<filename>’ is not set!");

}

// end of conf.cpp

// cognition.cpp:

#include <stdio.h>

#include "ip.h"

#include "conf.h"

#include "local.h"

#include "combine.h"

iddqd::ConsoleMessagingInterface console_messager;

iddqd::MessagingInterface * iddqd::messager = &console_messager;

int main (int argc, char * argv[ ])

{

try

{

Conf conf (argc, argv);

ip::RasterImage<ip::gv16bpp> source;

source.Load(conf.source);

if (conf.search == SEARCH_HORIZONTAL) ip::Rotate90CW (source, &source);

Retina retina (source, conf.width_min, conf.width_max); // do some fast precalc.

ip::RasterImage<ip::gv8bpp> result;

Trace (&conf, &retina, &result); // <-- here control seats whole time

if (conf.search == SEARCH_HORIZONTAL) ip::Rotate90CCW (result, &result);

int sz = strlen(conf.result);

if ((sz > 4) && (strcmp(conf.result+sz-4, ".bmp")==0))

result.SaveBMP (conf.result);

else result.SaveTIFF(conf.result);

return 1;

}

catch (std::exception & e)

{

if (strlen(e.what()) > 0) iddqd::messager->error(e.what());
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else iddqd::messager->error(

"One or more unknown errors were encountered during execution.");

return 0;

}

catch (...)

{

iddqd::messager->error(

"One or more unknown errors were encountered during execution.");

return 0;

}

}

// end of cognition.cpp
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Report on a NDT Round Robin on Austenitic Circumferential Pipe Welds),
23. MPA-Seminar, Stuttgart, Oct. 1997, pp. 41.1-42.16.

[8] M. Brejl, M. Sonka, Medical image segmentation: Automated design of border
detection criteria from examples, Journal of Electronic Imaging, Vol.8(1), 1999,
54-64.

[9] J. B. Burns, A. R. Hanson, E. M. Riseman, Extracting straight lines, IEEE
Trans. Pattern Anal. Mach. Intell., PAMI-8, No.4, 1986, 425-455.

[10] J. Canny, A computational approach to edge detection, IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-8, No.6, 1986, 679-698.

[11] C. K. Chow, T. Kaneko, Boundary detection of radiographic images by a thresh-
old method, in Proc. of IFIP Congress 71, 130-134.

[12] AR. Cowen, Digital X-Ray Imaging, Meas. Sci. Technol. 2, 1991, 691-707.

109



Bibliography

[13] M. R. Dobie, P. H. Lewis, Extracting curvilinear features from remotely sensed
images using minimum cost path techniquies, Proc. of the IEEE International
Conference on Image Processing - ICIP’94, 1994, 231-235.

[14] W. Doyle, Operation useful for similarity-invariant pattern recognition, J. Assoc.
Comput. Mach. 9, 1962, 259-267.

[15] R. O. Duda, P. E. Hart, Use of Hought Transform to detect lines and curves in
pictures, Communication of the ACN, Vol.15, 1972, 11-15.

[16] R. O. Duda, P. E. Hart, Pattern Classification and Image Analysis, Wiley, New
York, 1973.

[17] M. Erve, U. Wesseling, R. Kilian, R. Hardt, G. Brümmer, V. Maier, U. Ilg,
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