TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Available particle-sizing techniques at work for the classification as a nanomaterial - How reliable it really is? N2 - The capability of currently available particle sizing techniques for reliable classification of materials that potentially fall under the EU Definition of a nanomaterial is discussed. A systematic quantitative evaluation of the sizing techniques is presented together with representative case studies of analysis of industrially relevant materials. Recommendations on the most appropriate and efficient use of techniques for different types of material are given. T2 - Frontiers of Nanomaterial Characterization CY - Tokyo, Japan DA - 28.05.2017 KW - Nanomaterial classification KW - Nanoparticles KW - Number-weighted median size KW - Particle size analysis KW - Characterization techniques PY - 2017 AN - OPUS4-40474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - NanoDefine – a brief overview N2 - The large European nanometrology Project NanoDefine is presented briefly with respect to the challenges of measurement of particle size distribution for complex nanoparticulate materials. The methods chosen for a tiered approach for the classification of a nanomaterial are discussed with regard to their peformance. Representative resuls on real life, complex shaped nanoparticulate materials are shown. The recently initiated VAMAS inter-laboratory comparisons to determine the reproducibility necessary for international standardisation have been also presented. T2 - Metrology Study Group of ISO/TC 229 Nanotechnologies /JWG2 'Measurement and Characterization' CY - Tokyo, Japan DA - 31.05.2017 KW - EU definition of a nanomaterial KW - Nanomaterial classification KW - Nanoparticles KW - Nanoparticle size distribution KW - VAMAS inter-laboratory comparison KW - Particle sizing techniques PY - 2017 AN - OPUS4-40475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Bachmann, V. A1 - Kuhlbusch, T. T1 - Projekt Nano-TG110 N2 - Die OECD-TG110 mit dem Titel "Particle Size Distribution Fibre Length and Diameter Distribution" wurde 1981 erstellt und seither nicht überarbeitet. Nanomaterialien, wie Nanopartikel oder Nanofasern werden nicht adressiert, genausowenig wie moderne Messverfahren. Das hier vorgestellte Projekt hat zur Aufgabe, die Größenmessung von Nanopartikeln und Nanofasern in einer neuen Technical Guideline der OECD zu standardisieren. Es wird die Projekthistorie dargestellt, die Anforderungen, der aktuelle Projekt-Bearbeitungsstand wird beleuchtet und die weiteren Arbeiten werden kurz skizziert. T2 - Nano-Behördenklausur der Bundesoberbehörden CY - Berlin, Germany DA - 02.11.2017 KW - Nano KW - Nanopartikel KW - Nanoparticle KW - OECD KW - Guideline PY - 2017 AN - OPUS4-42737 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Thissen, A. A1 - Kulak, N. A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - XPS surface chemical analysis of aqueous solutions with EnviroESCA N2 - Water and aqueous reagents are essential in any biological process or system. But apart from a few special low vapor-pressure cases, liquids have not been accessible to any technique requiring UHV conditions. EnviroESCA opens up this exciting field of applications. In this paper first results from water based samples are presented as a proof of concept to demonstrate the special capabilities of EnviroESCA analyzing liquid samples. The following solutions were investigated under near ambient pressure conditions: i.) water, ii.) brine, iii.) an oil in water dispersion, iv.) aqueous iron(II) sulfate heptahydrate, and v.) a suspension of nano silver particles in water. KW - Surface Analysis KW - Near Ambient Pressure XPS KW - Aqueous Solutions PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-394603 UR - http://www.enviro.specs.de/cms/upload/bilder/EnviroESCA/Applications/Liquids/Application-Note_EnviroESCA_Aqueous_Solutions.pdf N1 - BAM Mitarbeiter Beitrag im Acknowledgement definiert. IS - #000394 SP - 1 PB - SPECS CY - Berlin AN - OPUS4-39460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Steinborn, Gabriele A1 - Woydt, Mathias T1 - Colloidal processing of Nbc cermets with Ni binder N2 - Niobium-titanium carbide cermets with nickel binder have been prepared by colloidal processing in water without a milling step by using Poly-diallyl-dimethyl-ammonium chloride (Poly-DADMAC) as a dispersant. Homogeneous microstructures with relative densities larger than 99% of the theoretical density have been achieved by gas pressure sintering in argon atmosphere. However, mechanical properties like hardness and strength were slightly decreased due to precipitation of free carbon. T2 - ISNT2017 & ISSNOX5 - 9th International Symposium on Nitrides & 5th International Symposium on SiAlONS and Non-Oxides CY - Sapporo, Japan DA - 27.08.2017 KW - Niobium carbide KW - Colloidal processing KW - Nckel binder KW - Hardness PY - 2017 AN - OPUS4-42152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinborn, Gabriele A1 - Wäsche, Rolf A1 - Woydt, Mathias A1 - Rabe, Torsten T1 - Improved wear resistant ceramics of metal incorporated NbC processed with gas pressure sintering N2 - Tungsten carbide (WC) dominates wear protection and machining since more than 90 years due to its hardness with an associated good toughness and high melting point. It was recently demonstrated that Niobium Carbides are wear resistant and show a better performing under cutting than WC grades. In order to profit of the good properties of Niobium Carbide, specific processing techniques need to be developed. The density of NbC is half of WC and offers colloidal processing for perfectly mixing NbC with metallic binder (up to 15 vol.-% Ni) and secondary carbide-particles. The used NbC-powder has an average particle size d50 of 3 micron measured by laser granulometry analysis. The true density was 7.68 g/cm3. An Oxygen content of the used NbC of 0.4 % is caused by residual slag content. It is possible to increase the stability of the NbC-suspensions and to reduce their viscosity by adding a specific dispersing agent. This surface-modified NbC powders (containing Ni)were uniaxially pressed and then gas pressure sintered in vacuum or Argon atmosphere. All samples reached more then 98 % of there theoretical density. The micrographs showed a homogenius distribution of the Ni-binder in the product. The tribological behaviour under dry sliding and oscillating up to 600 °C and the mechanical properties were studied. T2 - 92. Jahrestagung der Deutschen Keramischen Gesellschaft CY - Berlin, Germany DA - 19.03.2017 KW - NbC KW - Wear resistant KW - Gas pressure sintering PY - 2017 AN - OPUS4-40242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vignes, A. A1 - Krietsch, Arne A1 - Dufaud, O. A1 - Deray, B A1 - Binotto, G A1 - Bouillard, J. T1 - Current status in nanodust explosion topic N2 - Nanotechnology has been identified as a Key Enabling Technology for the European Union (Horizon 2020) and already has a wide field of applications. However, hazardous properties of nanomaterials such as their flammability and explosivity, have to be determined to ensure their sustainable development. This poster gives an overview of the current status in nanodust explosion research, standardization and european collaboration as well as highlighting current and future perspectives. T2 - 16th Congress of the French Chemical Engineering Society CY - Nancy, France DA - 11.07.2017 KW - Dust explosions KW - Nanomaterials KW - Combustible dust PY - 2017 AN - OPUS4-43084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bouillard, J. A1 - Krietsch, Arne A1 - Vignes, A A1 - Janes, A. A1 - Carson, D. A1 - Holzschuh, O. T1 - CEN/TC 352/WG 3/PG 3 – Guidelines for Determining Protocols for the Explosivity and Flammability of Powders containing Nano-objects (for Transport, Handling and Storage) N2 - The European Committee for Standardization (CEN) set up the Technical Committee 352 (CEN/TC 352) in 2006 to develop and maintain up to date standards in the field of nanotechnologies. Part of the work group (WG 3) dedicated to Health, Safety and Environment, the CEN/TC 352/WG 3/PG 3 led by INERIS was constituted to develop a Technical Specification (TS) for the determination of explosivity and flammability properties of manufactured nano-objects in powder form (2013-2018). T2 - 2nd Open Meeting - European Conference on Standardization for Nanotechnologies and Nanomaterials: Reliable data for an effective management of nanomaterials CY - Valletta, Malta DA - 10.06.2017 KW - Dust explosions KW - Nanomaterials KW - Combustible dust PY - 2017 AN - OPUS4-43076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mielke, Johannes A1 - Babick, F. A1 - Ullmann, C. T1 - Evaluation of particle sizing techniques for implementation of the EC Definition of a nanomaterial N2 - Many techniques are available for measuring particle size distribution. For ideal materials (spherical particles, well dispersed) it is possible to evaluate the Performance of these methods. The performance of the analytical instrumentation for the purpose of classifying materials according to EC Definition is unknown. In this work the performance of commercially available particle sizing techniques on representative NanoDefine set of real-world testing materials (RTM) and quality control materials (QCM) for the implementation of the Definition is evaluated. T2 - Final NanoDefine Outreach Event Classification of nanomaterials according to the EU definition CY - Brüssel, Belgium DA - 19.09.2017 KW - Nanomaterial classification KW - Particle sizing techniques KW - Nanoparticles KW - EC definition of a nanomaterial PY - 2017 UR - http://www.nanodefine.eu/index.php/nanodefine-meetings/125-final-outreach-event-2017 AN - OPUS4-42507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wohlleben, W. A1 - Mielke, Johannes A1 - Bianchin, A. A1 - Ghanem, A. A1 - Freiberger, H. A1 - Rauscher, H. A1 - Gemeinert, Marion A1 - Hodoroaba, Vasile-Dan T1 - Reliable nanomaterial classification of powders using the volume-specific surface area method N2 - The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of "nanomaterial" for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the Screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended Adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition. KW - Nanomaterial KW - Nanomaterial classification KW - Regulation KW - VSSA KW - Size measurement KW - Particle size PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391450 SN - 1388-0764 SN - 1572-896X VL - 19 IS - 2 SP - Article 61, 1 EP - 16 PB - Springer Nature AN - OPUS4-39145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -