TY - CONF A1 - Räpke, Toni T1 - Geometrie- und Prozesseinflüsse auf lokale Bauteileigenschaften in der metallischen additiven Fertigung mittels Laserstrahlschmelzen N2 - Die mechanischen Eigenschaften und die Standardparametersätze werden im additiven Fertigungsverfahren Laser Powder Bed Fusion (L-PBF) zumeist an Körpern ermittelt, die unter festen Randbedingungen gefertigt werden. In der Literatur wird allerdings von verschiedenen Autoren auf einen Einfluss von Geometrie und Prozess auf die resultierenden Eigenschaften hingewiesen [1, 2, 3]. Aufgrund des häufig großen Komplexitätsgrads von L-PBF Bauteilen und Prozessen, ist eine Abweichung angenommener Eigenschaften daher nicht auszuschließen. Das kann besonders für tragende und sicherheitsrelevante Komponenten kritisch sein und ist eine Herausforderung für die Qualitätssicherung. Aufwendige Trial-and-Error Versuche sind zumeist die Folge. Ein einheitliches und umfassendes Verständnis der Einflussfaktoren auf die resultierenden Eigenschaften im L-PBF Prozess ist zum aktuellen Stand nicht vorhanden. In diesem Vortrag werden erste Ergebnisse einer Studie vorgestellt, in der systematisch die Bandbreite möglicher Defekt- und Mikrostrukturvariationen in L-PBF Bauteilen am Beispiel der Nickelbasislegierung Haynes 282 untersucht wird. Aufbauend auf einer modellbasierten Beschreibung des lokalen Wärmehaushalts wurden Versuchspläne entwickelt, die eine Vielzahl möglicher Prozess- und Geometriekonfigurationen realer Anwendungen abbilden können. Zur Untersuchung des Geometrieeinflusses wurden typische Geometrieelemente komplexer Strukturen und deren Ausprägungen identifiziert. Prozessseitig wurden die Position im Bauraum, Schwankungen der Laserleistung, die Zwischenlagenzeit und die Belichtungsstrategie innerhalb der Schicht als typische Faktoren berücksichtigt. Die Zwischenlagenzeit bildet dabei Variationen im Bauraumfüllgrad ab. Die Belichtungsstrategie untersucht Effekte wie die Zwischenvektorzeit (engl. inter vector time, IVT) oder die lokale Vektorlänge. Die verschiedenen Konfigurationen wurden metallografisch bewertet. Die bisherigen Ergebnisse können einen Einfluss der Geometrie und des Prozesses auf die Defektbildung und die Mikrostruktur in L-PBF Bauteilen aufzeigen. Durch prozessbegleitende thermografische in situ Messungen konnte außerdem eine Abhängigkeit von lokalen und globalen Temperaturfeldern identifiziert werden. Die Erkenntnisse zeigen zudem, dass der geometrische Einfluss auf den lokalen Wärmehaushalt von Anordnung, Gestalt und Dimensionen der zweidimensionalen Belichtungsbereiche über die Aufbauhöhe abhängt. Das gewonnene Verständnis soll in die Entwicklung von Konstruktionsrichtlinien und Prüfkörpern einfließen, um Variationen lokaler Bauteileigenschaften in der zukünftigen Bauteil- und Prozessauslegung berücksichtigen zu können. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive Fertigung KW - L-PBF PY - 2022 AN - OPUS4-55516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Additive gefertigte 316L-Hohlzugproben unter Druckwasserstoff - Einfluss der Oberfläche und des Werkstoffzustandes N2 - Im folgenden Beitrag werden die Ergebnisse der mechanischen Eigenschaften unter 200 bar Druckwasserstoff des Werkstoffes 316L (1.4404) vorgestellt. Dazu wurden Hohlzugproben aus konventionellem, kaltgezogenem Material herausgearbeitet und per SLM-PBF additiv gefertigten Hohlzugproben gegenübergestellt. Die Proben wurden da-bei unter Druckwasserstoff einer SSRT-Prüfung mit einer Dehnrate von 1E-5/s unterzogen. Zusätzlich zum Werkstoffzustand wurde der Einfluss des Oberflächenzustandes charakterisiert: (1) additiv gefertigten Proben mit endkonturnaher Form „as-printed“ oh-ne zusätzliche Bohrung, (2) Bohren und (3) zusätzliches Honen. Die gemessene Degra-dation der mechanischen Eigenschaften unter Wasserstoff hing dabei in erster Linie von der Oberfläche ab und damit indirekt vom Werkstoffzustand „as-printed“ oder kaltgezogen ab. Während die Proben mit gebohrter und/oder gehonter Oberfläche eine RRA (Relative Reduction of Area) 78 % aufwiesen, zeigten die AM-Proben eine deutlich höhere RRA von 90 %. Ein möglicher Grund dafür sind während der Fertigung ausbildende Oxidschichten, die sich durch geringe Mengen an Restsauerstoff während des AM-Prozesses ausbilden. Zur abschließenden Charakterisierung sind weitere Untersuchungen erforderlich, insbesondere für ein größeres Parameterfeld an Prüftemperaturen (Oxideinwirkung) und Dehnraten (mechanische Beständigkeit der Oxidschicht ähnlich den Einflüssen auf „klassische“ Spannungsrisskorrosion). T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Additive Fertigung KW - Hohlzugprobe KW - Austentitischer Stahl PY - 2025 AN - OPUS4-63239 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Quality assurance via a cyber physical system of a PBF-LB/M machine N2 - Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) faces challenges in reproducibility and quality assurance, even for widely applied alloys like AlSi10Mg. This work introduces a digital provenance framework for PBF-LB/M, showcased through the EOS M 300–4 multi-laser machine. An Extract, Transform, Load (ETL) pipeline autonomously captures machine data, including scan vectors as well as process signals, and organizes them into a Digital Shadow (DS). The DS is further extended by external data sources, such as Melt Pool Monitoring (MPM), to enable comprehensive analysis and root cause identification. This approach ensures continuous data representation and facilitates the development of new quality metrics. Moreover, the framework enhances quality assurance and traceability, supports compliance with industry standards, and improves productivity. It also enables more precise cost calculations and predictive maintenance. By addressing these challenges, the framework is essential for advancing PBF-LB/M in industrial applications, achieving greater consistency and scalability in production. KW - PBF-LB/M KW - Data driven quality assurance KW - Data engineering KW - Digital shadow PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625187 DO - https://doi.org/10.1007/s40964-025-00978-w SN - 2363-9520 VL - 10 IS - 3 SP - 1771 EP - 1783 PB - Springer Science and Business Media LLC AN - OPUS4-62518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai ED - Eiber, M. T1 - Prozessinduzierte Vorerwärmung beim pulverbettbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Herausforderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM 6. Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Fertigung KW - Laserstrahlschmelzen KW - In-situ Prozessüberwachung KW - Wärmeakkumulation KW - Zwischenlagenzeit PY - 2021 DO - https://doi.org/10.48447/Add-2021-003 SP - 19 EP - 30 PB - Deutscher Verband für Materialforschung und -prüfung (DVM) CY - Berlin AN - OPUS4-54287 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, Julius A1 - Schmidt, Jonathan A1 - Jokisch, Torsten A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Prozessführung und erreichbare Nahtqualitäten: Elektronenstrahlschweißen von additiv gefertigtem Inconel 939 N2 - Additive Fertigungstechnologien wie das Laser-Pulverbett-Verfahren bieten großes Potenzial für die Fertigung von Neu und Ersatzteilen für stationäre Gasturbinen aus Nickelsuperlegierungen wie Inconel 939 (IN939). Um die Integration in bestehende Baugruppen zu ermöglichen und Bauraumbeschränkungen zu überwinden, muss die Prozesskette der additiven Fertigung um geeignete Fügetechniken erweitert werden. Die vorliegende Arbeit beschäftigt sich daher mit dem Schweißen von Inconel 939. Hierbei werden Bleche aus Gussmaterial und der additiven Herstellung mittels Laser im Pulverbett beim Elektronenstrahlschweißen verglichen. Im Fokus der Untersuchung stehen die erreichbare Nahtqualität im Hinblick auf geometrische Unregelmäßigkeiten sowie innere Defekte in Form von Mikrorissen in der Wärmeeinflusszone. Bei der Auswertung der geschweißten Proben zeigen sich keine Unterschiede in der Ausbildung der Nahtform zwischen dem additiv gefertigten Material und dem Gusswerkstoff. Für beide Materialien ließ sich bei hohen Vorschubgeschwindigkeiten von 20 mm/s die höchste Bewertungsgruppe für Strahlgeschweißte Nähte nach DIN EN ISO 13919-1 erreichen. Unabhängig von der Herstellungsart zeigen beide Materialien eine Zunahme der Rissneigung mit steigendem Vorschub. Das Material aus der additiven Herstellung weist aufgrund seiner Mikrostruktur insgesamt jedoch deutlich weniger Mikrorisse auf, was Potenzial für die Anwendung in der Praxis eröffnet. KW - Elektronenstrahlschweißen KW - PBF-LB/M KW - Inconell939 PY - 2025 UR - https://www.schweissenundschneiden.de/artikel/prozessfuehrung-und-erreichbare-naht-qualitaeten-elektronenstrahlschweissen-von-additiv-gefertigtem-inconel-939 DO - https://doi.org/10.53192/SUS202510 VL - 77 IS - 10 SP - 2 EP - 8 PB - DVS Media Verlag CY - Eltville am Rhein, Deutschland AN - OPUS4-64300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan T1 - Hochaufgelöste visuelle In-situ Prozessüberwachung im PBF-LB/M N2 - Im Rahmen dieses Vortrags werden die bisherigen Arbeiten des Fachbereichs 9.6 zur hochauflösenden visuellen In-Situ Prozessüberwachung im pulverbettbasierten Schmelzen von Metall mittels Laserstrahl (PBF-LB/M) vorgestellt. Als Kamerasystem dient eine 65-Megapixel-Monochromkamera, die in eine kommerzielle PBF-LB/M-Maschine integriert wurde und eine räumliche Auflösung von 17,2 µm/Pixel erreicht. Zur Problemstrukturierung werden Defekte im PBF-LB/M als indirekte und direkte Defekte klassifiziert und ihre Erkennung anhand von Schichtbildern diskutiert. Zudem wird der Einfluss der Beleuchtungssituation auf die Erkennbarkeit von Defekten untersucht. Darüber hinaus wird der Kontrast der Grauwertmatrix als Indikator für das Vorliegen von Bindefehlern vorgestellt. T2 - 11. Mitteldeutsches Forum 3D-Druck in der Anwendung CY - Merseburg, Germany DA - 16.10.2024 KW - Additive manufacturing KW - Image processing KW - In-situ monitoring PY - 2024 AN - OPUS4-61376 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Davila, Josue T1 - Einfluss des initialen Pulveroxidationsgrads auf die prozessinduzierte Materialdegradation beim PBF-LB/M Prozess N2 - Die vorliegende Studie untersucht den Einfluss unterschiedlicher Oxidationsgrade des im PBF-LB/M-Prozess verwendeten Ausgangspulvers auf dessen Degradation am Beispiel der Nickelbasis-Superlegierung Haynes 282. Zu diesem Zweck wurden vier Pulverbatches mit Sauerstoffgehalten zwischen etwa 140 ppm und 1400 ppm mittels PBF-LB/M verarbeitet. Zur gezielten Entnahme aufgeschmolzener Pulverpartikel aus wärmebeeinflussten Bereichen des Pulverbetts wurde ein spezieller Auffangbehälter konstruiert und mitgedruckt. Der Beschichtungs- und Schmelzprozess verlief störungsfrei. Bei höheren Oxidationsgraden wurde jedoch eine verstärkte Rauchentwicklung beobachtet, was erste Hinweise auf eine intensivere Spritzerbildung lieferte. Die Untersuchungen nach dem Bauprozess ergaben, dass insbesondere die feinen Partikelfraktionen infolge ihres hohen Oberflächen-zu-Volumen-Verhältnisses eine verstärkte Oxidation aufwiesen. Neben einer signifikanten Sauerstoffanreicherung konnten keine weiteren signifikanten Veränderungen der Hauptlegierungselemente in unaufgeschmolzenen Pulverpartikeln sowie in Spritzerpartikeln festgestellt werden. Darüber hinaus wurde bei stark oxidierten Pulvern eine signifikante Veränderung der Partikelgrößenverteilung beobachtet. Die gewonnenen Erkenntnisse leisten einen wichtigen Beitrag zum Verständnis oxidationsbedingter Degradationsmechanismen und bilden die Grundlage für die Optimierung von Strategien zur Wiederverwendung von Pulver im PBF-LB/M-Prozess, wodurch die Materialperformance gesichert werden kann. T2 - DVM Tagung 2025 Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 04.11.2025 KW - Additive manufacturing KW - Laser powder bed fusion (PBF-LB/M) KW - Powder reuse KW - Spatter particles KW - Powder quality KW - Particles ejected KW - Recycling KW - Powder degradation KW - Powder oxidation PY - 2025 AN - OPUS4-64953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, M. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Dollmeier, K. A1 - Dreyer, M. A1 - Klöden, B. A1 - Schlingmann, T. A1 - Schmidt, J. T1 - Reproducibility and Scattering in Additive Manufacturing: Results from a Round Robin on PBF-LB/M AlSi10Mg Alloy T1 - Reproduzierbarkeit und Streuung bei der additiven Fertigung: Ergebnisse eines Ringversuchs mit einer PBF-LB/M AlSi10Mg-Legierung N2 - The round robin test investigated the reliability users can expect for AlSi10Mg additive manufactured specimens by laser powder bed fusion through examining powder quality, process parameter, microstructure defects, strength and fatigue. Besides for one outlier, expected static material properties could be found. Optical microstructure inspection was beneficial to determine true porosity and porosity types to explain the occurring scatter in properties. Fractographic analyses reveal that the fatigue crack propagation starts at the rough as-built surface for all specimens. Statistical analysis of the scatter in fatigue using statistical derived safety factors concludes that at a stress of 36.87 MPa the fatigue limit of 107 cycles could be reached for all specimen with a survival probability of 99.999 %. N2 - Im Rahmen eines Ringversuchs wurde durch die Untersuchung der Pulverqualität, der Prozessparameter, der Gefügefehler, der Festigkeit und der Ermüdung die Zuverlässigkeit bestimmt, die Nutzer von AlSi10Mg-Proben erwarten können, die mit pulverbettbasiertes Schmelzen mittels Laser (engl. Laser Powder Bed Fusion) gefertigt worden sind. Abgesehen von einem Ausreißer wurden die erwarteten statischen Materialeigenschaften erreicht. Eine optische Gefügeprüfung diente dazu, die tatsächliche Porosität und Arten von Porosität zu ermitteln, um die bei den Eigenschaften auftretende Streuung zu erklären. Fraktographische Unterschungen zeigen eine bei allen Proben von der rauen Oberfläche im As-built-Zustand ausgehende Ermüdungsrissausbreitung. Aus der statistischen Analyse der Streuung bezüglich der Ermüdung unter Anwendung von statistischen abgeleiteten Sicherheitsfaktoren geht hervor, dass alle Proben die Dauerfestigkeit von 107 Zyklen bei einer Spannung von 36,87 MPa mit einer Überlebenswahrscheinlichkeit von 99,999 % erreichten. KW - Additive manufacturing KW - Reproducibility KW - Reliability PY - 2022 DO - https://doi.org/10.1515/pm-2022-1018 SN - 2195-8599 VL - 59 IS - 10 SP - 580 EP - 614 PB - De Gruyter AN - OPUS4-55935 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - ISO TC 261 / JG 85 Projects N2 - Dieser Vortrag fasst die laufenden Aktivitäten der ISO TC 261 JG 85 zusammen. Insbesondere die Gewinnung und Verarbeitung von PBF-LB/M Prozessdaten steht im Fokus. T2 - ISO TC 261 / ASTM F.42 Meeting CY - Manila, Philippines DA - 22.09.2025 KW - Additive Fertigung KW - PBF-LB/M KW - Digitalisierung PY - 2025 AN - OPUS4-64399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela T1 - Comparative Analysis FFF vs. cold rolled 316L Samples N2 - This study provides insights into the properties of 316L stainless steel produced by additive manufacturing using fused filament fabrication (FFF). One key finding is particularly noteworthy: in significant contrast to cold-rolled 316L, FFF316L develops a pronounced martensite phase after fabrication. The comprehensive comparative analysis shows that FFF316L not only retains the ferrite volume content, but that this is also significantly influenced by the build-up direction. Despite the sintering process, which typically involves densification of the material, a pore volume fraction of 8.45 % remains, which influences the mechanical properties. Although FFF316L has lower elastic modulus and tensile strength values compared to cold-rolled 316L, its ductility is still competitive. The study further reveals that deformation-induced martensite forms at the intersections of the deformation twins and ferrite islands form at the grain boundaries during the compression and sintering phases. These findings highlight the challenges associated with FFF316L in specific application fields and signal the need to continue to carefully evaluate and improve the development of manufacturing technologies. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Fused Filament Fabrication KW - Computed Tomography KW - 316L Stainless Steel KW - Deformation-Induced Martensite PY - 2024 AN - OPUS4-60302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin T1 - Position Detection for Hybrid Repair of gas turbine blades using PBF-LB/M N2 - This poster presents a workflow for camera-based position detection of components within PBF-LB/M machines. This enables a hybrid repair process of highly stressed components such as gas turbine blades using PBF-LB/M. T2 - Kuratoriumsführung CY - Berlin, Germany DA - 21.06.2022 KW - Additive Manufacturing KW - PBF-LB/M KW - Position detection KW - Camera KW - Image processing PY - 2022 AN - OPUS4-56587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique Authenticator for additively manufactured parts N2 - Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features. T2 - DGM Additive Berlin 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive Fertigung KW - Authentifizierung KW - Mikrostruktur PY - 2024 AN - OPUS4-60957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Prozessinduzierte Vorerwärmung beim pulverbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Heraus-forderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring PY - 2021 AN - OPUS4-53729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella T1 - Monitoring additive manufacturing N2 - Additive manufacturing (AM) processes allow a high level of freedom in designing and producing components for complex structures. They offer the possibility of a significant reduction of the process chain. However, the large number of process parameters influence the structure and the behavior of AM parts. A thorough understanding of the interdependent mechanisms is necessary for the reliable design and production of safe AM parts. In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - Conaendi&IEV 2021 CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung PY - 2021 AN - OPUS4-52241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Ulbricht, Alexander A1 - Schröder, Jakob A1 - Khambayat, Jiganesh A1 - Scholz, Maik A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Reduction of extraneous variance in powder bed fusion with laser beam of metals by means of advanced digital preprocessing N2 - Data-driven quality assurance and reproducibility are critical for advancing the industrial maturity of Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M). This study addresses the extraneous variance in scan vectors that arises even for identical cross sections of nominally identical components but located at different positions on the build platform. This inherent variance, common across most PBF-LB/M machines, is caused by scan vector computation relative to the machine coordinate origin and subsequent projection of the resulting pattern onto individual component cross sections. In this work, scan vectors are computed still following conventional slicing, but relative to the workpiece origin of each component, using an EOS M 300-4. This digital preprocessing approach homogenizes fabrication conditions, ensuring that anomalies, such as scan vector overlaps, occur consistently across identical components. The impact during fabrication is assessed through powder bed imaging, melt pool monitoring, and operational data from the multilaser PBF-LB/M machine. Components are manufactured from AlSi10Mg for each scan vector computation origin and subsequently qualified using x-ray computed tomography, optical coordinate measurement, and optical surface measurement. A comprehensive evaluation is conducted, comparing the results in terms of component density, geometric accuracy, and surface roughness to those obtained using conventional preprocessing. Based on these findings, practical recommendations are provided, focusing on achieved quality criteria to identify potential drawbacks, while also considering the life cycle analysis of fabrication. Finally, the study emphasizes the significance of consistent scan vector provisioning for identical components placed at different build platform positions, assuming no roll or pitch during nesting. T2 - ICALEO CY - Orlando, FL, USA DA - 13.10.2025 KW - Quality assurance KW - Data management KW - 3D printing KW - Laser fabrication KW - Life cycle analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642104 DO - https://doi.org/10.2351/7.0001890 SN - 1042-346X VL - 37 IS - 4 SP - 1 EP - 14 PB - American Institute of Physics Publishing CY - New York AN - OPUS4-64210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Infrared thermography KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring PY - 2021 AN - OPUS4-52699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Design and implementation of a machine log for PBF-LB/M on basis of IoT communication architectures and an ETL pipeline N2 - AbstractPowder Bed Fusion with Laser Beam of Metals (PBF-LB/M) has gained more industrial relevance and already demonstrated applications at a small series scale. However, its widespread adoption in various use cases faces challenges due to the absence of interfaces to established Manufacturing Execution Systems (MES) that support customers in the predominantly data-driven quality assurance. Current state-of-the-art PBF-LB/M machines utilize communication architectures, such as OPC Unified Architecture (OPC UA), Message Queuing Telemetry Transport (MQTT) and Representational State Transfer Application Programming Interface (REST API). In the context of the Reference Architecture Model Industry 4.0 (RAMI 4.0) and the Internet of Things (IoT), the assets, particularly the physical PBF-LB/M machines, already have an integration layer implemented to communicate data such as process states or sensor values. Missing is an MES component acting as a communication and information layer. To address this gap, the proposed Extract Transform Load (ETL) pipeline aims to extract relevant data from the fabrication of each build cycle down to the level of scan vectors and additionally to register process signals. The suggested data schema for archiving each build cycle adheres to all terms defined by ISO/TC 261—Additive Manufacturing (AM). In relation to the measurement frequency, all data are reorganized into entities, such as the AM machine, build cycle, part, layer, and scan vector. These scan vectors are stored in a runtime-independent format, including all metadata, to be valid and traceable. The resulting machine log represents a comprehensive documentation of each build cycle, enabling data-driven quality assurance at process level. KW - FAIR data KW - Data-driven quality assurance KW - Laser powder bed fusion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601256 DO - https://doi.org/10.1007/s40964-024-00660-7 SN - 2363-9512 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Oster, Simon A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Comparison of NIR and SWIR thermography for defect detection in Laser Powder Bed Fusion N2 - Since laser powder bed fusion (PBF-LB/M) is prone to the formation of defects during the building process, a fundamental requirement for widespread application is to find ways to assure safety and reliability of the additively manufactured parts. A possible solution for this problem lies in the usage of in-situ thermographic monitoring for defect detection. In this contribution we investigate possibilities and limitations of the VIS/NIR wavelength range for defect detection. A VIS/NIR camera can be based on conventional silicon-based sensors which typically have much higher spatial and temporal resolution in the same price range but are more limited in the detectable temperature range than infrared sensors designed for longer wavelengths. To investigate the influence, we compared the thermographic signatures during the creation of artificially provoked defects by local parameter variations in test specimens made of a nickel alloy (UNS N07208) for two different wavelength ranges (~980 nm and ~1600 nm). KW - Laser powder bed fusion KW - PBF-LB/M KW - Thermography KW - Additive manufacturing KW - NDT PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610380 DO - https://doi.org/10.1016/j.procir.2024.08.122 VL - 124 SP - 301 EP - 304 PB - Elsevier B.V. AN - OPUS4-61038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Integration of the whole digital chain in a unique file for PBF-LB/M: practical implementation within a digital thread and its advantages N2 - The industrialization of AM is only possible by creating synergy with the tools of Industry 4.0. The system technology of Powder Bed Fusion with Laser beam of Metals (PBF-LB/M) reached a level of high performance in terms of process stability and material spectrum in the past years. However, the digital process chain, starting from CAD via CAM and plant-specific compila-tion of the manufacturing file exhibits media disruptions. The consequence is a loss of metadata. A uniform data scheme of simulation for Design for Additive Manufacturing (DfAM), the PBF-LB/M process itself and quality assurance is currently not realized within industry. There is no entity in the common data flows of the process chains, that enables the integration of these functionalities. As part of the creation of a digital quality infrastructure in the QI-Digital pro-ject, an integration of the CAD/CAM chain is being established. The outcome is a file in an advanced commercially available format which includes all simula-tions and manufacturing instructions. The information depth of this file extends to the level of the scan vectors and allows the automatic optimization and holis-tic documentation. In addition, the KPI for the economic analysis are generated by compressing information into a unique file combined with the application of a digital twin. The implementation and advantages of this solution are demon-strated in a case study on a multi-laser PBF-LB/M system. A build job contain-ing a challenging geometry is thermally simulated, optimized, and manufac-tured. To verify its suitability for an Additive Manufacturing Service Platform (AMSP), the identical production file is transferred to a PBF-LB/M system of another manufacturer. Finally, the achieved quality level of the build job is evaluated via 3D scanning. This evaluation is carried out in the identical entity of the production file to highlight the versatility of this format and to integrate quality assurance data. T2 - Additive Manufacturing for Products and Applications 2023 CY - Lucerne, Switzerland DA - 11.09.2023 KW - Laser Powder Bed Fusion KW - Digital Twin KW - Data Integrity KW - Process Chain Integration KW - Computer Aided Manufacturing PY - 2023 SN - 978-3-031-42982-8 DO - https://doi.org/10.1007/978-3-031-42983-5_7 SN - 2730-9576 VL - 3 SP - 91 EP - 114 PB - Springer CY - Cham AN - OPUS4-58363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, R. A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 SP - 1 EP - 9 AN - OPUS4-57836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Knobloch, Tim A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Concepts for bridging voids in metal additive manufacturing for repair of gas turbine blades using laser powder bed fusion N2 - One of the main advantages of additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) is the possibility to manufacture complex near-net-shape components. Therefore, the PBF-LB/M process is becoming increasingly important for the manufacturing and repair of gas turbine blades. Despite the great freedom in design, there are also limitations to the process. Manufacturing overhangs or bridging voids are some of the main challenges. In the conventional PBF-LB/M process, overhangs with angles up to 45° can be manufactured. However, gas turbine blades feature voids for cooling, which have to be bridged when using PBF-LB/M. In this work, different concepts for bridging voids are developed for future application in gas turbine blade repair. For this purpose, a test geometry is derived from the tip area of a gas turbine blade as a reference. By changing the initial geometry of the reference body, different designs for bridging voids are developed based on the PBF-LB/M requirements. Subsequently, these distinct designs are manufactured by PBF-LB/M. The different approaches are compared with respect to their volume increase. In addition, the specimens are visually inspected for warpage, shrinkage and imperfections by overheating. Out of the seven concepts developed, three concepts can be recommended for gas turbine blade repair based on low volume increase, distortion and shrinkage. T2 - Metal Additive Manufacturing Conference - MAMC 2022 CY - Graz, Austria DA - 26.09.2022 KW - Repair of gas turbine blades KW - Laser Powder Bed Fusion (PBF-LB/M) KW - Selective Laser Melting (SLM) KW - Design for Additive Manufacturing (DfAM) KW - Bridging voids KW - Supportless PY - 2022 SP - 19 EP - 28 PB - TU Graz CY - Graz AN - OPUS4-55868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Bayram, Faruk A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L N2 - This article reports temperature-dependent elastic properties (Young’s modulus, shear modulus) of three alloys measured by the dynamic resonance method. The alloys Ti-6Al-4V, Inconel IN718, and AISI 316 L were each investigated in a variant produced by an additive manufacturing processing route and by a conventional manufacturing processing route. The datasets include information on processing routes and parameters, heat treatments, grain size, specimen dimensions, and weight, as well as Young’s and shear modulus along with their measurement uncertainty. The process routes and methods are described in detail. The datasets were generated in an accredited testing lab, audited as BAM reference data, and are hosted in the open data repository Zenodo. Possible data usages include the verification of the correctness of the test setup via Young’s modulus comparison in low-cycle fatigue (LCF) or thermo-mechanical fatigue (TMF) testing campaigns, the design auf VHCF specimens and the use as input data for simulation purposes. KW - Elastic modulus KW - Young's modulus KW - Shear modulus KW - Additive manufacturing KW - AISI 316L KW - IN 718 KW - Ti-6Al-4V KW - Reference data KW - Temperature dependence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579716 DO - https://doi.org/10.1038/s41597-023-02387-6 VL - 10 IS - 1 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-57971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaudry, Mohsin Ali A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Experimental and numerical comparison of heat accumulation during laser powder bed fusion of 316L stainless steel N2 - Heat accumulation during laser powder bed fusion (LPBF) of metallic build parts can adversely affect their microstructure and mechanical properties. To study the heat accumulation during 316L steel based parts manufactured by LPBF, a finite element method (FEM) based numerical study is carried out. For the investigation, a computationally efficient FEM based model, where the whole layer is simultaneously exposed to a heat source, is used. The simulation results are compared with experimental results to validate the numerical model. While considering different influencing factors such as volumetric energy density (VED) and inter-layer time (ILT), the FEM model is shown to successfully simulate the process of heat accumulation during LPBF based manufacturing of a cuboidal shaped geometry. It is shown that ILT and VED have a significant effect on heat accumulation. The validated numerical model provides a good basis for the optimization of processing parameters and geometries for a future investigation of a reduction of heat accumulation effects. Furthermore, it can be used to quickly provide preheating boundary conditions for detailed investigations by different model approaches at a finer scale for future studies. KW - Laser powder bed fusion KW - Finite element method KW - Heat accumulation KW - Inter-layer time PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545115 DO - https://doi.org/10.1007/s40964-022-00282-x SP - 1 EP - 13 PB - Springer AN - OPUS4-54511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Teske, Tanita A1 - Hilgenberg, Kai A1 - Mauro, Madia A1 - Nielsen, S. A1 - Gärtner, F. A1 - Klassen, T. T1 - Untersuchung des Potenzials von Kaltgasspritzen für die Reparatur zyklisch belasteter Bauteile T1 - Investigation on the capability of cold-spray for repair of cyclically loaded components N2 - Die Reparatur mittels Kaltgasspritzen ist eine vielversprechende Alternative zum teuren Austausch fehlerbehafteter Bauteile in der Luft- und Raumfahrt. Im Rahmen dieser Arbeit wurde das Potential des Verfahrens an der hochfesten Aluminiumlegierungen Al6061-T6 unter Anwendung von Stickstoff als kostengünstiges Prozessgas untersucht. Es wurden quasi-statische Zugversuche und einachsige Zeitfestigkeitsversuche mit besonderem Fokus auf das in-situ Kugelstrahlen zur Verbesserung der mechanischen Eigenschaften durchgeführt. Im Ergebnis wurde die Verbesserung der Adhäsion zwischen Substrat und aufgebautem Werkstoff als entscheidendes Kriterium für eine Anwendbarkeit ermittelt. Die Laserstrukturierung von Substratoberflächen ist hierfür vielversprechend und wurde im Rahmen der Arbeit mittels Adhäsionsversuchen untersucht. N2 - Repair by cold-spray is a promising alternative to the costly replacement of flawed components in aerospace applications. In the present work this process was investigated on the high-strength aluminum alloy Al6061-T6. For the cold-spray process, inexpensive Nitrogen was used as process-gas. Quasi-static tensile and highcycle- fatigue tests (HCF) were performed, focusing on in-situ shot peening to improve the mechanical properties of the repaired part. An improved adhesion between substrate and built-up material was identified as a key-factor for the applicability of the process. Under this respect laser-structuring of the substrate surface was applied and its effect on the mechanical performance of the restored samples were examined by adhesion tests. T2 - 9. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Stuttgart, Germany DA - 06.11.2024 KW - Kaltgasspritzen KW - cold-spray KW - Reparatur KW - Repair KW - Ermüdungsfestigkeit KW - Fatigue KW - Luft- und Raumfahrt KW - Aerospace KW - Substratvorbehandlung KW - Substrate pre-treatment PY - 2024 DO - https://doi.org/10.48447/ADD-2024-BB VL - 409 SP - 67 EP - 79 AN - OPUS4-63182 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drendel, Jan A1 - Logvinov, Ruslan A1 - Heinrichsdorff, Frank A1 - Hilgenberg, Kai T1 - Simulation-based controlling of local surface temperature in laser powder bed fusion using the process laser N2 - State-of-the-art laser powder bed fusion (PBF-LB/M) machines allow pre-heating of the substrate plate to reduce stress and improve part quality. However, two major issues have been shown in the past: First, with increasing build height the apparent pre-heat temperature at the surface can deviate drastically from the nominal pre-heat temperature in the substrate plate. Second, even within a single layer the local surface pre-heat temperature can show large gradients due to thermal bottlenecks in the part geometry underneath the top surface. Both lead to unwanted changes in microstructure or defects in the final parts. In this study, a first attempt is taken to show the feasibility of pre-heating the top surface with the onboard laser beam to overcome the mentioned issues. A single layer of a group of three parts built from IN718 to a height of 33.5 mm is pre-heated in a commercially available PBF-LB/M machine to an average steady state surface temperature of 200 °C using the onboard laser beam. The parts are continuously heated, omitting powder deposition and melting step. Temperatures are measured by thermocouples underneath the surface. The experiments are supported by a thermal finite element (FE) model that predicts the temperature field in the parts. When heating the parts uniformly with the laser beam, differences in surface temperatures as large as 170 K are observed. To overcome this inhomogeneity, the heat flux supplied by the laser beam is modulated. An optimized, spatial heat flow distribution is provided by the thermal FE model and translated into a scan pattern that reproduces the optimized heat distribution on the PBF-LB/M machine by locally modulating hatch distance and scan velocity. This successfully reduces the differences in surface temperature to 20 K. Thermographic imaging shows that a homogeneous surface temperature can be achieved despite the localized heat input by the beam. The potential for industrial application of the optimized laser-heating technique is discussed. KW - Additive Manufacturing KW - Simulation KW - Surface temperature KW - Laser powder bed fusion PY - 2023 DO - https://doi.org/10.1016/j.addma.2023.103854 SN - 2214-8604 VL - 78 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-58825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 DO - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -