TY - JOUR A1 - Lackmann, C. A1 - Velki, M. A1 - Šimić, A. A1 - Müller, Axel A1 - Braun, U. A1 - Ečimović, S. A1 - Hollert, H. T1 - Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner N2 - Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology. Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28 d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28 d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28 d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms. KW - Microplastics KW - Earthworms KW - Toxicity KW - Biomarker KW - oxidative stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545423 DO - https://doi.org/10.1016/j.envint.2022.107190 VL - 163 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-54542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Ayerdi, Jon J. A1 - Slachciak, Nadine A1 - Gradt, Thomas A1 - Krüger, Jörg A1 - Zabala, A. A1 - Spaltmann, Dirk T1 - Ultrakurzpulslaser induzierte Oxidschichten zur Reduktion von Reibung und Verschleiß auf Metalloberflächen N2 - Die Reduktion von Reibung und Verschleiß in technischen Systemen bietet ein großes Potenzial zur Reduktion von CO2-Emissionen. Dieser Beitrag diskutiert die Erzeugung und tribologische Charakterisierung von Ultrakurzpuls-generierten Nano- und Mikrostrukturen auf Metallen (Stahl, Titan). Besonderes Augenmerk wird dabei auf die Rolle der laserinduzierten Oxidschicht im Zusammenspiel mit verschleißreduzierenden Additiven in ölbasierten Schmiermitteln gerichtet. T2 - Workshop "Nachhaltigkeit durch Tribologische Schichten" - Europäische Forschungsgesellschaft Dünne Schichten e.V. CY - Karlsruhe, Germany DA - 17.05.2022 KW - Laser-induzierte periodische Oberflächenstrukturen KW - Reibungsreduktion KW - Verschleißreduktion KW - Oberflächenmodifikation KW - Oxidation KW - Additive PY - 2022 AN - OPUS4-54849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555840 DO - https://doi.org/10.1007/s10853-022-07499-9 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andresen, Elina A1 - Frenzel, Florian A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Upconversion for security tags and future applications N2 - NIR-excitable lanthanide nanocrystals (LnNC) show multi-color emission pattern composed of a multitude of narrow bands of varying intensity in the ultraviolet, visible, near-infrared, and short-wave infrared detectable with miniaturized optical instruments and simple color (RGB) cameras in complex environments. This makes these chemically inert luminescent materials ideal candidates for anticounterfeiting and authentication applications as well as for modules in optical sensors in which the LnNCs can be used as nanolamps in combination with analyte-sensitive fluorophores or the temperature sensitivity of defined emission bands can be utilized. Therefore, we are building up and exploring a platform of LnNC with application-specifically tuned size, composition, and surface chemistry. T2 - SHIFT 2022 CY - La Laguna, Tenerife, Spain DA - 10.10.2022 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence PY - 2022 AN - OPUS4-56229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A. C. P. A1 - Feller, A. A1 - Agudo Jácome, Leonardo A1 - Azevedo, C. R. F. T1 - Use of synthetic Fe3O4-rich tribofilms to investigate the effect of microconstituents, temperature and atmosphere on the friction coefficient during pin-on-disc tribotest N2 - This work investigates the effect of the tribotesting parameters (temperature, atmosphere, and third body chemical composition) on the coefficient of friction (CoF) during pin-on-disc dry (PoD) sliding tribotests using artificial third bodies. The third body comprised nanometric Fe3O4-based binary to quaternary chemical compositions containing copper, graphite, and zirconia. These mixtures were manually or ball-milled prepared, and pin-on-disc tribotests were conducted at 23 °C and 400 °C under air or nitrogen atmospheres. Combining PoD and artificial third body to create synthetic tribofilms might be useful for testing new formulations of Cu-free friction materials. Microstructural characterisation of the tribofilms was used to study the stability of the Fe3O4, copper, and graphite nanoparticles under different testing conditions to understand their effects on the CoF. For the Fe3O4-C-ZrO2-X systems, the ball milling mixing promoted the formation of turbostratic graphite in the tribofilm, impairing the lubricating effect of the graphite under air atmosphere at 23 °C. The formation of monoclinic CuO in the tribofilms during tribotests at 400 °C under air and N2 atmospheres promoted a lubricating effect. KW - Tribology KW - Microstructure KW - Oxide KW - Transmission electron microscopy PY - 2022 DO - https://doi.org/10.1088/2051-672X/ac9d51 SN - 2051-672X VL - 10 IS - 4 SP - 044009-1 EP - 044009-18 PB - IOP Pobilishing AN - OPUS4-56467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neuschaefer-Rube, U. A1 - Illemann, J. A1 - Sturm, M. A1 - Bircher, B. A1 - Meli, F. A1 - Bellon, Carsten A1 - Evsevleev, Sergei T1 - Validation of a fast and traceable radiographic scale calibration of dimensional computed tomography N2 - A fast and highly precise method of determining the geometrical scale factor of computed tomography (CT) measurements has been validated successfully by Bundesanstalt für Materialforschung und -prüfung (BAM), the Federal Institute of Metrology (METAS) and Physikalisch-Technische Bundesanstalt (PTB) within the scope of AdvanCT (Advanced Computed Tomography for dimensional and surface measurements in industry), a project funded in the European Metrology Programme for Innovation and Research (EMPIR). The method has been developed by PTB and requires only two radiographic images of a calibrated thin 2D standard (hole grid standard) from two opposite directions. The mean grid distance is determined from both radiographs. From this and with the help of the calibration result, the radiographic scale and therefore the voxel size is determined. The procedure takes only a few minutes and avoids a time-consuming CT scan. To validate the method, the voxel sizes determined via this method were compared with voxel sizes determined from CT scans of calibrated objects. Relative deviations between the voxel sizes in the range of 10−5 were achieved with minimal effort using cone-beam CT systems at moderate magnifications. KW - Dimensional metrology KW - Voxel size KW - Industrial CT KW - Geometrical magnification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553271 DO - https://doi.org/10.1088/1361-6501/ac74a3 SN - 0957-0233 VL - 33 IS - 9 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-55327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - VAMAS-Enabling international standardisation for increasing the take up of Emerging Materials N2 - VAMAS (Versailles Project on Advanced Materials and Standards) supports world trade in products dependent on advanced materials technologies by providing technical basis for harmonized measurements, testing, specification, reference materials and standards. The major tools for fulfilling this task are interlaboratory comparisons (ILC). The organisation structure of VAMAS is presented. It is discussed, how a new technical activity can initiate. T2 - DIN NA062-08-16 Oberflächenanalytik Frühjahrstreffen CY - Berlin, Germany DA - 11.05.2022 KW - Advanced Materials KW - Standards KW - Interlaboratory Comparisons PY - 2022 AN - OPUS4-54831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin A1 - Liao, Chun-Man A1 - Chruscicki, Sebastian A1 - Breithaupt, Mathias T1 - Vibration Monitoring of Large-Scale Bridge Model using Distributed Acoustic Sensing N2 - Results of DAS measurements along a large-scale concrete bridge model are presented. The improvement of measurable dynamic strain range is demonstrated. Vibration modes obtained by DAS correspond well to those determined from broadband seismometer measurements. T2 - 27th International Conference on Optical Fiber Sensors (OFS-27) CY - Alexandria, VA, USA DA - 29.08.2022 KW - Distributed acoustic sensing KW - Vibration modes KW - Bridge monitoring KW - WS-COTDR KW - Fiber-optic vibration monitoring PY - 2022 SP - 1 EP - 4 PB - Optica CY - Washington D.C., USA AN - OPUS4-56082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555395 DO - https://doi.org/10.3389/fphys.2022.862212 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silveira, A. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Longo, E. A1 - Greving, I. A1 - Lasch, P. A1 - Shahar, R A1 - Zaslansky, P. T1 - Water flow through bone: Neutron tomography reveals differences in water permeability between osteocytic and anosteocytic bone material N2 - Vertebrate bones are made of a nanocomposite consisting of water, mineral and organics. Water helps bone material withstand mechanical stress and participates in sensation of external loads. Water diffusion across vertebrae of medaka (bone material lacking osteocytes) and zebrafish (bone material containing osteocytes) was compared using neutron tomography. Samples were measured both wet and following immersion in deuterated-water (D2O). By quantifying H+ exchange and mutual alignment with X-ray lCT scans, the amount of water expelled from complete vertebra was determined. The findings revealed that anosteocytic bone material is almost twice as amenable to D2O diffusion and H2O exchange, and that unexpectedly, far more water is retained in osteocytic zebrafish bone. Diffusion in osteocytic bones (only 33 % – 39 % water expelled) is therefore restricted as compared to anosteocytic bone (~ 60 % of water expelled), presumably because water flow is confined to the lacunar-canalicular network (LCN) open-pore system. Histology and Raman spectroscopy showed that anosteocytic bone contains less proteoglycans than osteocytic bone. These findings identify a previously unknown functional difference between the two bone materials. Therefore, this study proposes that osteocytic bone retains water, aided by non-collagenous proteins, which contribute to its poroelastic mechano-transduction of water flow confined inside the LCN porosity. KW - Bone porosity KW - Anosteocytic bone KW - Water permeability KW - Neutron tomography KW - Proteoglycans PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564563 DO - https://doi.org/10.1016/j.matdes.2022.111275 VL - 224 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Jiang, T. A1 - Ji, Y. A1 - An-Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Cai, Z. A1 - Dong, C. A1 - Ge, Y. A1 - Qi, Z. T1 - Water-Fueled Autocatalytic Bactericidal Pathway based on e-Fenton-Like Reactions Triggered by Galvanic Corrosion and Extracellular Electron Transfer N2 - Water is generally considered to be an undesirable substance in fuel system, which may lead to microbial contamination. The antibacterial strategies that can turn water into things of value with high disinfection efficacy have been urgently needed for fuel system. Here, we reveal a water-fueled autocatalytic bactericidal pathway comprised by bi-metal micro-electrode system, which can spontaneously produce reactive oxygen species (mainly H2O2 and O2•–) by the electron Fenton-like reaction in water medium without external energy., The respiratory chain component of bacteria and the galvanic corrosion on the coated metals were two electron sources in the system. The specific model of Ag-Ru water-fueled autocatalytic (WFA) microelectrode particles presents extremely high disinfection efficiency (>99.9999%) in less than one hour for three aerobic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis) in LB media and high disinfection efficiency for the anaerobic bacteria (Desulfovibrio alaskensis) in Postgate E media without natural light irradiation. Overall, the novel WFA Ag-Ru antibacterial material explored in this study has a high potential for sterilizing applications in fuel system and this work provides the potential for the development of non-chemical and water-based antibacterial materials, such as WFA Ag-Ru antibacterial coating on stainless steel. KW - Fenton-like reaction KW - Reactive oxygen species KW - Disinfection Fuel KW - Silver KW - Ruthenium KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555186 DO - https://doi.org/10.1016/j.jhazmat.2022.129730 SN - 0304-3894 VL - 440 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-55518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Jaenisch, Gerd-Rüdiger A1 - Pavasaryte, Lina A1 - Funk, Alexander T1 - XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution N2 - Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed. KW - Non-destructive testing KW - Two-photon polymerization KW - X-ray microscopy KW - XCT KW - 2PP KW - Direct laser writing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560525 DO - https://doi.org/10.3390/app122010488 VL - 12 IS - 20 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551346 DO - https://doi.org/10.1007/s12274-022-4570-5 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hartfiel, Reni T1 - Zweistufiges Screening von One-Bead-One-Peptide-Bibliotheken linearer & cyclischer Peptide gegen Pflanzenviren N2 - In der Masterarbeit wurde ein Screening gegen den CCMV mit einer linearen Peptidbibliothek entwickelt, wobei zwei lineare Binder identifiziert wurden. Das resynthetisierte Peptid wurde auf seine Bindungseigenschaften mittels ELISA und MST untersucht. Aufgrund eines Aminosäurefehlers in der selbst durchgeführten Resynthese des Peptids sind die Ergebnisse nicht vollständig übertragbar. Um eine umsetzbare Cyclusgröße für die Peptidbibliothek zu finden, wurden Ringgrößen mit sechs bis acht Aminosäuren untersucht. Da keiner der gewählten Ringgrößen bevorzugt war, wurde die Ringgröße aus acht Aminosäuren für die Peptidbibliothek gewählt. Der Ringschluss wurde durch die Bildung einer Disulfidbrücke erreicht. Dadurch war die Alkylierung der vorhandenen Thiolgruppe in den Abbruchsequenzen notwendig. Neben den etablierten Alkylierungsreagenzien Iodessigsäure, Iodacetamid und Acrylamid wurden zwei Epoxide mituntersucht. Hierbei konnte nur bei Acrylamid und Propylenoxid eine vollständige Alkylierung beobachtet werden. Eine synthetische Peptidbibliothek aus zehn Aminosäuren pro Kopplungsschritt und einer Peptidlänge von acht Aminosäuren wurde erfolgreich nach der Split-and-Mix-Synthese hergestellt. Neben den kanonischen Aminosäuren wurde die synthetische Aminosäure 3-(3-Pyridyl)-alanin in die Peptidbibliothek mit eingebaut. Peptidsequenzen aus der cyclische Peptidbibliothek konnte mittels MALDI-TOF-MS identifiziert werden. Es konnte außerdem gezeigt werden, dass synthetische Aminosäuren mit proteinogenen Aminosäuren erfolgreich übersetzt werden. Anschließend wurde das entwickelte Screening auf eine cyclische Peptidbibliothek übertragen. Dabei konnte kein Binder identifiziert werden, da zu viele Nebenreaktionen auftraten. Ein alternativer Ringschluss über die Seitenketten von Lysin und Cystein wurden mit ortho-Phthaldialdehyd und 2,4,6-Trichloro-1,3,5-triazin (Cyanurchlorid) untersucht. Beide Bedingungen wiesen keinen erfolgreichen Ringschluss auf. Obwohl der Ringschluss über die Seitenketten von Lysin und Cystein nicht erfolgreich war, sollte ein Austausch von Cystein angestrebt werden, so dass kein freies Cystein in den Abbruchsequenzen vorhanden ist und die Alkylierung überflüssig wäre. Der Ringschluss durch Verwendung anderer Seitenketten bietet einen vielseitigen Ansatz. KW - CCMV KW - Pflanzenvirus KW - Peptidbibliothek KW - Peptid-Aptamer KW - Alkylierung KW - Cyclisierung KW - MALDI-TOF-MS KW - Fluoreszenz KW - Chip KW - Sequenzierung KW - Peptid-Synthese PY - 2022 SP - 1 EP - 81 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Übersicht zu Projekten bei DIN/ISO, VAMAS und CCQM N2 - Information der AG-Nano der Bundesoberbehörden zur Strukturierung und den laufenden Aktivitäten bei ISO und DIN sowie VAMAS und CCQM. T2 - Behördenklausur Nano der Bundesoberbehörden CY - Berlin, Germany DA - 14.09.2022 KW - Nano KW - Bundesoberbehörden KW - Behördenklausurtagung PY - 2022 AN - OPUS4-56757 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Raievska, O. A1 - Barabash, A. A1 - Batentschuk, M. A1 - Osvet, A. A1 - Fiedler, Saskia A1 - Resch-Genger, Ute A1 - Hauch, J. A1 - Brabec, C. J. T1 - “Green” Synthesis of Highly Luminescent Lead-Free Cs2AgxNa1-xBiyIn1-yCl6 Perovskites N2 - A new “green” and mild synthesis of highly stable microcrystalline Cs2AgxNa1-xBiyIn1-yCl6 (CANBIC) perovskites under ambient conditions was developed that is scalable to the multi-gram production. Under UV illumination, the CANBIC perovskites emit intense broadband photoluminescence (PL) with a quantum yield (QY) of 92% observed for x = 0.35 and y = 0.01-0.02. The combination of strong UV absorbance and broadband visible emission, high PL QY, and long PL lifetimes of up to 1.4 μs, along with an outstanding stability makes these CANBICs a promising material class for many optical applications. KW - Fluorescence KW - Perovskites KW - Solar cell KW - Automated synthesis KW - Green synthesis KW - Quantum yield KW - Integrating sphere spectroscopy KW - Absolute fluorescence KW - Quality assurance KW - Nano KW - Particle KW - Application KW - Semiconductor KW - Quantum dot KW - Renewable energy PY - 2022 DO - https://doi.org/10.1039/d2tc02055f SN - 2050-7526 VL - 10 IS - 27 SP - 9938 EP - 9944 PB - Royal Society of Chemistry AN - OPUS4-55453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 DO - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -