TY - JOUR A1 - Anderhalten, L. A1 - Silva, R. V. A1 - Morr, A. A1 - Wang, S. A1 - Smorodchenko, A. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Rodriguez-Sillke, Y. A1 - Kunkel, D. A1 - Hahndorf, J. A1 - Paul, F. A1 - Taupitz, M. A1 - Sack, I. A1 - Infante-Duarte, C. T1 - Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain N2 - Objectives: Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. Materials and Methods: Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. Results: Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). Conclusions: In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation. KW - Imaging KW - ICP-MS KW - Gadolinium KW - Contrast agent KW - Laser ablation KW - Brain KW - Multiple sclerosis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546910 DO - https://doi.org/10.1097/RLI.0000000000000884 SN - 0020-9996/22/0000–0000 VL - 57 IS - 10 SP - 677 EP - 688 PB - Wolters Kluwer N.V. CY - Alphen aan den Rijn, The Netherlands AN - OPUS4-54691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boyraz, B. A1 - Saatz, Jessica A1 - Pompös, I.-M. A1 - Gad, Michel A1 - Dernedde, J. A1 - Maier, A.-M. B. A1 - Moscovitz, O. A1 - Seeberger, P. H. A1 - Traub, Heike A1 - Tauber, R. T1 - Imaging Keratan Sulfate in Ocular Tissue Sections by Immunofluorescence Microscopy and LA-ICP-MS N2 - Carbohydrate-specific antibodies can serve as valuable tools to monitor alterations in the extracellular matrix resulting from pathologies. Here, the keratan sulfate-specific monoclonal antibody MZ15 was characterized in more detail by immunofluorescence microscopy as well as laser ablation ICP-MS using tissue cryosections and paraffin-embedded samples. Pretreatment with keratanase II prevented staining of samples and therefore demonstrated efficient enzymatic keratan sulfate degradation. Random fluorescent labeling and site-directed introduction of a metal cage into MZ15 were successful and allowed for a highly sensitive detection of the keratan sulfate landscape in the corneal stroma from rats and human tissue. KW - Laser ablation KW - Imaging KW - Glycosaminoglycan KW - ICP-MS KW - Immunohistochemistry KW - Immunofluorescence KW - Tissue PY - 2022 DO - https://doi.org/10.1021/acsabm.1c01240 VL - 5 IS - 2 SP - 853 EP - 861 PB - American Chemical Society CY - Washington AN - OPUS4-54341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Rybak, Tina A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of ZnO Nanoparticles: Phase Transfer to Water N2 - Herein, a simple one-pot procedure is reported to obtain aqueous zinc oxide (ZnO) nanoparticle dispersions from ZnO nanoparticles dispersed in cyclohexane. In the process, polyoxyethylene (20) sorbitan monooleate (polysorbate 80, Tween 80) functions as a phase transfer agent and colloidal stabilizer. The particles grow in a defined manner during the transfer, presumably via coalescence. The final particle radii are tuneable in the range from 2.3 ± 0.1 nm to 5.7 ± 0.1 nm depending on the incubation time of the dispersion at 90 °C. Small-angle X-ray scattering is employed to determine the particle radius distributions before and after phase transfer. The larger ZnO particle radii are associated with a redshift of the optical bandgap and luminescence emission, as expected for semiconductor nanoparticles. The particles presented here exhibit a relative size distribution width of 20%, rendering them attractive for applications in, e.g., biology or catalysis. The latter application is demonstrated at the photocatalytic degradation of methylene blue dye. KW - SAXS KW - Small-angle X-ray scattering KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551502 DO - https://doi.org/10.1002/adem.202101276 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley AN - OPUS4-55150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Rudolf T1 - Bestimmung von anthropogenen Markerkonzentrationen für die SARS-CoV-2 Quantifizierung mittels eines Hochdurchsatzverfahrens (ELISA) N2 - Vortrag zum Kick-off des Projektes. Ziel des Projektes ist es, die Eignung der Bestimmung eines oder mehrerer der genannten anthropogenen Marker im Abwasser zur Volumenkorrektur („Kalibration“) im SARS-CoV-2-Monitoring von Abwässern auf der Basis eines von der BAM zu erhebenden Messdatensatzes zu evaluieren. T2 - Kick-off Meeting zum Projekt MARKERIA (VH1802) CY - Berlin, Germanyy DA - 01.04.2022 KW - Biosensoren KW - Immunoassay KW - SARS-CoV-2 PY - 2022 AN - OPUS4-57109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Theiner, S. A1 - Corte Rodriguez, M. A1 - Traub, Heike ED - Golloch, A. T1 - Novel applications of lanthanoids as analytical or diagnostic tools in the life sciences by ICP-MS based techniques N2 - Inductively coupled plasma-mass spectrometry (ICP-MS) is a well-established analytical method offering high sensitivity and multi-element analysis. ICP-MS has found acceptance in various application areas ranging from material analysis to applications in the life sciences. Within the last 15 years new strategies for the sensitive detection and accurate quantification of biomolecules in complex biomedical samples have been developed. Recent instrumental improvements have contributed to this progress. As most of the biomolecules do not contain endogenous metals etectable with ICP-MS, bioconjugation with artificial metal-containing tags based on metal-loaded chelate complexes or nanoparticles is increasingly applied to determine biomolecules indirectly. Especially, the combination of immunohistochemical workflows using lanthanoid-tagged antibodies and ICP-MS detection provides new insights in the complexity and interdependency of cellular processes. Single-cell ICP-MS, also termed as mass cytometry, allows high-dimensional analysis of biomarkers in cell populations at single-cell resolution. For that purpose, lanthanoid isotope labelled antibodies are used to detect their corresponding target molecules. The visualisation of the elemental distribution is possible with laser ablation ICP-MS (LA-ICPMS) at high spatial resolution. Especially, the combination of LA with ICP time-of-flight mass spectrometry, also referred to as imaging mass cytometry (IMC), opens new possibilities for multiparametric tissue imaging at the single-cell level and even below. The lanthanoid localisation and concentration can be linked to their conjugated antibody target providing valuable information about surface markers, intracellular signalling molecules to measure biological function, and the network state of an individual cell in a tissue. This book chapter focuses on new applications, where the multi-element capabilities of ICP-MS are used for the detection of lanthanoids applied as artificial elemental stains or tags for biomolecules and in particular antibodies. KW - ICP-MS KW - Laser ablation KW - Cell KW - Antibody KW - Immunohistochemistry KW - Lanthanoid KW - Mass cytometry KW - Imaging PY - 2022 SN - 978-3-11069-645-5 SN - 978-3-11069-636-3 DO - https://doi.org/10.1515/9783110696455-013 SP - 399 EP - 444 PB - De Gruyter CY - Berlin, Boston ET - 2. rev. and exten. edition AN - OPUS4-55118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinnasamy, R. A1 - Ravi, J. A1 - Pradeep, V.V. A1 - Manoharan, D. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials N2 - Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol (1), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol (2). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2, confirming their light-trapping ability. KW - Crystal growth KW - Fluorescence KW - Mechanophotonics KW - Micromanipulation KW - Optical waveguides PY - 2022 DO - https://doi.org/10.1002/chem.202200905 SN - 0947-6539 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-55018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Flatken, M. A. A1 - Radicchi, E. A1 - Wendt, R. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Härk, E. A1 - Pascual, J. A1 - Mathies, F. A1 - Shargaieva, O. A1 - Prause, A. A1 - Dallmann, A. A1 - De Angelis, F. A1 - Hoell, A. A1 - Abate, A. T1 - Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites N2 - ABX3 metal halide perovskites revolutionized the research and development of new optoelectronics, including solar cells and light-emitting diodes. Processing polycrystalline thin films from precursor solutions is one of the core advantages of these materials since it enables versatile and cost-effective manufacturing. The perovskite film morphology, that is, continuous substrate coverage and low surface roughness, is of paramount importance for highly efficient solar cells and optoelectronic devices in general. Controlling the chemistry of precursor solutions is one of the most effective strategies to manage the perovskite film morphology. Herein, we show the fundamental influence of the A-site cation composition on the perovskite precursor arrangement and the consequent film formation. Extended X-ray absorption fine structure spectroscopy and small-angle X-ray scattering give unprecedented insights into the complex structural chemistry of the perovskite precursors and, in particular, their repulsive interactions as a crucial parameter for colloidal stability. Combining these techniques with in situ grazing incidence wide-angle X-ray scattering during thin-film formation allows us to identify the mechanism for using alkali metals as a decisive criterion to control the colloidal stability of the perovskite precursor and thus the thin-film morphology. We illustrate the fundamental principle behind the systematic use of alkali metals regardless of whether they are incorporated in the lattice or not. Hence, this work provides tools to selectively control the morphology and crystal growth in present and future systems KW - MAPbI3 perovskites KW - Halide Perovskites KW - X-ray absorption spectroscopy PY - 2022 DO - https://doi.org/10.1021/acs.chemmater.1c03563 SN - 0897-4756 VL - 34 IS - 3 SP - 1121 EP - 1131 PB - American Chemical Society AN - OPUS4-54713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, S. A1 - Artinov, Antoni A1 - Zemlyakov, E. A1 - Karpov, I. A1 - Rylov, S. A1 - Em, V. T1 - Spatiotemporal Evolution of Stress Field during Direct Laser Deposition of Multilayer Thin Wall of Ti-6Al-4V N2 - The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other. KW - Direct laser deposition KW - Finite element simulation KW - Neutron diffraction KW - Residual stresses KW - Ti-6Al-4V KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542444 DO - https://doi.org/10.3390/ma15010263 VL - 15 IS - 263 SP - 1 EP - 20 PB - MDPI AN - OPUS4-54244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Spatially resolved EDS, XRF and LIBS measurements of the chemical composition of duplex stainless steel welds: A comparison of methods N2 - Duplex stainless steels (DSS) are used in all industries where corrosion problems play a major role. Examples include the chemical industry, the food industry and shipping industries. DSS have a balanced phase ratio of ferrite (α) and austenite (γ). Unlike single-phase stainless steels, DSS combine the advantages of these and can therefore fit many industry requirements, such as weight saving or high mechanical strength. When these steels are welded, alloying elements can burn off and condense as thin layers on cold surface regions. This loss of chemical elements can lead to changes in the microstructure. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), chemical element distributions were visualized. The results were compared with those of conventional measurement methods, such as energy dispersive X-ray analysis (EDS) and X-ray fluorescence analysis (XRF), and the results from LIBS could be validated. LIBS is suitable as a fast, straightforward measurement method for producing line scans along the weld seam and provides spatially resolved information on accumulation phenomena of burned off alloying elements. LIBS is very well suited for the detection of sub-surface elements due to the exclusively superficial ablation of the material. In addition, the measurement method has been calibrated so that quantitative statements about element concentrations can also be made. T2 - EMSLIBS 2021 CY - Online Meeting DA - 25.11.2021 KW - LIBS KW - TIG welding KW - Duplex stainless steel KW - XRF KW - EDS PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106439 SN - 0584-8547 VL - 193 SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-54837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, Alaa A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - Friedrich, J. T1 - Structure of plasma‐deposited copolymer films preparedfrom acrylic acid and styrene: Part III sulfonation andelectrochemical properties N2 - Acrylic acid-styrene copolymer films were deposited plasma-chemically more gently using the pulsed plasma mode instead of the continuous mode, with linear and some slightly branched chains and marginal crosslinking. Then, the styrene unit of copolymers was wet-chemically sulfonated by chlorosulfuric acid. On exposure to air, the formed 4-chlorosulfonic acid groups hydrolyze to sulfonic acid groups (-SO3H). FTIR, XPS and broadband dielectric spectroscopy were employed to characterize the composition, the structure, the functional groups, and the electrochemical performance for the copolymers. A high concentration of sulfonic acid-containing groups was obtained in the sulfonated PS sample. The values of the DC conductivity DC for the sulfonated sample of the AA/S copolymer are ca. five orders of magnitude higher than that of the not-sulfonated copolymer materials. KW - Plasma Polymers KW - Electrolyte membrane PY - 2022 DO - https://doi.org/10.1002/ppap.202100222 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-54539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556015 DO - https://doi.org/10.5281/zenodo.7016466 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Riechers, Birte A1 - Zocca, Andrea A1 - Rosalie, Julian A1 - Maaß, Robert A1 - Sturm, Heinz A1 - Günster, Jens T1 - Entering a new dimension in powder processing for advanced ceramics shaping N2 - Filigree structures can be manufactured via two-photon-polymerization (2PP) operating in the regime of non-linear light absorption. For the first time it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect size responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which is diametrically opposed to the usually completely opaque ceramic resins and slurries. Here we present a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ). Due to the extremely well dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm were obtained. Even at reduced densities of 1 to 4 g/cm³, the resulting compressive strength with 4,5 GPa is equivalent or even exceeding bulk monolithic yttria stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria stabilized zirconia are altered by changing geometrical parameters and gives access to a new class of ceramic materials. KW - Two-photon-polymerization KW - Ceramics KW - Powder processing KW - Transparency KW - Meta material KW - Yttria stabilized zirconia PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564598 DO - https://doi.org/10.1002/adma.202208653 SN - 1521-4095 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arinchtein, A. A1 - Ye, M.-Y. A1 - Yang, Q. A1 - Kreyenschulte, C. A1 - Wagner, Andreas A1 - Frisch, M. A1 - Brückner, A. A1 - Kondratenko, E. A1 - Kraehnert, R. T1 - Dynamics of Reaction-Induced Changes of Model-Type Iron Oxide Phases in the CO2-Fischer-Tropsch-Synthesis N2 - Iron-based catalysts are employed in CO2-FTS due to their ability to convert CO2 into CO in a first step and their selectivity towards higher hydrocarbons in a second CO hydrogenation step. According to the literature, iron carbides represent the active phase for hydrocarbon formation and are claimed to emerge in the presence of CO. We propose nanostructured FeOx films as model systems to assess information about the complex phase transformations during CO2-FTS. Mesoporous hematite, ferrihydrite, maghemite, maghemite/magnetite films were exposed to CO2-FTS atmospheres at 20 bar and 300°C. Up to three distinct phases were observed depending on the timeon-stream (TOS): a sintered maghemite/magnetite phase, a carbidic core-shell structure, and a low-crystalline, needle-type oxide phase. Our findings indicate that the formation of an intermediary maghemite/magnetite phase, predominant after short TOS (30 h), precedes the evolution of the carbide phase. Yet, even after prolonged TOS (185 h), no full conversion into a bulk carbide is observed. KW - Nanostructured FeOx films KW - CO2 KW - Scanning Auger Spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549709 DO - https://doi.org/10.1002/cctc.202200240 SN - 1867-3880 VL - 14 IS - 14 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-54970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Fernández, R. A1 - Saliwan Neumann, Romeo A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Dislocation substructures in pure aluminium after creep deformation as studied by electron backscatter diffraction N2 - In the present work, electron backscatter diffraction was used to determine the microscopic dislocation structures generated during creep (with tests interrupted at the steady state) in pure 99.8% aluminium. This material was investigated at two different stress levels, corresponding to the power-law and power-law breakdown regimes. The results show that the formation of subgrain cellular structures occurs independently of the crystallographic orientation. However, the density of these cellular structures strongly depends on the grain crystallographic orientation with respect to the tensile axis direction, with <111> grains exhibiting the highest densities at both stress levels. It is proposed that this behaviour is due to the influence of intergranular stresses, which is different in <111> and <001> grains. KW - Creep KW - Pure aluminium KW - Electron backscatter diffraction KW - Cellular structures KW - Power law and power-law breakdown PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552003 DO - https://doi.org/10.1107/S1600576722005209 SN - 0021-8898 SN - 1600-5767 VL - 55 SP - 860 EP - 869 PB - Wiley-Blackwell CY - Copenhagen AN - OPUS4-55200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, H. A1 - Chakraborty, Poulami A1 - Ponge, D. A1 - Hickel, Tilmann A1 - Sun, B. A1 - Wu, C.-H. A1 - Gault, B. A1 - Raabe, D. T1 - Hydrogen trapping and embrittlement in high-strength Al alloys N2 - Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation. Hydrogen ‘embrittlement’ is often indicated as the main culprit; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design. KW - Atomistic models KW - Hydrogen KW - Metals and alloys KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543631 DO - https://doi.org/10.1038/s41586-021-04343-z SN - 1476-4687 VL - 602 IS - 7897 SP - 437 EP - 441 PB - Nature Publ. Group CY - London AN - OPUS4-54363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lin, R. A1 - Li, X. A1 - Krajnc, A. A1 - Li, Z. A1 - Li, M. A1 - Wang, W. A1 - Zhuang, L. A1 - Smart, S. A1 - Zhu, Z. A1 - Appadoo, D. A1 - Harmer, J. R. A1 - Wang, Z. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Beyer, S. A1 - Wang, L. A1 - Mali, G. A1 - Bennett, T. D. A1 - Chen, V. A1 - Hou, J. T1 - Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction N2 - The melting behaviour of metal–organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through meltquenching of the cobalt-based zeolitic imidazolate Framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62-(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co–Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device Assembly KW - Electrodes KW - MOF KW - OER KW - XANES KW - XAS KW - Bimetallic frameworks PY - 2022 DO - https://doi.org/10.1002/anie.202112880 VL - 61 IS - 4 SP - e202112880 PB - Wiley AN - OPUS4-54018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass N2 - Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag+ and precipitation as Ag0 were studied in two glass series of molar target composition xAg2O–(19 − x)Na2O–28ZnO–53B2O3 with x = 0, 0.1, 0.5, 5 and (19Na2O–28ZnO–53B2O3)+yAg2O with y = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing x in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO3 mixed with the base glass frit in a hot stage microscope showed that Ag0 precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature. KW - Silver metallization paste KW - Batch reactions KW - Borate KW - Glass forming melts KW - Glass manufacturing KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559433 DO - https://doi.org/10.1111/ijag.16613 SN - 2041-1286 SP - 1 EP - 11 PB - Wiley Online Library AN - OPUS4-55943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam A. L. T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567659 DO - https://doi.org/10.1063/5.0130673 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arnold, M. A1 - Katzmann, J. A1 - Naik, Aakash Ashok A1 - Görne, A. L. A1 - Härtling, Thomas A1 - George, Janine A1 - Schuster, C. T1 - Investigations on electron beam irradiated rare-earth doped SrF2 for application as low fading dosimeter material: Evidence for and DFT simulation of a radiation-induced phase N2 - A recent approach to measure electron radiation doses in the kGy range is the use of phosphors with an irradiation dose-dependent luminescence decay time. However, the applicability of the previously investigated material NaYF4:Yb3+,Er3+ is limited as it shows pronounced fading. Therefore, in this work, a modified SrF2 synthesis is presented that results in SrF2 nanoparticles codoped with Yb and either Er, Hm, or Tm. To assess their suitability as dosimeter material, dose response, as well as its degree of fading over 50 up to 140 days after irradiation were measured. Fading rates as small as 5% in SrF2:Er,Yb and 4% in SrF2:Ho,Yb were derived, which are comparable to established dosimeter materials. A combination of spectroscopy, diffraction and DFT calculations was used to elucidate the effect of irradiation, pointing towards the formation of a secondary phase of Yb2+ that we predict could be Yb2OF2. This irreversible formation of a secondary phase is considered to be the explanation for the low fading behavior in SrF2-based phosphors compared to NaYF4:Yb, Er, a highly attractive feature for electron beam dosimetry. KW - DFT KW - Structure prediction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554115 DO - https://doi.org/10.1039/D2TC01773C SN - 2050-7526 VL - 10 IS - 32 SP - 11579 EP - 11587 PB - RSC CY - London AN - OPUS4-55411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, R. A. A1 - Sennikov, P. G. A1 - Gornushkin, Igor B. A1 - Ermakov, A. A. A1 - Shkrunin, V. E. A1 - Polykov, V. S. A1 - Kornev, A. R. A1 - Kornev, K. D. T1 - Laser induced dielectric breakdown as a novel method for the synthesis of molybdenum boride N2 - Laser induced dielectric breakdown (LIDB) on a surface of solid Mo in H2/BF3 atmosphere at 30-760 Torr and in a gaseous mixture MoF6/H2/BF3 + at 760 Torr pressure is tested for synthesis and deposition of superhard molybdenum borides that are needed in many areas of industry and technology. The emission spectra of the plasma and the dynamics of the gas discharge near the substrate are investigated. A comparative analysis of the gas mixture before and after exposure to LIDB plasma is carried out using IR spectroscopy. The conditions for the formation of molybdenum borides are determined. A thermodynamic analysis of the MoF6/H2/BF3 and Mo/H2/BF3 systems is carried out to determine the temperature range for the formation of molybdenum borides and establish the main chemical reactions responsible for their formation. Deposits containing MoB and MoB2 phases are obtained. For the mixture MoF6/H2/BF3, the deposit exhibits an amorphous layered structure, which contains 19.15 wt% F, 30.45% O, and 0.8% Si. For the Mo/H2/BF3 system at the pressures 30 and 160 Torr, nanopowder of molybdenum boride is produced with a characteristic grain size of 100 nm. At pressures above 160 Torr, Mo nanopowder with a grain size <30 nm is obtained. KW - LIDB plasma KW - MoF6 KW - BF3 KW - Hydrogen reduction KW - Molybdenum boride PY - 2022 DO - https://doi.org/10.1007/s11090-021-10224-0 SN - 1572-8986 SP - 1 EP - 18 PB - Springer CY - Dordrecht AN - OPUS4-54290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schaumann, P. A1 - Hothan, Sascha A1 - Mund, M. A1 - Häßler, Dustin A1 - Schartel, Bernhard A1 - Daus, Lars-Hendrik T1 - Bewertung des Feuerwiderstandes von Stahlkonstruktionen mit reaktiven Brandschutzsystemen unter Berücksichtigung des Alterungsverhaltens N2 - Im Rahmen des Forschungsprojektes IGF 20470N wurden Untersuchungen zum Alterungsverhalten von reaktiven Brandschutzsystemen (RBS) auf Stahlbauteilen durchgeführt. Mithilfe der Ergebnisse einer umfangreichen Literaturrecherche sowie experimentellen und numerischen Untersuchungen sollte ein Vorschlag für ein Prüfkonzept zum Nachweis einer Nutzungsdauer von RBS von mehr als 10 Jahren auf Basis von Kurzzeitversuchen abgeleitet werden. Dabei setzt die Bewertung des Alterungsverhaltens von RBS voraus, dass die Mechanismen der Alterung hinreichend bekannt sind. Dafür wurden zunächst systematisch Daten von Kurz- und Langzeitversuchen von nationalen Zulassungsprüfungen der letzten Jahrzehnte ausgewertet. Anschließend wurden umfangreiche experimentelle Untersuchungen an einer wasserbasierten sowie einer epoxidharzbasierten Richtrezeptur durchgeführt. Da aus der Literatur bekannt ist, dass die Einflüsse der Bewitterung zu einer Veränderung der Konzentration der Bestandteile innerhalb der Beschichtung führen können, wurden Untersuchungen mit Mangelrezepturen durchgeführt, wobei systematisch einzelne Bestandteile reduziert wurden. Neben optischen Untersuchungen wurden thermoanalytische Verfahren (DSC-TG-, ATR-FTIR-, Elementar-, Farbanalyse) angewandt sowie Brandversuche an beschichteten Stahlplatten durchgeführt. Des Weiteren wurden die Richtrezepturen den beschleunigten Kurzzeitversuchen gemäß EAD 350402-00-1106 (2017) unterzogen, welche die Zulassung von Produkten auf europäischer Ebene regelt. Für die wasserbasierte Richtrezeptur wurden die Bewitterung für den feuchten Innenraum (Typ Z1) mehrfach wiederholt (1x, 3x, 6x). Für die epoxidharzbasierte Richtrezeptur entsprach die Bewitterung dem Zyklus für die Außenanwendung (Typ X). In Brandversuchen sowie thermoanalytischen und optischen Untersuchungen wurde das Alterungsverhalten sowie die thermische Schutzwirkung analysiert. Anschließend wurden numerische Simulationen von Stahlbauteilen mit gealterten RBS durchgeführt und anhand der experimentellen Untersuchungen validiert. Mithilfe der numerischen Modelle kann eine Bewertung der thermischen Schutzwirkung von Stahlbauteilen mit gealterten RBS vorgenommen werden. Mithilfe der gesammelten Erkenntnisse wurde ein Vorschlag für ein Prüfkonzept für den Nachweis einer Nutzungsdauer von mehr als 10 Jahren abgeleitet. Das Prüfkonzept besteht dabei aus einem Katalog von Möglichkeiten, die aktuellen Zulassungsprüfungen auf europäischer Ebene für eine Nutzungsdauer von 10 Jahren auf einen längeren Zeitraum zu erweitern. N2 - Within the scope of the research project IGF 20470N, investigations were carried out on the assessment of the aging behavior of intumescent coatings (ICs) for the fire protection of steel members. With the help of the results of an extensive literature research as well as experimental and numerical investigations, a proposal for a test concept for the proof of a service life of ICs of more than 10 years was to be derived on the basis of short-term tests. The evaluation of the aging behavior of ICs presupposes that the aging mechanisms are sufficiently known. For this purpose, data from short- and long-term tests of national approval tests of the last decades were first systematically evaluated. Subsequently, extensive experimental investigations were carried out on a water-based and epoxy resin-based model formulation. Since it is known from the literature that the effects of weathering may lead to a change in the concentrations of the constituents within the coating, investigations were carried out with formulations of the ICs in which individual constituents were systematically reduced. In addition to optical investigations, thermoanalytical methods (DSC-TG-, ATR-FTIR-, elemental-, color analysis) were used and fire tests were carried out on coated steel plates. Furthermore, the model formulations were subjected to the accelerated short-term tests of EAD 350402-00-1106 (2017), which regulates the approval of products at the European level. For the water-based model formulation, the weathering for the interior application with a high moisture content (type Z1) was repeated several times (1x, 3x, 6x). For the epoxy resin-based model formulation, the weathering corresponded to the cycle for exterior application (type X). Fire tests as well as thermoanalytical and optical investigations were carried out to analyze the aging behavior and the thermal protection performance. Subsequently, numerical simulations of steel members with aged ICs were carried out and validated on the basis of the experimental investigations. With the help of the numerical models, an evaluation of the thermal protection performance of steel members with aged ICs can be carried out. Bases on the findings, a proposal for a test concept for the verification of a service life of more than 10 years was derived. The test concept consists of a catalogue of possibilities for extending the current approval tests at European level for a service life of 10 years to a longer period. KW - Brandschutz KW - Dauerhaftigkeit KW - Alterung KW - Reaktive Brandschutzsysteme KW - Brandversuche PY - 2022 UR - https://dast.deutscherstahlbau.de/veroeffentlichungen/forschungsberichte SP - 1 EP - 367 PB - Stahlbau Verlags- und Service GmbH CY - Düsseldorf AN - OPUS4-57257 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, P. A1 - Karnaushenko, D. D. A1 - Becker, C. A1 - Okur, I. E. A1 - Melzer, M. A1 - Özer, B. A1 - Schmidt, O. G. A1 - Karnaushenko, D. T1 - Large Scale Exchange Coupled Metallic Multilayers by Roll-to-Roll (R2R) Process for Advanced Printed Magnetoelectronics N2 - Till now application of printed magnetoelectronics is hindered by lack of large area exchange coupled metallic multilayers required to produce printable magneto-sensory inks. Large-scale roll-to-roll (R2R) fabrication process is an attractive approach owing to its capabilities for high volume, high throughput, and large area manufacturing. Precise and high performance R2R sputtering technology is developed to fabricate large area giant magnetoresistive (GMR) thin-films stacks that contain 30 metallic bilayers prepared by continuous R2R sputtering of Co and Cu sequential on a hundred meters long polyethylene terephthalate (PET) web. The R2R sputtered Co/Cu multilayer on a 0.2 × 100 m2 PET web exhibits a GMR ratio of ≈40% achieving the largest area exchange coupled room temperature magneto-sensitive system demonstrated to date. The prepared GMR thin-film is converted to magnetosensitive ink that enables printing of magnetic sensors with high performance in a cost-efficient way, which promotes integration with printed electronics. An average GMR ratio of ≈18% is obtained for 370 printed magnetic sensors. The realized precise R2R sputtering approach can also be extended to a wide range of hybrid thin-film material systems opening up a path for new functional inks applied with printing technologies. KW - Printed Electronics KW - Flexible Magnetic Sensors KW - Roll-to-Roll Processing KW - Functional Materials KW - Upscaling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552344 DO - https://doi.org/10.1002/admt.202200190 SN - 2365-709X SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim, Deutschland AN - OPUS4-55234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frunza, L. A1 - Zgura, I A1 - Ganea, C. P. A1 - Schönhals, Andreas T1 - Molecular dynamics of alkyl benzoate liquid crystals in the bulk state and in the surface layer of their composites with oxide nanopowders N2 - This paper presents the results concerning monotropic nematic liquid crystals 4-pentylphenyl 40-alkyl benzoate (5PnB) (n = 3 or 5 carbon atoms in the alkyl chain). Their mesophase properties were supported by images of the polarized optical microscopy. Molecular dynamics in the bulk samples or in the composites prepared with aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range, appropriately chosen. Thermo gravimetric and infrared investigations were additionally performed. The data were compared with those of structurally related nematics like cyanophenyl pentyl benzoates, which have a cyan group instead of the pentyl chain. The dielectric spectra of the bulk 3P5B and 5P5B demonstrate a dielectric behavior with several relaxation processes as expected for nematic liquid crystals. The temperature dependence of the relaxation rates (and of the dielectric strength) seems to have two distinguished regimes. Thus, in the isotropic state, at higher temperatures the data obey the Vogel–Fulcher–Tammann law, whereas an Arrhenius law is fitted at lower temperature, in a close similarity to the behavior of a constrained dynamic glass transition. Samples with a high density of silica (larger than 7 g aerosil/1 g of 5PnB) were prepared to observe a thin layer adsorbed on the particle surface; it was estimated that almost each guest 5PnB molecule interacts with the aerosil surface. For the composites only one main relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in the surface layer. Infrared spectroscopy shows that these molecules interact with the surface by the ester carbonyl group leading to the monolayer self-assembly at liquid–solid interface. We note once more the importance of the functional unit(s) for the interaction with the hydroxyl groups on the aerosil surface. KW - Liquid crystals PY - 2022 DO - https://doi.org/10.1016/j.molliq.2022.119374 SN - 0167-7322 VL - 359 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-54867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Roed, L. A1 - Mehri, S. A1 - Ingebrigtsen, T. A1 - Hecksher, T. A1 - Dyre, J. A1 - Niss, K. T1 - Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time N2 - The noncrystalline glassy state of matter plays a role in virtually all fields of materials science and offers complementary properties to those of the crystalline counterpart. The caveat of the glassy state is that it is out of equilibrium and therefore exhibits physical aging, i.e., material properties change over time. For half a century, the physical aging of glasses has been known to be described well by the material-time concept, although the existence of a material time has never been directly validated. We do this here by successfully predicting the aging of the molecular glass 4-vinyl-1,3-dioxolan-2-one from its linear relaxation behavior. This establishes the defining property of the material time. Via the fluctuation-dissipation theorem, our results imply that physical aging can be predicted from thermal-equilibrium fluctuation data, which is confirmed by computer simulations of a binary liquid mixture. KW - Physical aging KW - Equilibrium relaxation KW - Glass PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546015 DO - https://doi.org/10.1126/sciadv.abl9809 SN - 2375-2548 VL - 8 IS - 11 SP - 1 EP - 8 PB - American Association for the Advancement of Science CY - Washington, DC AN - OPUS4-54601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Ansari, A. A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Preparation of core–shell structured NaYF4:Yb3+/ Tm3+@NaYF4:Yb3+/Er3+ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties N2 - A series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials available today. By using this material as a probe to build a fiber optic temperature sensor platform, it was found to have reliable temperature measurement performance. KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Temperature KW - Nano KW - Particle KW - Upconversion KW - Lanthanide KW - Qantum yield KW - Quality assurance KW - Monitoring KW - Infrastructure PY - 2022 DO - https://doi.org/10.1039/d1ce01729b VL - 24 IS - 9 SP - 1752 EP - 1763 PB - RSC Publishing AN - OPUS4-54416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghazanfari, M. R. A1 - Vittadello, L. A1 - Al-Sabbagh, Dominik A1 - Santhosh, A. A1 - Frankcom, C. A1 - Fuß, F. A1 - von Randow, C. A. A1 - Siemensmeyer, K. A1 - Vrijmoed, J. C. A1 - Emmerling, Franziska A1 - Jerabek, P. A1 - Irmlau, M. A1 - Thiele, G. T1 - Remarkable Infrared Nonlinear Optical, Dielectric, and Strong Diamagnetic Characteristics of Semiconducting K3[BiS3] N2 - The ternary sulfido bismuthate K3[BiS3] is synthesized in quantitative yields. The material exhibits nonlinear optical properties with strong second harmonic generation properties at arbitrary wavelengths in the infrared spectral range and a notable laser-induced damage threshold of 5.22 GW cm−2 for pulsed laser radiation at a wavelength of 1040 nm, a pulse duration of 180 fs, and a repetition rate of 12.5 kHz. K3[BiS3] indicates semiconductivity with a direct optical band gap of 2.51 eV. Dielectric and impedance characterizations demonstrate κ values in the range of 6−13 at 1 kHz and a high electrical resistivity. A strong diamagnetic behavior with a susceptibility of −2.73 × 10−4 m3 kg−1 at room temperature is observed. These results suggest it is a promising nonlinear optical candidate for the infrared region. The synergic physical characteristics of K3[BiS3] provide insight into the correlation of optical, electrical, and magnetic properties. KW - Electrical properties KW - Insulators KW - Materials KW - Nonlinear optics KW - Quantum mechanics PY - 2022 DO - https://doi.org/10.1021/acs.jpclett.2c01689 VL - 13 IS - 30 SP - 6987 EP - 6993 PB - ACS Publications AN - OPUS4-55456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Grengg, C. A1 - Ukrainczyk, N. A1 - Mittermayr, F. A1 - Dietzel, M. T1 - Acid resistance of alkali-activated materials: Recent advances and research needs N2 - Cementitious materials are frequently applied in environments in which they are exposed to acid attack, e.g., in sewer systems, biogas plants, and agricultural/food-related industries. Alkali-activated materials (AAMs) have repeatedly been shown to exhibit a remarkably high resistance against attack by organic and inorganic acids and, thus, are promising candidates for the construction and the repair of acid-exposed structures. However, the reaction mechanisms and processes affecting the acid resistance of AAMs have just recently begun to be understood in more detail. The present contribution synthesises these advances and outlines potentially fruitful avenues of research. The interaction between AAMs and acids proceeds in a multistep process wherein different aspects of deterioration extend to different depths, complicating the overall determination of acid resistance. Partly due to this indistinct definition of the ‘depth of corrosion’, the effects of the composition of AAMs on their acid resistance cannot be unambiguously identified to date. Important parallels exist between the deterioration of low-Ca AAMs and the weathering/corrosion of minerals and glasses (dissolution-reprecipitation mechanism). Additional research requirements relate to the deterioration mechanism of high-Ca AAMs; how the character of the corroded layer influences the rate of deterioration; the effects of shrinkage and the bond between AAMs and substrates. KW - Alkali-activated materials KW - Acid attack KW - Acid resistance KW - Concrete repair KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557376 DO - https://doi.org/10.21809/rilemtechlett.2022.157 SN - 2518-0231 VL - 7 SP - 58 EP - 67 PB - RILEM Publications SARL CY - Paris AN - OPUS4-55737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pakrashy, S. A1 - Mandal, P. K. A1 - Goswami, J. N. A1 - Dey, S. K. A1 - Choudhury, S. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Alasmary, F. A. A1 - Dolai, M. T1 - Bioinformatics and Network Pharmacology of the First Crystal Structured Clerodin: Anticancer and Antioxidant Potential against Human Breast Carcinoma Cell N2 - Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells. KW - Anticancer KW - Clerodin PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567600 DO - https://doi.org/10.1021/acsomega.2c07173 SN - 2470-1343 VL - 7 IS - 51 SP - 48572 EP - 48582 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marti, J. A1 - Schartel, Bernhard A1 - Oñate, E. T1 - Simulation of the burning and dripping cables in fire using the particle finite element method N2 - The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the particle finite element method for simulating a bench-scale cables burning test is analyzed. The use bench-scale test has been previously used to simulate the full-scale test described in EN 50399. As the air effect is neglected, a simple combustion model is included. The samples selected are two cables consisting of a copper core and differently flame retarded thermoplastic polyurethane sheets. The key modeling parameters were determined from different literature sources as well as experimentally. During the experiment, the specimen was burned under the test set-up condition recording the process and measuring the temperature evolution by means of three thermocouples. Next, the test was reproduced numerically and compared with a real fire test. The numerical results show that the particle finite element method can accurately predict the evolution of the temperature and the melting of the jacket. KW - Dripping behavior KW - Particle finite element method KW - Cables in fire KW - Fire behavior KW - Fire simulation KW - Cable bundle PY - 2022 DO - https://doi.org/10.1177/07349041211039752 SN - 0734-9041 VL - 40 IS - 1 SP - 3 EP - 25 PB - Sage AN - OPUS4-54185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, K. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram T1 - Chemical and thixotropic contribution to the structural build-up of cementitious materials N2 - The structural build-up of fresh cement paste is often considered as a purely thixotropic phenomenon in literature even though cementitious materials undergo a non-reversible hydration process that can have an influence on the structuration process. In the current paper a method is proposed to validate the impact of the non-reversible structural build-up. It is shown that fresh cement paste samples lose their structural gain almost completely due to thixotropy while the structural build-up due to hydration can be observed but occurs in a significantly lower order of magnitude over the course of the first hours of hydration. In addition, it is shown, that the chemical component of the structural build-up accelerates with the onset of the acceleration period of hydration, while its contribution in the entire structural build-up remains constant. KW - Thixotropy KW - Structural build-up KW - Penetration test KW - Rheological properties PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128307 SN - 0950-0618 VL - 345 IS - 128307 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-58248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. A1 - Eriksson, H. T1 - Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro N2 - Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1b from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies. KW - Molecularly imprinted polymers KW - Digital holographic cytometry KW - Cytotoxicity KW - Proinflammatory cytokines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552250 DO - https://doi.org/10.3390/app12126091 SN - 2076-3417 VL - 12 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tengattini, A A1 - Kardjilov, N A1 - Helfen, L A1 - Douissard, P A A1 - Lenoir, N A1 - Markötter, Henning A1 - Hilger, A A1 - Arlt, T A1 - Paulisch, M A1 - Turek, T A1 - Manke, Ingo T1 - Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator N2 - A large and increasing number of scientific domains pushes for high neutron imaging resolution achieved in reasonable times. Here we present the principle, design and performance of a detector based on infinity corrected optics combined with a crystalline Gd3Ga5O12 : Eu scintillator, which provides an isotropic sub-4 μm true resolution. The exposure times are only of a few minutes per image. This is made possible also by the uniquely intense cold neutron flux available at the imaging beamline NeXT-Grenoble. These comparatively rapid acquisitions are compatible with multiple high quality tomographic acquisitions, opening new venues for in-operando testing, as briefly exemplified here. KW - Neutron imaging KW - Scintillator KW - Resolution PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549836 DO - https://doi.org/10.1364/oe.448932 VL - 30 IS - 9 SP - 14461 EP - 14477 PB - Optica CY - Washington, DC AN - OPUS4-54983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Tran, K. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561649 DO - https://doi.org/10.1016/j.matdes.2022.111037 SN - 0264-1275 VL - 222 SP - 111037 PB - Elsevier Ltd. AN - OPUS4-56164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bodechtel, S. A1 - Fuhrmann, A. A1 - Henning, A. A1 - Hahn, Oliver A1 - Rabin, Ira A1 - Kreische, W. A1 - Mäder, M. T1 - The Madonna with the Wash-Basin by Giulio Romano: A Multidisciplinary Study of the Painting’s History N2 - In an interdisciplinary collaboration, restorers, art historians, and scientists examined Guilio Romano’s The Madonna with the Wash-Basin of 1525 (Dresden State Art Collections). Insights into the painting technique along with art historical comparisons provided the opportunity for a better understanding of the painting’s genesis, in particular concerning an early reworking of the background by the artist. A recovery and reconstruction of the earlier version of the background is now possible. The discovery of zinc in distinct passages of the painting, as well as the grey-black pigment stibnite and glass particles used as a supplement in paint layers are of special interest. The technological investigation initiated a discussion about the circumstances of the revision, as well as the painting’s relation to Vasari’s Lives of Artists. KW - Giulio Romano KW - Holy Family KW - Basin KW - Reworking KW - Pentimenti KW - Portrayal of St Joseph KW - Sixteenth-century painting technique KW - Raphael school KW - Zinc KW - Antimony black (stibnite) KW - Vasari PY - 2022 DO - https://doi.org/10.1080/00393630.2022.2118302 VL - 2022 SP - 2 EP - 12 PB - Routledge Taylor & Francis Group CY - London, UK AN - OPUS4-55970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziesche, R.F. A1 - Hack, J. A1 - Rasha, L. A1 - Maier, M. A1 - Tan, C. A1 - Heenan, T.M.M. A1 - Markötter, Henning A1 - Kardjilov, N. A1 - Manke, I. A1 - Kockelmann, W. A1 - Brett, D.J.L. A1 - Shearing, P.R. T1 - High-speed 4D neutron computed tomography for quantifying water dynamics in polymer electrolyte fuel cells N2 - In recent years, low-temperature polymer electrolyte fuel cells have become an increasingly important pillar in a zero-carbon strategy for curbing climate change, with their potential to power multiscale stationary and mobile applications. The performance improvement is a particular focus of research and engineering roadmaps, with water management being one of the major areas of interest for development. Appropriate characterisation tools for mapping the evolution, motion and removal of water are of high importance to tackle shortcomings. This article demonstrates the development of a 4D high-speed neutron imaging technique, which enables a quantitative analysis of the local water evolution. 4D visualisation allows the time-resolved studies of droplet formation in the flow fields and water quantification in various cell parts. Performance parameters for water management are identified that offer a method of cell classification, which will, in turn, support computer modelling and the engineering of next-generation flow field designs. KW - Neutron imaging KW - Tomography KW - Polymer electrolyte membrane fuel cell PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545978 DO - https://doi.org/10.1038/s41467-022-29313-5 VL - 13 IS - 1 SP - 1616 PB - Nature Publishing Group UK CY - London AN - OPUS4-54597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-ray refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. The investigated material was a laser powder bed fusion (LPBF) manufactured AlSi10Mg, where the initial eutectic Si network is known to disintegrate and spherodize into larger particles with increasing temperature. Such alloy is also prone to thermally induced porosity (TIP). We show that SXRR allows detecting the changes in the Si-phase morphology upon heating, while this is currently possible only using scanning electron microscopy. SXRR also allows observing the growth of pores, usually studied via X-ray computed tomography, but on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. KW - Synchrotron X-ray refraction radiography KW - Si network disintegration KW - Thermally induced porosity (TIP) KW - Laser powder bed fusion (LPBF) KW - Statistically relevant volumes KW - AlSi10Mg alloy PY - 2022 DO - https://doi.org/10.1016/j.msea.2022.142732 SN - 0921-5093 VL - 838 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-54297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569101 DO - https://doi.org/10.1016/j.matdes.2022.111037 VL - 222 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernges, T. A1 - Hanus, R. A1 - Wankmiller, B. A1 - Imasato, K. A1 - Lin, S. A1 - Ghidiu, M. A1 - Gerlitz, M. A1 - Peterlechner, M. A1 - Graham, S. A1 - Hautier, G. A1 - Pei, Y. A1 - Hansen, M. R. A1 - Wilde, G. A1 - Snyder, G. J. A1 - George, Janine A1 - Agne, M T. A1 - Zeier, W. G. T1 - Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity N2 - Next-generation thermal management requires the development of low lattice thermal conductivity materials, as observed in ionic conductors. For example, thermoelectric efficiency is increased when thermal conductivity is decreased. Detrimentally, high ionic conductivity leads to thermoelectric device degradation. Battery safety and design also require an understanding of thermal transport in ionic conductors. Ion mobility, structural complexity, and anharmonicity have been used to explain the thermal transport properties of ionic conductors. However, thermal and ionic transport are rarely discussed in direct comparison. Herein, the ionic conductivity of Ag+ argyrodites is found to change by orders of magnitude without altering the thermal conductivity. Thermal conductivity measurements and two-channel lattice dynamics modeling reveal that the majority of Ag+ vibrations have a non-propagating diffuson-like character, similar to amorphous materials. It is found that high ionic mobility is not a requirement for diffuson-mediated transport. Instead, the same bonding and structural traits that can lead to fast ionic conduction also lead to diffuson-mediated transport. Bridging the fields of solid-state ionics and thermal transport, it is proposed that a vibrational perspective can lead to new design strategies for functional ionic conducting materials. As a first step, the authors relate the so-called Meyer-Neldel behavior in ionic conductors to phonon occupations. KW - Diffusons KW - DFT KW - Phonons KW - Thermoelectrics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547140 DO - https://doi.org/10.1002/aenm.202200717 SN - 1614-6832 VL - 12 IS - 22 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-54714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550075 DO - https://doi.org/10.3390/cancers14122909 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fürst, Richard A1 - Hejtmanek, P. A1 - Vlach, T. A1 - Repka, J. A1 - Mozer, V. A1 - Hajek, P. T1 - Experimental Evaluation of Carbon Reinforced TRC with Cement Suspension Matrix at Elevated Temperature N2 - Textile-reinforced concrete (TRC) is a new composite material comprising high-performance concrete and textile reinforcement from textile yarns with a matrix, usually consisting of epoxy resins (ER). The most significant advantage of ER is the homogenization of all filaments in the yarn and full utilization of its tensile potential. Nevertheless, ER matrix is a critical part of TRC design from the perspective of the fire resistance due to its relatively low resistance at temperatures of approximately 120 C. This work expands the previously performed mechanical tests at normal temperatures with cement suspension (CS) as a non-combustible material for the yarn matrix. Here, the mechanical properties of CS matrix at elevated temperatures were verified. It was found that the addition of polypropylene fibers into HPC negatively affected the mechanical results of CS matrix specimens. Simultaneously, thermal insulation effect of the covering layers with different thicknesses did not significantly influence the residual bending strength of specimens with CS matrix and achieved similar results as reference specimens. Furthermore, all specimens with ER matrix progressively collapsed. Finally, CS as a textile reinforcement of yarn matrix appears to be a suitable solution for increasing the temperature resistance of TRC structures and for substituting synthetic resins. KW - Cement matrix KW - Cement suspension KW - Carbon fibers KW - Textile reinforced concrete KW - High-performance concrete KW - Elevated temperature KW - Fire safety KW - Fire resistance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550766 DO - https://doi.org/10.3390/polym14112174 SN - 2073-4360 VL - 14 IS - 11 SP - 1 EP - 16 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564577 DO - https://doi.org/10.1002/aenm.202203143 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Huber, P. A1 - Schönhals, Andreas T1 - Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry N2 - Hexakis(n-alkyloxy)triphenylene) (HATn) consisting of an aromatic triphenylene core and alkyl side chains are model discotic liquid crystal (DLC) systems forming a columnar mesophase. In the mesophase, the molecules of HATn self-assemble in columns, which has one-dimensional high charge carrier mobility along the columns. Here, a homologous series of HATn with different length of the alkyl chain (n = 5,6,8,10,12) is investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques including fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). The investigation of the phase behavior was done utilizing DSC experiments and the influence of the alkyl chain length on the phase behavior was revealed. By the dielectric investigations probing the molecular mobility, a c-relaxation due to localized fluctuations as well as two glassy dynamics, the acore- and aalkyl-relaxation, were observed in the temperature range of the plastic crystalline phase. Moreover, the observed glassy dynamics were further studied employing advanced calorimetry. All observed relaxation processes are attributed to the possible specific molecular fluctuations and discussed in detail. From the results a transition at around n = 8 from a rigid constrained (n = 5,6) to a softer system (n = 10,12) was revealed with increasing alkyl chain length. A counterbalance of two competing effects of a polyethylene-like behavior of the alkyl chains in the intercolumnar domains and self-organized confinement is discussed in the context of a hindered glass transition. KW - Discotic liquid crystals KW - Broadband dielectric spectroscopy KW - Advanced calorimetry PY - 2022 DO - https://doi.org/10.1016/j.molliq.2022.119212 VL - 358 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-54721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Time-Resolved InSitu Monitoring of Mechanochemical Reactions N2 - Mechanochemical transformations offer environmentally benign synthesis routes, whilst enhancing both the speed and selec-tivity of reactions. In this light, mechanochemistry promises to trans-form the way in which chemistry is done in both academia and indus-try but is greatly hindered by a current lack in mechanistic understand-ing. The continued development and use of time-resolved in situ(TRIS) approaches to monitor mechanochemical reactions provides a new dimension to elucidatethese fascinating transformations. We here discuss recent trends in method development that have pushed the boundaries of mechanochemical research. New features of mech-anochemical reactions obtained by TRIS techniques are subse-quently discussed, shedding light on how different TRISapproaches have beenused. Emphasis is placed on the strength of combining complementary techniques. Finally, we outline our views for the po-tential of TRIS methods in mechanochemical research, towards es-tablishing a new, environmentally benign paradigm in the chemical sciences KW - Mechanochemistry KW - Material synthesis KW - Green chemistry PY - 2022 DO - https://doi.org/10.1002/anie.202117270 SN - 1433-7851 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Systematic ranking of filaments regarding their particulate emissions during fused filament fabrication 3D printing by means of a proposed standard test method N2 - The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (1E9 ≤ TP ≤ 1E13), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards. KW - Emission test method KW - FFF-printing KW - Particle emission KW - Indoor air quality KW - FFF-filament PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545087 DO - https://doi.org/https://doi.org/10.1111/ina.13010 SN - 1600-0668 VL - 32 IS - 3 SP - 1 EP - 12 PB - Wiley CY - Hoboken, New Jersey, USA AN - OPUS4-54508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Ben Shir, I. A1 - Schmidt, A. A1 - Kovler, K. A1 - Diesendruck, Ch. E. T1 - Retardation mechanism of cement hydration by a comb polyphosphate superplasticizer N2 - The retardation mechanism of cement hydration as imparted by the addition of polyphosphate comb superplasticizer to model cement containing C3S, C3A and calcium sulfate hemihydrate is studied using XRD, ss NMR and calorimetry. Our findings show the retardation effect caused by the direct addition of polyphosphate comb superplasticizer differs significantly to that of conventional polycarboxylate superplasticizers. Conversely to polycarboxylates, polyphosphates, at a low dosage, inhibits the silicate reaction without affecting the aluminate reaction and formation of ettringite. Yet, at high doses, both reactions are hampered, and the induction period extended, followed by accelerated aluminate and silicate reactions. KW - Superplasticizer KW - Polyphosphate KW - Retardation KW - Cement hydration PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128698 SN - 0950-0618 VL - 352 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -