TY - JOUR A1 - Garrido, E. A1 - Climent Terol, Estela A1 - Marcos, M. D. A1 - Sancenón, F. A1 - Rurack, Knut A1 - Martínez-Máñez, R. T1 - Dualplex lateral flow assay for simultaneous scopolamine and "cannibal drug" detection based on receptor-gated mesoporous nanoparticles N2 - We report herein the design of a strip-based rapid test utilizing bioinspired hybrid nanomaterials for the in situ and at site detection of the drug scopolamine (SCP) using a smartphone for readout, allowing SCP identification in diluted saliva down to 40 nM in less than 15 min. For this purpose, we prepared a nanosensor based on mesoporous silica nanoparticles loaded with a fluorescent reporter (rhodamine B) and functionalized with bethanechol, a potent agonist of recombinant human muscarinic acetylcholine receptor M2 (M2-AChR). M2-AChR interaction with the anchored bethanechol derivative leads to capping of the pores. The sensing mechanism relies on binding of SCP to M2-AChR resulting in pore opening and delivery of the entrapped rhodamine B reporter. Moreover, the material was incorporated into strips for lateral-flow assays coupled to smartphone readout, giving fast response time, good selectivity, and exceptional sensitivity. In an attempt to a mobile analytical test system for law enforcement services, we have also developed a dualplex lateral flow assay for SCP and 3,4-methylenedioxypyrovalerone (MDPV) also known as the so-called “cannibal drug”. KW - Rapid tests KW - Vor-Ort-Analytik KW - Lateral Flow Assays KW - Scopolamine KW - Gesteuerte Freisetzung KW - Cannibal Drug PY - 2022 DO - https://doi.org/10.1039/d2nr03325a SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Ye, M.-Y. A1 - Yang, Q. A1 - Kreyenschulte, C. A1 - Wagner, Andreas A1 - Frisch, M. A1 - Brückner, A. A1 - Kondratenko, E. A1 - Kraehnert, R. T1 - Dynamics of Reaction-Induced Changes of Model-Type Iron Oxide Phases in the CO2-Fischer-Tropsch-Synthesis N2 - Iron-based catalysts are employed in CO2-FTS due to their ability to convert CO2 into CO in a first step and their selectivity towards higher hydrocarbons in a second CO hydrogenation step. According to the literature, iron carbides represent the active phase for hydrocarbon formation and are claimed to emerge in the presence of CO. We propose nanostructured FeOx films as model systems to assess information about the complex phase transformations during CO2-FTS. Mesoporous hematite, ferrihydrite, maghemite, maghemite/magnetite films were exposed to CO2-FTS atmospheres at 20 bar and 300°C. Up to three distinct phases were observed depending on the timeon-stream (TOS): a sintered maghemite/magnetite phase, a carbidic core-shell structure, and a low-crystalline, needle-type oxide phase. Our findings indicate that the formation of an intermediary maghemite/magnetite phase, predominant after short TOS (30 h), precedes the evolution of the carbide phase. Yet, even after prolonged TOS (185 h), no full conversion into a bulk carbide is observed. KW - Nanostructured FeOx films KW - CO2 KW - Scanning Auger Spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549709 DO - https://doi.org/10.1002/cctc.202200240 SN - 1867-3880 VL - 14 IS - 14 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-54970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Dynamics ooof Composite Materials N2 - Historically, to tune the properties of a polymer or more general soft matter systems by a second phase is not a new concept and dates back to the 40s of the last century. Beside some successes, the improvement of the properties remained somehow limited. The expectations of the enhancement of the properties of composites changed by the developments of Toyota Central research in the 1990s. It was shown that the incorporation of 5 vol% exfoliated layers of a clay system into a polymer leads to a strong improvement of the mechanical and thermal properties. This discovery stimulated a broad research interest of both fundamental and applied character. Today, polymer-based nanocomposites have reached a billion-dollar global market. The corresponding applications span from components for transportation, commodity plastics with enhanced barrier and/or flame retardancy characteristics, to polymers with electrical properties for shielding, electronics, sensors, and solar cells as well as to live science. Important fields are filled rubbers, reinforced thermoplastics, or thermosets for automotive, aircraft/space and marine industries, but also membranes for separation processes as well as barrier layers, just to mention a few. For a variety of applications, the molecular mobility in nanocomposites is of great importance. This concerns the molecular mobility needed to form a percolating filler network in rubbers used in tires or in composites employed in electric shielding applications. In general, it is also essential for processing polymer-based nanocomposites. Furthermore, separation processes in composite materials for membranes require a certain molecular mobility. This also concern nanodielectrics used in electrical applications or sensors where the mobility of charge carriers can be related to the fluctuations of molecular groups etc. Finally, the molecular mobility can be taken as probe for structure on a molecular scale. Broadband dielectric spectroscopy is a powerful tool to investigate the molecular mobility in polymer systems. It is due to the extremely broad frequency and sensitivity range that can be covered by this technique. Information about localized and cooperative molecular fluctuations, polarization effects at interfaces, as well as charge transport processes can be deduced. Therefore, this book focusses on broadband dielectric spectroscopy of composite materials. Moreover, the dielectric studies are accompanied by mechanical spectroscopy, advanced calorimetry, NMR techniques, as well as transmission electron microscopy and X-ray scattering investigations. Besides a brief introduction to (nano)composites, the book aims to address fundamental aspects of the molecular mobility in this innovative group of materials. Selected examples with scientific interest and some cases with high industrial impact were chosen. Due to the breadth of the subject, unfortunately not all topics could be addressed in detail, such as processing for instance. Berlin, Andreas Schönhals July 2021 Paulina Szymoniak KW - Composite materials KW - Nanocomposites PY - 2022 SN - 978-3-030-89722-2 SN - 978-3-030-89723-9 DO - https://doi.org/10.1007/978-3-030-89723-9 VL - 2022 SP - 1 EP - 375 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-54538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Editorial for special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546794 DO - https://doi.org/10.3390/min12030299 SN - 2075-163X VL - 12(3) IS - Special issue "Formation of sulfate minerals in natural and industrial environments" SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-54679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nasr Esfahani, M. A1 - Zare Pakzad, S. A1 - Li, T. A1 - Li, X. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Leblebici, Y. A1 - Erdem Alaca, B. T1 - Effect of Native Oxide on Stress in Silicon Nanowires: Implications for Nanoelectromechanical Systems N2 - Understanding the origins of intrinsic stress in Si nanowires (NWs) is crucial for their successful utilization as transducer building blocks in next-generation, miniaturized sensors based on anoelectromechanical systems (NEMS). With their small size leading to ultrahigh-resonance frequencies and extreme surface-to-volume ratios, silicon NWs raise new opportunities regarding sensitivity, precision, and speed in both physical and biochemical sensing. With silicon optoelectromechanical properties strongly dependent on the level of NW intrinsic stress, various studies have been devoted to the measurement of such stresses generated, for example, as a result of harsh fabrication processes. However, due to enormous NW surface area, even the native oxide that is conventionally considered as a benign surface condition can cause significant stresses. To address this issue, a combination of nanomechanical characterization and atomistic simulation approaches is developed. Relying only on low-temperature processes, the fabrication approach yields monolithic NWs with optimum boundary conditions, where NWs and support architecture are etched within the same silicon crystal. Resulting NWs are characterized by transmission electron microscopy and micro-Raman spectroscopy. The interpretation of results is carried out through molecular dynamics simulations with ReaxFF potential facilitating the incorporation of humidity and temperature, thereby providing a close replica of the actual oxidation environment - in contrast to previous dry oxidation or self-limiting thermal oxidation studies. As a result, consensus on significant intrinsic tensile stresses on the order of 100 MPa to 1 GPa was achieved as a function of NW critical dimension and aspect ratio. The understanding developed herein regarding the role of native oxide played in the generation of NW intrinsic stresses is important for the design and development of silicon-based NEMS. KW - Nanoelectromechanical systems (NEMS) KW - Silicon nanowires KW - Native oxide KW - Intrinsic stress KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560471 DO - https://doi.org/10.1021/acsanm.2c02983 SN - 2574-0970 VL - 5 SP - 13276 EP - 13285 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Dejian A1 - Schmidt, Martin A1 - Krietsch, Arne A1 - Krause, U. T1 - Effect of oxygen concentration, inert gas and CH4/H2 addition on the minimum ignition energy of coal dusts N2 - MIKE III apparatus tests were conducted to investigate the minimum ignition energy (MIE) of coal dusts in air and O2/CO2 atmospheres with and without small amount of CH4/H2. The O2 mole fraction (XO2) in the gas mixtures varied from 21% to 50% with the CH4/H2 mole fraction from 0 to 2%. Experimental result showed that MIE of coal dusts significantly decreases even by three orders of magnitude in mJ with increasing XO2 and the addition of CH4/H2. Compared with CH4, H2 had a relatively strong promotion effect on the spark ignition of coal dusts. The inhibiting effect of CO2 was found to be much stronger than N2, but this inhibiting effect of CO2 could be eliminated by 9% increment of XO2. The effect on MIE of coal dusts thus followed by the order: 9% increment of XO2 > CO2 replacing N2 > 2% CH4 or H2 addition. Moreover, two empirical models were used to estimate the MIE of hybrid dust-gas mixture (HMIE), and the results showed that calculated data can well reflect the promoting effect of elevated XO2 and flammable gas addition, and the inhibiting effect of inert gas KW - Ignition energy KW - Hybrid mixture KW - Oxygen rich KW - Inerting effect KW - Empirical model PY - 2022 DO - https://doi.org/10.1016/j.jlp.2022.104772 SN - 0950-4230 VL - 77 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-55888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Kim, K.J. T1 - Elemental Composition and Thickness Determination of Thin Films by Electron Probe Microanalysis (EPMA) N2 - microscopy (AFM), or X-ray reflectometry. For the additional determination of thin film composition, techniques like X-ray photoelectron spectroscopy (XPS) or mass spectrometry-based techniques can be used. An alternative non-destructive technique is electron probe microanalysis (EPMA). This method assumes a sample of homogenous (bulk) chemical composition, so that it cannot be usually applied to thin film samples. However, in combination with the thin film software StrataGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). These samples were used for an international round robin test. In 2021, a new and open-source thin film evaluation programme called BadgerFilm has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BadgerFilm software package and compared the resulting composition and thickness with the results of the established StrataGEM software and other reference methods. With the current evaluation, the BadgerFilm software shows good agreement with the composition and thickness calculated by StrataGEM and as the reference values provided by the KRISS. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Thin films KW - Electron Probe Microanalysis KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Piquemal, François A1 - Hoffmann, Johannes A1 - Kaya, Khaled A1 - Gaultier, Brice A1 - Fabricius, Norbert A1 - Sachse, René T1 - ELENA: a European project for electrical nanoscale metrology in industry N2 - A competitive advantage in the semiconductors industry is gained through the exploitation of new materials and processes, translating into improved components’ performances. This requires a metrological infrastructure allowing reliable nanoscale characterisation of new materials and devices, particularly in terms of their electrical parameters and properties. Traceability and reliability of nanoscale measurements stand as a major challenge for electrical properties (i.e. resistance, impedance) using conductive atomic force microscopy (C-AFM) and scanning microwave microscopy (SMM) techniques. The non-destructive analysis nature of these two methods is of paramount importance for the characterization of devices and components. However, the state of the art still lacks established measurement protocols, easy to use reference standards, well-defined best practice guides and easy to use 3D models to assess environmental and external stimulation effects. Moreover, costly instrumentation, particularly for high-frequency measurements, still hinders efficient advancements in these directions. ELENA is a 3-years European project that aims at bringing solutions to the aforementioned difficulties. To achieve this goal, the project uses a combination of nanoscale electrodynamic scanning probe methods in combination with optical tools such as spectroscopic ellipsometry on several lateral length scales to determine the electrical properties of layers and small structures. T2 - ICSE-9: The 9th International Conference on Spectroscopic Ellipsometry CY - Beijing, China DA - 2022-05-21 KW - Imaging Ellipsometry KW - Electrical thin layers KW - Scanning Probe methods KW - Hybrid metrology PY - 2022 AN - OPUS4-55464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -