TY - JOUR A1 - Bawadkji, O. A1 - Cherri, M. A1 - Schäfer, A. A1 - Herziger, S. A1 - Nickl, Philip A1 - Achazi, K. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Haag, R. T1 - One-pot covalent functionalization of 2D black phosphorus by anionic ring opening polymerization N2 - In this work, a one-pot approach for the covalent functionalization of few-layer black phosphorus (BP) by anionic ring opening polymerization of glycidol to obtain multifunctional BP-polyglycerol (BP-PG) with high amphiphilicity for near-infrared-responsive drug delivery and biocompatibility is reported. Straightforward synthesis in combination with exceptional biological and physicochemical properties designates functionalized BP-PG as a promising candidate for a broad range of biomedical applications. KW - 2D nanomaterial KW - Amphiphilicity KW - Black phosphorus KW - Hyperbranched KW - Polyglycerol KW - Water dispersibility PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568833 DO - https://doi.org/10.1002/admi.202201245 SN - 2196-7350 VL - 9 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 DO - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Optimally rejuvenated model binary glasses N2 - Using the creation relaxation algorithm developed for the atomistic modeling of the high-dose irradiation limit of crystalline systems, we explore the limits of the structural rejuvenation of a highly excited model binary glass. This high-energy athermal amorphous structure exhibits a direct transition to homogeneous plastic flow and a microstructure that is largely insensitive to this flow, being characterized by a porous system-spanning network of minimally frustrated structural motifs. The observed homogeneous plasticity is mediated by the same string-like structural excitations, which mediate structural relaxation and microplasticity at finite temperature in more relaxed structures. This highly rejuvenated structural asymptote is not far from the structural state of regions, which have experienced athermal shear localization in more relaxed samples, suggesting an optimally rejuvenated glassy structure will always be limited by that produced by shear localization. KW - Metallic glasses KW - Creation-relaxation algorithm KW - Shear PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.125604 VL - 6 IS - 12 SP - 1 EP - 13 PB - American Physical Society AN - OPUS4-56741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - OsciCheck - A Novel Fluidic Transducer for Air-Coupled Ultrasonic Measurements N2 - Ultrasonic measurement technology has become indispensable in NDT-CE. Air-coupled ultrasonic (ACU) measurement techniques promise to reduce measurement time. However, the signal quality suffers from large specific impedance mismatch at the transducer-air and air-specimen interface. Additionally, large pressure amplitudes are necessary for the penetration depth required in NDT-CE applications. To address the specific requirements of ultrasonic testing in NDT-CE, a robust ACU transducer was developed, that generates ultrasound by quickly switching a pressurized air flow. The simple design of the fluidic transducer makes the device maintenance free and resilient against harsh environmental conditions. Since the signal is generated by aeroacoustics, there is no specific impedance mismatch between the transducer and the surrounding air. The ultrasonic signal exhibits frequencies in the 30-60 kHz range and is therefore well suited to penetrate heterogenous materials such as concrete. This contribution gives an introduction in the working principle and signal characteristics of the fluidic transducer. Its applicability to measurements in concrete is verified. A detailed outlook is given to discuss the future potential of fluidic ultrasonic actuators. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Air-coupled ultrasound KW - Nondestructive testing KW - Fluidics KW - Bistable amplifier KW - Aeroacoustics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555271 UR - https://www.ndt.net/search/docs.php3?id=27319 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals (Fig. 1). Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7 (Fig 2). These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - Granada Münster Discussion Meeting (GMDM) CY - Granda, Spain DA - 30.11.2022 KW - Anhydrite KW - Mesocrystals KW - Calcium sulfate KW - Bassanite KW - Gypsum PY - 2022 AN - OPUS4-56476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals. Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7. These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - ECCG: European Conference on Crystal Growth 7 CY - Paris, France DA - 25.07.2022 KW - Anhydrite KW - SAXS KW - Single crystal KW - Mesocrystal PY - 2022 AN - OPUS4-56276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564577 DO - https://doi.org/10.1002/aenm.202203143 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Kästner, L. A1 - Hauffen, Jan Christian A1 - Jung, P. A1 - Ziegler, Mathias T1 - Photothermal-SR-Net: A customized deep unfolding neural network for photothermal super resolution imaging N2 - This article presents deep unfolding neural networks to handle inverse problems in photothermal radiometry enabling super-resolution (SR) imaging. The photothermal SR approach is a well-known technique to overcome the spatial resolution limitation in photothermal imaging by extracting high-frequency spatial components based on the deconvolution with the thermal point spread function (PSF). However, stable deconvolution can only be achieved by using the sparse structure of defect patterns, which often requires tedious, handcrafted tuning of hyperparameters and results in computationally intensive algorithms. On this account, this article proposes Photothermal-SR-Net, which performs deconvolution by deep unfolding considering the underlying physics. Since defects appear sparsely in materials, our approach includes trained block-sparsity thresholding in each convolutional layer. This enables to super-resolve 2-D thermal images for nondestructive testing (NDT) with a substantially improved convergence rate compared to classic approaches. The performance of the proposed approach is evaluated on various deep unfolding and thresholding approaches. Furthermore, we explored how to increase the reconstruction quality and the computational performance. Thereby, it was found that the computing time for creating high-resolution images could be significantly reduced without decreasing the reconstruction quality by using pixel binning as a preprocessing step. KW - Deep unfolding KW - Defect reconstruction KW - Elastic net KW - Inverse problems KW - Iterative shrinkage thresholding KW - Neural network KW - Nondestructive testing (NDT) KW - Photothermal imaging KW - Super resolution (SR) KW - Thermography PY - 2022 DO - https://doi.org/10.1109/tim.2022.3154803 SN - 1557-9662 VL - 71 SP - 1 EP - 9 PB - IEEE AN - OPUS4-54678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ravi, J. A1 - Feiler, Torvid A1 - Mondal, A. A1 - Michalchuk, Adam A1 - Reddy, C. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Chandrasekar, R. T1 - Plastically bendable organic crystals for monolithic and hybrid micro-optical circuits N2 - Fluorescent plastically bendable crystals are a promising alternative to silicon-based materials for fabricating photonic integrated circuits, owing to their optical attributes and mechanical compliance. Mechanically bendable plastic organic crystals are rare. Their formation requires anisotropic intermolecular interactions and slip planes in the crystal lattice. This work presents three fluorescent plastically bendable crystalline materials namely, 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-chlorophenol (SB1), 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-bromophenol (SB2), and 2-((E)-(6-Bromopyridin-2-ylimino)methyl)-4-bromophenol (SB3) molecules. The crystal plasticity in response to mechanical stress facilitates the fabrication of various monolithic and hybrid (with a tip-to-tip coupling) photonic circuits using mechanical micromanipulation with an atomic force microscope cantilever tip. These plastically bendable crystals act as active (self-guiding of fluorescence) and passive waveguides both in straight and extremely bent (U-, J-, and O-shaped) geometries. These microcircuits use active and passive waveguiding principles and reabsorbance and energy-transfer mechanisms for their operation, allowing input-selective and direction-specific signal transduction. KW - Flexible crystals KW - Flexible waveguide PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565302 DO - https://doi.org/10.1002/adom.202201518 SN - 2195-1071 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, Y. A1 - Neumann, C. A1 - Scholtz, Lena A1 - Turchanin, A. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Polarity, intramolecular charge transfer, and hydrogen bond comediated solvent effects on the optical properties of graphene quantum dots N2 - Graphene quantum dots (GQDs) have attracted increasing attention due to their favorable optical properties and have been widely used, e.g., in the biomedical field. However, the properties related to the chemical structure of GQDs, resulting in solventdependent optical properties, still remain unclear. Herein, we present the synthesis of long-wavelength emitting GQDs with a size of about 3.6 nm via a solvothermal method using oxo-functionalized graphene (oxo-G) and p-phenylenediamine as precursors and their structural and surface chemical analysis by transmission electron and atomic force microscopy (TEM; AFM) as well as Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (FTIR; Raman; XPS). Subsequently, the influence of solvent polarity and proticity on the optical properties of the as-prepared GQDs bearing –OH, –NH2, –COOH and pyridine surface groups was investigated. Based on the results of the absorption and fluorescence (FL) studies, a possible luminescence mechanism is proposed. The observed solvent-induced changes in the spectral position of the FL maximum, FL quantum yield, and FL decay kinetics in protic and aprotic solvents of low and high polarity are ascribed to a combination of polarity effects, intramolecular charge transfer (ICT) processes, and hydrogen bonding. Moreover, the potential of GQDs for the optical sensing of trace amount of water was assessed. The results of our systematic spectroscopic study will promote the rational design of GQDs and shed more light on the FL mechanism of carbon based fluorescent nanomaterials. KW - Graphene quantum dots KW - Solvent polarity KW - solvent-induced changes KW - Charge transfer PY - 2022 DO - https://doi.org/10.1007/s12274-022-4752-1 SN - 1998-0124 SP - 1 EP - 8 PB - Springer AN - OPUS4-56030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymeric Capsules with VOCs for Controlled Emission N2 - Micro-(nano-)encapsulation technology involves building of a barrier between the core and the environment and offers a number of benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of the payload. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ [1] was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. Different capsules in a size range between 5 and 50 μm were synthesized through an interfacial polyaddition/polycondensation reaction in direct (water-in-oil) system. As VOC several types of hydrophobic liquid materials were used. After synthesis, the morphology and physicochemical properties of capsules were characterized by electron microscopy, FTIR and DSC/TGA. An encapsulation efficiency up to 90% could be reached. The emission kinetic of volatile agents was studied in emission test chambers at 23 °C and 50% RH for 14 days. First results indicate that variation of the cross-linking grade of the shell material is one important parameter to adjust the desired emission rate. The overall aim is to achieve a consistent emission profile that decreases by less than 10 % over a target period of at least 14 days. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Crete, Greece DA - 04.09.2022 KW - Capsules KW - Volatile organic compound KW - Polymer KW - Material emissions KW - Reference materials PY - 2022 AN - OPUS4-56039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymeric Capsules with VOCs for Controlled Emission N2 - Micro-(nano-)encapsulation technology involves building a barrier between the core and the environment and offers several benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of loaded compounds. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Crete, Greece DA - 04.09.2022 KW - Capsules KW - Volatile organic compounds KW - Material emissions KW - QA/QC KW - Reference materials PY - 2022 AN - OPUS4-55917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Smales, Glen Jacob A1 - Harrison, W. J. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Polymers of intrinsic microporosity - Molecular mobility and physical aging revisited by dielectric spectroscopy and X‑ray scattering N2 - Polymers of intrinsic microporosity (PIMs) are promising candidates for the active layer in gas separation membranes due to their high permeability and reasonable permselectivity. These appealing properties originate from a microporous structure as a result of inefficient segment packing in the condensed state due to a combination of a ladder-like rigid backbone and sites of contortion. However, this class of polymers suffers from a significant decrease in the permeability with time due to physical aging, whereby typically, the permselectivity increases. The initial microporous structures approach a denser state via local rearrangements, leading to the reduction of the permeability. Hence, a detailed characterization of the molecular mobility in such materials can provide valuable information on physical aging. In this work, the dielectric behavior of PIM-1 films and their behavior upon heating (aging) were revisited by isothermal frequency scans during different heating/cooling cycles over a broad temperature range between 133 and 523 K (−140 to 250 °C). In addition, the obtained results were compared with data of samples that were annealed at ambient temperatures over different time scales. Multiple dielectric processes were observed: several relaxation processes due to local fluctuations and a Maxwell−Wagner−Sillars polarization effect related to the microporosity. The temperature dependence of the rates of all processes follows the Arrhenius law where the estimated activation energy depends on the nature of the process. The influence of the thermal history (aging) on the processes is discussed in detail. KW - Polymers of intrinsic microporosity PY - 2022 DO - https://doi.org/10.1021/acs.macromol.2c00934 VL - 55 SP - 7340 EP - 7350 PB - American Chemical Society CY - Washington, DC AN - OPUS4-55485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cestari, F. A1 - Yang, Y. A1 - Wilbig, Janka A1 - Günster, Jens A1 - Motta, A. A1 - Sglavo, V. T1 - Powder 3D printing of bone scaffolds with uniform and gradient pore sizes using cuttlebone-derived calcium phosphate and glass-ceramic N2 - The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized from natural sources have recently attracted a certain interest because of their similarity to natural bone, and they were found to show better bioactivity than synthetic compounds. Nevertheless, these materials are very challenging to be processed by 3D printing due to technological issues related to their nanometric size. In this work, bone scaffolds with different pore geometries, with a uniform size or with a size gradient, were fabricated by binder jetting 3D printing using a biphasic calcium phosphate (BCP) nanopowder derived from cuttlebones. To do so, the nanopowder was mixed with a glass-ceramic powder with a larger particle size (45–100 µm) in 1:10 weight proportions. Pure AP40mod scaffolds were also printed. The sintered scaffolds were shown to be composed mainly by hydroxyapatite (HA) and wollastonite, with the amount of HA being larger when the nanopowder was added because BCP transforms into HA during sintering at 1150 ◦C. The addition of bio-derived powder increases the porosity from 60% to 70%, with this indicating that the nanoparticles slow down the glass-ceramic densification. Human mesenchymal stem cells were seeded on the scaffolds to test the bioactivity in vitro. The cells’ number and metabolic activity were analyzed after 3, 5 and 10 days of culturing. The cellular behavior was found to be very similar for samples with different pore geometries and compositions. However, while the cell number was constantly increasing, the metabolic activity on the scaffolds with gradient pores and cuttlebone-derived powder decreased over time, which might be a sign of cell differentiation. Generally, all scaffolds promoted fast cell adhesion and proliferation, which were found to penetrate and colonize the 3D porous structure. KW - Bioactivity KW - Cuttlefish KW - Biphasic calcium phosphate KW - Binder jetting KW - Scaffold geometry KW - Hausner ratio PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553627 DO - https://doi.org/10.3390/ma15155139 SN - 1996-1944 VL - 15 IS - 15 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönauer-Kamin, Daniela A1 - Hetzel, K. A1 - Moos, R. A1 - Bresch, Sophie T1 - Powder-Aerosol deposited (PAD) calcium manganate as n-type thermoelectric material N2 - Currently, calcium manganate CaMnO3 and calcium cobaltite Ca3Co4O9 are being investigated as n-type resp. p-type semiconducting materials as oxidation- and temperature-resistant thermoelectric materials for oxide multilayer thermoelectric generators (TEGs). In order to manufacture multilayer TEGs, pressure-assisted sintering processes at high temperatures are necessary to achieve optimal thermoelectric material properties. To realize TEGs in planar film technology, another method to obtain dense ceramic layers directly from the synthesized starting powders without a subsequent high temperature step is emerging recently: the powder aerosol deposition (PAD) method. In the present work, it is investigated whether PAD is suitable to produce dense ceramic films from Sm-doped CaMnO3 and Ca3Co4O9 powders. The resulting thermoelectric properties are characterized as a function of temperature. CaMnO3 powder could successfully be processed by PAD with resulting layer thicknesses of 5- 6 µm without any high-temperature sintering steps of the films. The electrical conductivity and the Seebeck coefficient of the films were determined in-plane from room temperature to 600 °C in air. The results show a Seebeck coefficient of around -200 µV/K, which is comparable to results of pressed and sintered bars. At 400 °C, the electrical conductivity corresponds to the conductivity of the bar. At higher temperatures the conductivity is better than with the reference. Below 400°C, the electrical conductivity is somewhat lower than that of the reference sample, a mild thermal treatment of the PAD layer improves it. It is expected that the thermal conductivity of the PAD film will be lower compared to the bars due to the nano-crystalline film morphology. This should result in a significantly increased ZT value for the PAD layers and a higher efficiency of the TEG. The work shows that both CaMnO3 and Ca3Co4O9 can be successfully processed by PAD, and the PAD films show comparable thermoelectric properties. T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spanien DA - 14.09.2022 KW - Film depositition KW - Calcium cobaltite PY - 2022 AN - OPUS4-55771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - PP Nanoplastics Dispersed In Water As Reference Materials N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastic are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a “methodological gap” in the analytics of plastic particles with a diameter smaller than 1 µm. Submicron and nano plastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics, starting with polypropylene (PP). We found an easy way to form nanoparticles consisting of PP (nano-PP), adapting and improving the method presented for polystyrene (PS). PP was dispersed to acetone and then transferred to water. No additional surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering (DLS). To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. This method is repeatable and well suited to produce reference material, as which we propose our prepared particles, based on a homogeneity study, that we performed, following the ISO Guide 35 for reference materials. T2 - Prague Meeting on Macromolecules 2022 CY - Prag, Czechia DA - 24.07.2022 KW - Nanoplastic KW - Reference material PY - 2022 AN - OPUS4-55961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Roed, L. A1 - Mehri, S. A1 - Ingebrigtsen, T. A1 - Hecksher, T. A1 - Dyre, J. A1 - Niss, K. T1 - Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time N2 - The noncrystalline glassy state of matter plays a role in virtually all fields of materials science and offers complementary properties to those of the crystalline counterpart. The caveat of the glassy state is that it is out of equilibrium and therefore exhibits physical aging, i.e., material properties change over time. For half a century, the physical aging of glasses has been known to be described well by the material-time concept, although the existence of a material time has never been directly validated. We do this here by successfully predicting the aging of the molecular glass 4-vinyl-1,3-dioxolan-2-one from its linear relaxation behavior. This establishes the defining property of the material time. Via the fluctuation-dissipation theorem, our results imply that physical aging can be predicted from thermal-equilibrium fluctuation data, which is confirmed by computer simulations of a binary liquid mixture. KW - Physical aging KW - Equilibrium relaxation KW - Glass PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546015 DO - https://doi.org/10.1126/sciadv.abl9809 SN - 2375-2548 VL - 8 IS - 11 SP - 1 EP - 8 PB - American Association for the Advancement of Science CY - Washington, DC AN - OPUS4-54601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Ansari, A. A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Preparation of core–shell structured NaYF4:Yb3+/ Tm3+@NaYF4:Yb3+/Er3+ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties N2 - A series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials available today. By using this material as a probe to build a fiber optic temperature sensor platform, it was found to have reliable temperature measurement performance. KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Temperature KW - Nano KW - Particle KW - Upconversion KW - Lanthanide KW - Qantum yield KW - Quality assurance KW - Monitoring KW - Infrastructure PY - 2022 DO - https://doi.org/10.1039/d1ce01729b VL - 24 IS - 9 SP - 1752 EP - 1763 PB - RSC Publishing AN - OPUS4-54416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Przyklenk, A. A1 - Evans, Alexander A1 - Bosse, H. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Favre, G. A1 - Phillips, D. T1 - Progress of the European Metrology Network for Advanced Manufacturing N2 - The European Metrology Network (EMN) for Advanced Manufacturing has been established in June 2021. Currently nine EMNs focussing on different important topics of strategic importance for Europe exist and form an integral part of EURAMET, the European Association of National Metrology Institutes (NMI). EMNs are tasked to ▪ develop a high-level coordination of the metrology community in Europe in a close dialogue with the respective stakeholders (SH) ▪ develop a strategic research agenda (SRA) within their thematic areas ▪ provide contributions to the European Partnership on Metrology research programme Based on the analysis of existing metrology infrastructures and capabilities of NMIs, the metrology research needs for advanced manufacturing are identified in close cooperation with academic, governmental and industrial stakeholders. Here, we report on the progress of the EMN for Advanced Manufacturing. T2 - Euspen 22nd International Conference & Exhibition (Euspen 2022) CY - Genf, Switzerland DA - 30.05.2022 KW - JNP AdvManuNet KW - Metrology KW - Advanced manufacturing KW - European Metrology Network KW - EMN PY - 2022 AN - OPUS4-55805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hong, H. A1 - Part, Florian A1 - Nowack, B. T1 - Prospective dynamic and probabilistic material flow analysis of graphene-based materials in Europe from 2004 to 2030 N2 - As industrial demand for graphene-based materials (GBMs) grows, more attention falls on potential environmental risks. The present article describes a first assessment of the environmental releases of GBMs using dynamic probabilistic material flow analysis. The model considered all current or expected uses of GBMs from 2004 to 2030, during which time there have already been significant changes in how the graphene mass produced is distributed to different product categories. Although the volume of GBM production is expected to grow exponentially in the coming years, outflow from the consumption of products containing GBMs shows only a slightly positive trend due to their long lifetimes and the large in-use stock of some applications (e.g., GBM composites used in wind turbine blades). From consumption and end-of-life phase GBM mass flows in 2030, estimates suggest that more than 50% will be incinerated and oxidized in waste plants, 16% will be landfilled, 12% will be exported out of Europe, and 1.4% of the annual production will flow to the environment. Predicted release concentrations for 2030 are 1.4 ng/L in surface water and 20 μg/kg in sludge-treated soil. This study’s results could be used for prospective environmental risk assessments and as input for environmental fate models. KW - Graphene KW - Graphene-based material (GBM) KW - Material flow analysis KW - Exposure modeling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568843 DO - https://doi.org/10.1021/acs.est.2c04002 SN - 0013-936X SN - 1520-5851 VL - 56 SP - 13798 EP - 13809 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-56884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clark, P.C.J A1 - Andresen, Elina A1 - Sear, M. J. A1 - Favaro, M. A1 - Girardi, L. A1 - van de Krol, R. A1 - Resch-Genger, Ute A1 - Starr, D.E. T1 - Quantification of the Activator and Sensitizer Ion Distributions in NaYF4:Yb3+, Er3+ Upconverting Nanoparticles Via Depth-Profiling with Tender X-Ray Photoemission N2 - The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000–6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+, [Er3+]/[Yb3+], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs’ dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3·6H2O precursors (β-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+]/[Yb3+] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs. KW - Shell KW - Nanomaterial KW - Nano KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Excitation power density KW - Surface KW - Coating KW - Core-shell KW - XPS KW - Intermixing KW - HAXPES KW - Method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552075 DO - https://doi.org/10.1002/smll.202107976 SN - 1613-6813 SP - 1 EP - 13 PB - Wiley-VCH-Verlag CY - Weinheim, Germany AN - OPUS4-55207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute T1 - Quantification of the Total and Accessible Number of Functional Groups and Ligands on Nanomaterials N2 - Surface-functionalized organic and inorganic nanoparticles (NP) are of great interest in the life and material sciences, as they can be used e.g. as drug carriers, fluorescent sensors, and multimodal labels in bioanalytical assays and imaging applications. NP performance in such applications depends not only on particle size, size distribution, and morphology, but also on surface chemistry, i.e. the total number of surface functional groups (FG) and the number of FG accessible for subsequent functionalization with ligands or biomolecules, which in turn determines surface charge, colloidal stability, biocompatibility, and toxicity. Methods for FG quantification should be simple, robust, reliable, fast, and inexpensive, and allow for the characteriza-tion of a broad variety of nanomaterials differing in size, chemical composition, and optical properties. Aiming at the development of simple, versatile, and multimodal tools for the quantification of many bioanalytically relevant FG such as amine, carboxy, thiol and aldehyde functionalities, we investigated and compared various analytical methods commonly used for functional group quantification. This includes electrochemical titration methods, dye-based optical assays, and other instrumental analytical techniques such as nuclear magnetic resonance, mass spectrometry, and thermal analysis methods. T2 - Nanotech France CY - Paris, France DA - 15.06.2022 KW - Optical assays KW - Functionalized nano- and microparticles KW - Particle surface analysis KW - Surface group quantification KW - Terminal functional groups PY - 2022 AN - OPUS4-55208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analysis - VAMAS TWA 37 & Liaison with ISO/TC 202 Microbeam Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. The recently started project FIB sample processing for TEM is highlighted. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. Further, a short overview of the VAMAS areas of activities is given where Germany is involved. Planed regional VAMAS Workshops in Germany in 2023 are announced. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Torino, Italy DA - 18.10.2022 KW - VAMAS KW - Microbeam analysis KW - FIB KW - TEM KW - Sample preparation KW - EBSD PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47 AN - OPUS4-56146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Raman focal point on Roman Egyptian blue elucidates disordered cuprorivaite, green glass phase and trace compounds N2 - The discussed comparative analyses of Roman Imperial pigment balls and fragmentary murals unearthed in the ancient cities of Aventicum and Augusta Raurica (Switzerland) by means of Raman microspectroscopy pertain to a predecessor study on trace compounds in Early Medieval Egyptian blue (St. Peter, Gratsch, South Tyrol, Northern Italy). The plethora of newly detected associated minerals of the raw materials surviving the synthesis procedure validate the use of quartz sand matching the composition of sediments transported by the Volturno river into the Gulf of Gaeta (Campania, Southern Italy) with a roasted sulphidic copper ore and a mixed-alkaline plant ash as fluxing agent. Thus, the results corroborate a monopolised pigment production site located in the northern Phlegrean Fields persisting over the first centuries A.D., this in line with statements of the antique Roman writers Vitruvius and Pliny the Elder and recent archaeological evidences. Beyond that, Raman spectra reveal through gradual peak shifts and changes of band width locally divergent process conditions and compositional inhomogeneities provoking crystal lattice disorder in the chromophoric cuprorivaite as well as the formation of a copper-bearing green glass phase, the latter probably in dependency of the concentration of alkali flux, notwithstanding that otherwise solid-state reactions predominate the synthesis. KW - Raman microspectroscopy KW - Egyptian blue KW - Cuprorivaite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559028 DO - https://doi.org/10.1038/s41598-022-19923-w SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 12 PB - Nature Publishing Group CY - London AN - OPUS4-55902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Schmidt, R. F. A1 - Sahoo, A. K. A1 - tom Dieck, T. A1 - Hohmann, T. A1 - Schade, B. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Netz, R. R. A1 - Gradzielski, M. A1 - Koksch, B. T1 - Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation N2 - Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2S)-4-monofluoroethylglycine (MfeGly), (2S)-4,4-difluoroethylglycine (DfeGly) and (2S)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials. KW - Small-angle X-ray scattering KW - SAXS KW - Amyloid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553504 DO - https://doi.org/10.1039/D2NR01648F SN - 2040-3364 VL - 14 IS - 28 SP - 10176 EP - 10189 PB - Royal Society of Chemistry AN - OPUS4-55350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Pérez-Padilla, Victor A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection N2 - The development of methodologies to sense glyphosate has gained momentum due to its toxicological and ecotoxicological effects. In this work, a red-emitting and polymerizable guanidinium benzoxadiazole probe was developed for the fluorescence detection of glyphosate. The interaction of the fluorescent probe and the tetrabutylammonium salt of glyphosate was studied via UV/vis absorption and fluorescence spectroscopy in chloroform and acetonitrile. The selective recognition of glyphosate was achieved by preparing molecularly imprinted polymers, able to discriminate against other common herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (dicamba), as thin layers on submicron silica particles. The limits of detection of 4.8 µM and 0.6 µM were obtained for the sensing of glyphosate in chloroform and acetonitrile, respectively. The reported system shows promise for future application in the sensing of glyphosate through further optimization of the dye and the implementation of a biphasic assay with water/organic solvent mixtures for sensing in aqueous environmental samples. KW - Glyphosate KW - Guanidinium receptors KW - Fluorescent probes KW - Molecularly imprinted polymers KW - Core-shell particles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544441 DO - https://doi.org/10.3390/chemosensors10030099 SN - 2227-9040 VL - 10 IS - 3 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-54444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Navarro, L. A1 - Thünemann, Andreas A1 - Yokosawa, T. A1 - Spiecker, E. A1 - Klinger, D. T1 - Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post-Assembly Control of Colloidal Features N2 - Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - Polymer KW - Nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557246 DO - https://doi.org/10.1002/anie.202208084 SN - 1433-7851 VL - 61 IS - 35 SP - 1 EP - 11 PB - Wiley CY - Weinheim AN - OPUS4-55724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bayram, Rabia T1 - Rekombinante Herstellung einer Amin-Oxidase aus Aspergillus niger und deren Einsatz in der Biosensorik N2 - Das Ziel der vorliegenden Arbeit war die rekombinante Herstellung der AnFAO in E. coli, welche ursprünglich von A. niger produziert wird, und deren anschließende Anwendung in der Entwick-lung eines Fumonisin- Biosensors für die Lebensmittelanalytik. In Bezug auf die aktuell steigen-den Lebensmittel- und Rohstoffpreise ist die Entwicklung eines Schnelltestsystems zur Detektion von Kontaminationen mit Mykotoxinen besonders gefragt, da zusätzliche Verluste und Kosten verhindert werden können. Für die Herstellung der AnFAO als MBP-Fusionsprotein und Biotin-Fusionsprotein mit zusätzlichem 6x His-Tag wurden die pET-MBP-AnFAO und pRSET-BH6-An-FAO Expressionsvektoren erfolgreich konstruiert. Die lösliche Expression im Cytoplasma wurde von MBP-AnFAO erreicht, wobei die Expression von BH6-AnFAO in inclusion bodies erfolgte und keine Aktivität des Enzyms nachgewiesen wurde. Die Enzymaktivität von MBP-AnFAO wurde im optischen Assay und amperometrisch durch die Detektion von H2O2 ermittelt. Im optischen Assay wurde die maximale spezifische Aktivität von 2,45 U/mg bei 45 °C, einer Enzymkonzentration von 3 μM und 50 μM FB1 erreicht. Generell wurden mit FB1 als Enzymsubstrat höhere Fluoreszenzsig-nale und dementsprechend höhere Enzymaktivitäten als für FB2 beobachtet. Es wurde ein linearer Zusammenhang der Enzymaktivitäten mit der Substratkonzentration beobachtet. Außerdem wurde ein Anstieg der H2O2-Konzentration mit zunehmender Inkubationszeit (bis zu 60 Minuten) erkannt. Des Weiteren wurde der Einfluss des MBP-Fusionsproteins auf die Enzymaktivität des AnFAO untersucht. Dabei wurde anhand von wesentlich geringeren Aktivitäten für AnFAO allein ein eventueller Einfluss des MBP auf dessen Aktivität festgestellt. Ein elektrochemischer Aufbau wurde zur Entwicklung eines Fumonisin- Sensors genutzt. Dazu wurde nachgewiesen, dass FB1 von rekombinant hergestelltem MBP-AnFAO unter Bildung von NH3 und H2O2 zu weniger toxi-schem FB1, dem FPy1, oxidiert werden kann. An der PB/Kohlenstoff-Elektrode, welche sensitiver gegenüber H2O2 und stabiler als die CoPC/Kohlenstoff Elektrode war, wurde die Reduktion des enzymatisch gebildeten H2O2 gemessen. Die Erstellung einer FB1- Kalibriergerade mit FB1- Lösun-gen verschiedener Konzentrationen zeigte, dass das Enzym auch in immobilisierter Form in der Lage ist unterschiedliche Konzentrationen an FB1 zu desaminieren. Dazu gehört auch der Kon-zentrationsbereich unterhalb des festgelegten Grenzwertes von 2,7 μmol/kg für Fumonisin. Die amperometrischen Kurven hierfür wurden an der PB/Kohlenstoff-Elektrode erfolgreich aufge-nommen. Störungen des H2O2- Redoxstroms durch das Enzym, der Enzymsubstrate und der Ne-benprodukte während der amperometrischen Messung wurden ausgeschlossen. Sowohl im opti-schen als auch im amperometrischen Assay wurde ausschließlich das enzymatisch gebildete H2O2 bestimmt. KW - Fumonisin KW - Mykotoxin KW - rekombinante Protein Expression KW - Amperometrie PY - 2022 SP - 1 EP - 104 PB - Berliner Hochschule für Technik CY - Berlin AN - OPUS4-57724 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Kersting, R. A1 - Hagenhoff, B. A1 - Hodoroaba, Vasile-Dan T1 - Reliable, and reproducible physico-chemical data of nanomaterials for risk assessment N2 - Nanoforms with at least one dimension below 100 nm have an important part to play in more and more areas of our daily life. Therefore, risk assessment of these materials is becoming increasingly important. In this context, the European Chemical Agency (ECHA) considered eleven physico-chemical properties as relevant, of which the following six are essential for the registration: chemical composition, crystallinity, particle size, particle shape, surface chemistry and specific surface area. Four of these priority properties can be obtained with electron microscopy and surface analytics like XPS and ToF-SIMS. The reliability of this data must be ensured, especially for their use for grouping and read across approaches. On the other hand, the “reproducibility” crisis has revealed major shortcomings in the reliability of published data. In a case study, we show how the quality of the data can be ensured by using existing standards and protocols of each step in the workflow of sample characterization. As exemplary samples, two Al-coated TiO2 samples as nanopowders were selected from the JRC repository, capped either with a hydrophilic or a hydrophobic organic ultrathin shell. SEM results provided the size and shape of the nanoparticles, a first overview about the composition was obtained with EDS. XPS and ToF-SIMS supplied the surface chemistry, especially information about the shell and the coating of the particles. Standards and protocols of all steps of the analytical workflow including preparation and data reduction are discussed regarding reliable and reproducible data. Additionally, uncertainties for the different steps are specified. Only such a detailed description of all these factors allows a comprehensive physico-chemical characterization of the nanoparticles with understanding of their potential risk assessment. T2 - ECASIA 2022 CY - Limerick, Ireland DA - 29.05.2022 KW - Reference data KW - Risk assessment KW - Nanomaterials KW - Titania PY - 2022 AN - OPUS4-54961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghazanfari, M. R. A1 - Vittadello, L. A1 - Al-Sabbagh, Dominik A1 - Santhosh, A. A1 - Frankcom, C. A1 - Fuß, F. A1 - von Randow, C. A. A1 - Siemensmeyer, K. A1 - Vrijmoed, J. C. A1 - Emmerling, Franziska A1 - Jerabek, P. A1 - Irmlau, M. A1 - Thiele, G. T1 - Remarkable Infrared Nonlinear Optical, Dielectric, and Strong Diamagnetic Characteristics of Semiconducting K3[BiS3] N2 - The ternary sulfido bismuthate K3[BiS3] is synthesized in quantitative yields. The material exhibits nonlinear optical properties with strong second harmonic generation properties at arbitrary wavelengths in the infrared spectral range and a notable laser-induced damage threshold of 5.22 GW cm−2 for pulsed laser radiation at a wavelength of 1040 nm, a pulse duration of 180 fs, and a repetition rate of 12.5 kHz. K3[BiS3] indicates semiconductivity with a direct optical band gap of 2.51 eV. Dielectric and impedance characterizations demonstrate κ values in the range of 6−13 at 1 kHz and a high electrical resistivity. A strong diamagnetic behavior with a susceptibility of −2.73 × 10−4 m3 kg−1 at room temperature is observed. These results suggest it is a promising nonlinear optical candidate for the infrared region. The synergic physical characteristics of K3[BiS3] provide insight into the correlation of optical, electrical, and magnetic properties. KW - Electrical properties KW - Insulators KW - Materials KW - Nonlinear optics KW - Quantum mechanics PY - 2022 DO - https://doi.org/10.1021/acs.jpclett.2c01689 VL - 13 IS - 30 SP - 6987 EP - 6993 PB - ACS Publications AN - OPUS4-55456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Schugardt, Jan ED - Rudnitskaya, A. T1 - Remote Drone-to-Drone Gas Sensing: A Feasibility Study N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or poorly accessible areas. A challenging task however, is the generation of three-dimensional distribution maps from these spatially sparse gas measurements. To obtain high-quality reconstructions, the choice of optimal measuring poses is of great importance. Remote gas sensors, that are commonly used in Robot Assisted Gas Tomography (RAGT), require reflecting surfaces within the sensor’s range, limiting the possible sensing geometries, regardless of whether the robots are ground-based or airborne. By combining ground and aerial robots into a heterogeneous swarm whose agents are equipped with reflectors and remote gas sensors, remote inter-robot gas measurements become available, taking RAGT to the next dimension – releasing those constraints. In this paper, we demonstrate the feasibility of drone-to-drone measurements under realistic conditions and highlight the resulting opportunities. T2 - 19th International Symposium on Olfaction and Electronic Nose CY - Aveiro, Portugal DA - 29.05.2022 KW - Aerial robot KW - TDLAS KW - Inter-robot measurements KW - Gas tomography KW - Plume PY - 2022 SN - 978-1-6654-5860-3 DO - https://doi.org/10.1109/isoen54820.2022.9789627 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-54926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546531 DO - https://doi.org/10.5281/zenodo.5807864 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556015 DO - https://doi.org/10.5281/zenodo.7016466 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hofmann, Michael A1 - Pirling, Thilo A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Residual stress in simple and complex geometries manufactured by laser powder bed fusion N2 - Design of freedom, performance improvement, cost reduction and lead time reduction are key targets when manufacturing parts in a layer-by-layer fashion using the laser powder bed fusion process (LPBF). Many research groups are focussed on improving the LPBF process to achieve the manufacturing of sound parts from a structural integrity perspective. In particular, the formation and distribution of residual stress (RS) remains a critical aspect of LPBF. The determination of the RS in LPBF benefits from the use of neutron diffraction (ND), as it allows the non-destructive mapping of the triaxial RS with a good spatial resolution. Two case studies are presented based on experiments carried out on the angular-dispersive neutron diffractometers Strain Analyser for Large Scale Engineering Applications (SALSA) (Institut Laue Langevin, Grenoble) and STRESS-Spec (FRM II, Garching). The RS in LPBF parts having a rectangular and more complex geometry (lattice structure) is analysed. The former example discusses the mapping of the RS in a rectangular body manufactured from stainless steel 316L. The manufacturing of these parts was monitored using an in-situ thermography set-up to link the RS to the thermal history. The latter discusses the RS in a lattice structure manufactured from the nickel base superalloy IN625. This geometry is challenging to characterise, and the use of a X-ray computed tomography twin is presented as tool to support the alignment of the ND experiment. The results from these case studies show a clear link between the thermal history and the RS magnitudes, as well as giving insights on the RS formation. T2 - 1st International Conference on Advanced Manufacturing for Air, Space and Land Transportation CY - Online meeting DA - 07.03.2022 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Ben Shir, I. A1 - Schmidt, A. A1 - Kovler, K. A1 - Diesendruck, Ch. E. T1 - Retardation mechanism of cement hydration by a comb polyphosphate superplasticizer N2 - The retardation mechanism of cement hydration as imparted by the addition of polyphosphate comb superplasticizer to model cement containing C3S, C3A and calcium sulfate hemihydrate is studied using XRD, ss NMR and calorimetry. Our findings show the retardation effect caused by the direct addition of polyphosphate comb superplasticizer differs significantly to that of conventional polycarboxylate superplasticizers. Conversely to polycarboxylates, polyphosphates, at a low dosage, inhibits the silicate reaction without affecting the aluminate reaction and formation of ettringite. Yet, at high doses, both reactions are hampered, and the induction period extended, followed by accelerated aluminate and silicate reactions. KW - Superplasticizer KW - Polyphosphate KW - Retardation KW - Cement hydration PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128698 SN - 0950-0618 VL - 352 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Zhenlong, F. A1 - Yang, J. A1 - Ansari, A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Retracted article: Effect of Ca2+ doping on the upconversion luminescence properties of NaYF4:Yb3+/Tm3+ nanoparticles and study of its temperature measurement performance N2 - A solvothermal method was used to prepare a series of Yb3+/Tm3+/Ca2+ co-doped NaYF4 nanoparticles with different Ca2+ contents. Strong upconversion blue fluorescence could be observed under 980 nm laser excitation of the samples. The effect of different Ca2+ contents on the luminescence intensity was investigated, and it was found that the UV-vis upconversion luminescence increased and then decreased with an increasing Ca2+ concentration during the increase of the Ca2+ content from 0 mol% to 25 mol%, reaching the strongest fluorescence at 15 mol%, which was up to about 28 times stronger than that without Ca2+ doping. Furthermore, the mechanism was investigated, and it was found that the doping of Ca2+ disrupted the symmetry of the crystal field, resulting in a significant enhancement of the overall fluorescence. Applied to fluorescence intensity ratio thermometry, the absolute and relative sensitivities are as high as 0.0418 K−1 and 2.31% K−1, respectively, with a minimum temperature resolution of 0.0129 K. KW - Sensor KW - Temperature KW - Lanthanide KW - Luminescence KW - Nanoparticles KW - Upconversion KW - Advanced materials PY - 2022 DO - https://doi.org/10.1039/D2CE00562J SN - 1466-8033 VL - 24 IS - 27 SP - 4887 EP - 4898 PB - Royal Society of Chemistry CY - London AN - OPUS4-56952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Wei, Y. A1 - Kühbach, M. A1 - Zhao, H. A1 - Vogel, F. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. A1 - Raabe, D. A1 - Gault, B. T1 - Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data N2 - Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrystalline materials. Hence, their structures have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Using APT data sets, we present here a machine-learning-based approach for the automated quantification of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analysis, including revealing their in-plane chemical decoration patterns. We applied this approach to experimentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical features that could not have been found by standard compositional analyses. Lastly, we tracked the temporal evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial phase separation, characterized by the evolution of complex composition patterns. This machine-learning-based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated chemistry-structure-property relations. KW - Machine learning KW - Digitalization KW - Alloy microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543049 DO - https://doi.org/10.1016/j.actamat.2022.117633 SN - 1359-6454 VL - 226 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-54304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommer, Konstantin A1 - Agudo Jácome, Leonardo A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the nature of melt pool boundaries in additively manufactured stainless steel by nano-sized modulation N2 - In the current study, the 3D nature of the melt pool boundaries (MPBs) in a 316 L austenitic steel additively manufactured by laser-based powder bed fusion (L-PBF) is investigated. The change of the cell growth direction and its relationship to the MPBs is investigated by transmission electron microscopy. A hitherto unreported modulated substructure with a periodicity of 21 nm is further discovered within the cell cores of the cellular substructure, which results from a partial transformation of the austenite, which is induced by a Ga+ focused ion beam. While the cell cores show the modulated substructure, cell boundaries do not. The diffraction pattern of the modulated substructure is exploited to show a thickness ≥200 nm for the MPB. At MPBs, the cell walls are suppressed, leading to continuously connecting cell cores across the MPB. This continuous MPB is described either as overlapping regions of cells of different growing directions when a new melt pool solidifies or as a narrow planar growth preceding the new melt pool. KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547295 DO - https://doi.org/10.1002/adem.202101699 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Hesse, René A1 - Bettge, Dirk T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Flatken, M. A. A1 - Radicchi, E. A1 - Wendt, R. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Härk, E. A1 - Pascual, J. A1 - Mathies, F. A1 - Shargaieva, O. A1 - Prause, A. A1 - Dallmann, A. A1 - De Angelis, F. A1 - Hoell, A. A1 - Abate, A. T1 - Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites N2 - ABX3 metal halide perovskites revolutionized the research and development of new optoelectronics, including solar cells and light-emitting diodes. Processing polycrystalline thin films from precursor solutions is one of the core advantages of these materials since it enables versatile and cost-effective manufacturing. The perovskite film morphology, that is, continuous substrate coverage and low surface roughness, is of paramount importance for highly efficient solar cells and optoelectronic devices in general. Controlling the chemistry of precursor solutions is one of the most effective strategies to manage the perovskite film morphology. Herein, we show the fundamental influence of the A-site cation composition on the perovskite precursor arrangement and the consequent film formation. Extended X-ray absorption fine structure spectroscopy and small-angle X-ray scattering give unprecedented insights into the complex structural chemistry of the perovskite precursors and, in particular, their repulsive interactions as a crucial parameter for colloidal stability. Combining these techniques with in situ grazing incidence wide-angle X-ray scattering during thin-film formation allows us to identify the mechanism for using alkali metals as a decisive criterion to control the colloidal stability of the perovskite precursor and thus the thin-film morphology. We illustrate the fundamental principle behind the systematic use of alkali metals regardless of whether they are incorporated in the lattice or not. Hence, this work provides tools to selectively control the morphology and crystal growth in present and future systems KW - MAPbI3 perovskites KW - Halide Perovskites KW - X-ray absorption spectroscopy PY - 2022 DO - https://doi.org/10.1021/acs.chemmater.1c03563 SN - 0897-4756 VL - 34 IS - 3 SP - 1121 EP - 1131 PB - American Chemical Society AN - OPUS4-54713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Altmann, Korinna A1 - Abusafia, A A1 - Bannick, C-G A1 - Braun, U A1 - Crasselt, Claudia A1 - Dittmar, S A1 - Fuchs, M A1 - Gehde, M A1 - Hagendorf, C A1 - Heller, C A1 - Herper, D A1 - Heymann, S A1 - Kerndorff, A A1 - Knefel, M A1 - Jekel, M A1 - Lelonek, M A1 - Lunkenbein, T A1 - Obermaier, N A1 - Manhart, M A1 - Meurer, Maren A1 - Miclea, P-T A1 - Paul, A A1 - Richter, S A1 - Ricking, M A1 - Rohner, C A1 - Ruhl, A A1 - Sakai, Y A1 - Saravia Arzabe, C A1 - Scheid, C A1 - Schmitt, M A1 - Schnarr, M A1 - Schwertfirm, F A1 - Steinmetz, H A1 - Wander, Lukas A1 - Wiesner, Yosri A1 - Zechmeister, L T1 - RUSEKU - Repräsentative Untersuchungsstrategien für ein integratives Systemverständnis von spezifischen Einträgen von Kunststoffen in die Umwelt : Abschlussbericht N2 - Im Verbundprojekt RUSEKU wurde die Probenahme von Wasserproben entscheidend weiterentwickelt. Wichtig ist hierbei zu gewährleisten, dass genügend Merkmalsträger in jeder Probe untersucht werden. Es muss daher eine für den Probenahmeort repräsentative Beprobung hinsichtlich des Wasservolumens in Abhängigkeit der Partikelanzahl gewährleistet sein. Das Hauptaugenmerk lag im vorliegenden Projekt auf einer praxisnahen Beprobungsstrategie. Es wurden verschiedene Konzepte ausprobiert. • Grundsätzlich hat sich gezeigt, dass eine Stichprobe eine Momentaufnahme des MP-Massengehaltes zeigt. Es wird eine hohe Statistik, also eine Vielzahl an Messungen am gleichen Probenahmeort, benötigt, um eine valide Aussage über den MP-Gehalt zu machen. • Es zeigt sich, dass eine integrale Probenahme über mehrere Wochen mit dem SK routinemäßig möglich ist. Die erfassten MP-Massen sind reproduzierbar und robust. • Die DFZ ist für Stichproben geeignet. Partikel < 50 µm werden eventuell unterschätzt • Die fraktionierte Filtration kann für Stich- und Mischproben direkt im Feld genutzt werden. Fraktionen von 10 und 5 µm werden später im Labor Vakuum filtriert. Es erfolgt eine Fraktionierung der Probe mit Siebmaschenweiten von 1000, 500, 100, 50, 10 und 5 µm. • Die fraktionierte Filtration kann auch anschließend an die Beprobung mit dem SK zur Anwendung kommen. Wird die mit dem SK gewonnene Wasserprobe fraktioniert filtriert, kann neben einem MP-Gesamtgehalt auch eine Einschätzung über die Partikelgrößen gewonnen werden. • Für Wässer mit geringen Partikelzahlen wurde ein Messfiltertiegel entwickelt. Dieser hat eine Maschenweite von 6 µm. Seine Anwendung kann mögliche Verluste beim Transferieren vom Probenahmetool zum Messgefäß und mögliche Kontaminationen reduzieren. Die Optimierung der Probenahmestrategie wurde durch Modellversuche und Simulationen unterstützt. Modellversuche zum Sinkverhalten und Simulationen von MP in realen Gewässern verdeutlichten das komplexe Verhalten der Partikel. Es konnte gezeigt werden, dass Partikel ab einer bestimmten Größe (und kleiner) bei genügend starker Turbulenz sich in der Wassersäule unabhängig von ihrer Dichte verhalten und so auch MP mit kleiner Dichte (z.B. PE) in der gesamten Wassersäule zu finden sind. Es konnte mit dem TEM die Existenz von NP gezeigt werden. Ein wesentlicher Aspekt des RUSEKU Projektes war die Beprobung realer Kompartimente. Beprobt wurde neben Oberflächengewässern, das urbane Abwassersystem der Stadt Kaiserslautern, Waschmaschinenabwasser und Flaschenwasser. • In Oberflächengewässern wurde hauptsächlich PE gefunden. Je nach Probe und Gewässer konnten auch PP, PS, PET, PA, SBR und Acrylate nachgewiesen werden. • Im urbanen Abwassersystem der Stadt Kaiserslautern konnte an allen Probenahmestandorten MP nachgewiesen werden. Es wurde hauptsächlich PE, neben geringeren Mengen an PP, PS und SBR gefunden. Nach einem Regenereignis war der SBR Anteil deutlich erhöht. • Die Beprobung eines realen Wäschepostens, bestehend aus T-Shirts und Hemden mit PA/CO oder PES/CO Mischgewebe, zeigte einen PA- und PES-Austrag im Waschwasser. Der überwiegende Teil der detektierten Fasern ist aber auf Baumwolle zurückzuführen. Reine gravimetrische Messungen zur Detektion von MP führen zu einer starken Überschätzung. • In Flaschenwasser (PET-Flaschen) konnte MP detektiert werden. PET wurde nur im stillen Mineralwasser, nicht in Mineralwasser mit Kohlensäure gefunden werden. Teilweise wurde auch das MP-Material des Verschlusses im Wasser detektiert. • Für Luftproben konnte ein Aufbau zur größenselektiven Beprobung getestet werden. Neben der Probenahme hat das Projekt auch gezeigt, dass die TED-GC/MS geeignet für die MP-Detektion im Routinebetrieb ist. Die TED-GC/MS konnte weiter optimiert werden. Es wurden MP-Massen bestimmt. Im Projekt wurden erste realitätsnahe Referenzmaterialien für die MP Detektion hergestellt. Die Herstellung von realitätsnahen Polymeren in ausreichender Homogenität und Menge hat sich als große Herausforderung herausgestellt. KW - Mikroplastik KW - Probennahme KW - TED-GC/MS KW - Fraktionierte Filtration KW - Mikroplastikreferenzmaterial PY - 2022 SP - 1 EP - 201 AN - OPUS4-57800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - Schwerpunktthema nano@BAM – Projekt Nanoplattform N2 - Darstellung der Digitalisierung im Rahmen des Themenfeldprojektes Nanoplattform. Es werden beleuchtet: BAM-DataStore, Voraussetzungen für ELNs, Möglichkeitenvon OpenBIS, NFDI-Antrag InnoMatSafety, Digitalisierung von Workflows. T2 - BAM Beiratssitzung Umwelt CY - Online meeting DA - 11.03.2022 KW - Nano KW - Elektronisches Laborbuch KW - Workflows KW - Digitalisierung KW - Standardarbeitsanweisungen PY - 2022 AN - OPUS4-56756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Wang, T. A1 - Behren, S. A1 - Westerlind, U. A1 - Gawlitza, Kornelia A1 - Persson, J. L. A1 - Rurack, Knut T1 - Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells N2 - Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core–fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes. KW - Cancer KW - Core−shell particles KW - Dual-color labeling glycan KW - Molecular imprinting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563106 DO - https://doi.org/10.1021/acsanm.2c03252 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-56310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Smales, Glen Jacob A1 - ZhuoQing, Li A1 - Yildirim, Arda A1 - Wuckert, E. A1 - Eutionnat, S. A1 - Demel, F. A1 - Huber, P A1 - Lasachat, S. A1 - Schönhals, Andreas T1 - Side Chain Length-Dependent Dynamics and Conductivity in Self-Assembled Ion N2 - We study the molecular mobility and electrical conductivity of a homologous series of linear shaped columnar ionic liquid crystals ILCn, (n = 8, 10, 12, 14, 16) using broadband dielectric spectroscopy (BDS), specific heat spectroscopy (SHS), and X-ray scattering. We aim to understand how the alkyl chain length influences the dynamics and electric conductivity in this system. Two dielectrically active relaxation modes are observed, the γ and the αcore process, that correspond to the localized fluctuations of the alkyl chains and cooperative motions of the aromatic core in the columns, respectively. Both the γ relaxation and the αcore process slow down with increasing alkyl chain length. SHS reveals one relaxation process, the αalkyl process that has a similar temperature dependence as that of the αcore process for ILC12, 14, and 16 but shifts to higher temperature for ILC8 and 10. For ILC12, 14, and 16, the absolute values of DC conductivity increase by 4 orders of magnitude at the transition from the plastic crystalline to hexagonal columnar phase. For ILC8 and 10, the DC conductivity behavior is similar to ionic liquids, where the conductivity is coupled with structural relaxation. Small-angle X-ray investigations reveal that both the intercolumnar distance and the disorder coherence length increase with alkyl chain length; conversely, the DC conductivity decreases monotonically. KW - Ionic Liquid Crystals PY - 2022 DO - https://doi.org/10.1021/acs.jpcc.2c03023 SN - 1932-7447 VL - 126 IS - 27 SP - 10995 EP - 11006 PB - ACS AN - OPUS4-55194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heuser, Lina A1 - Nofz, Marianne A1 - Müller, Ralf A1 - Deubener, J. T1 - Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass N2 - Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag+ and precipitation as Ag0 were studied in two glass series of molar target composition xAg2O–(19 − x)Na2O–28ZnO–53B2O3 with x = 0, 0.1, 0.5, 5 and (19Na2O–28ZnO–53B2O3)+yAg2O with y = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing x in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO3 mixed with the base glass frit in a hot stage microscope showed that Ag0 precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature. KW - Silver metallization paste KW - Batch reactions KW - Borate KW - Glass forming melts KW - Glass manufacturing KW - Raman spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559433 DO - https://doi.org/10.1111/ijag.16613 SN - 2041-1286 SP - 1 EP - 11 PB - Wiley Online Library AN - OPUS4-55943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marti, J. A1 - Schartel, Bernhard A1 - Oñate, E. T1 - Simulation of the burning and dripping cables in fire using the particle finite element method N2 - The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the particle finite element method for simulating a bench-scale cables burning test is analyzed. The use bench-scale test has been previously used to simulate the full-scale test described in EN 50399. As the air effect is neglected, a simple combustion model is included. The samples selected are two cables consisting of a copper core and differently flame retarded thermoplastic polyurethane sheets. The key modeling parameters were determined from different literature sources as well as experimentally. During the experiment, the specimen was burned under the test set-up condition recording the process and measuring the temperature evolution by means of three thermocouples. Next, the test was reproduced numerically and compared with a real fire test. The numerical results show that the particle finite element method can accurately predict the evolution of the temperature and the melting of the jacket. KW - Dripping behavior KW - Particle finite element method KW - Cables in fire KW - Fire behavior KW - Fire simulation KW - Cable bundle PY - 2022 DO - https://doi.org/10.1177/07349041211039752 SN - 0734-9041 VL - 40 IS - 1 SP - 3 EP - 25 PB - Sage AN - OPUS4-54185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -