TY - JOUR A1 - Wagner, Jan A1 - Häfner, P. A1 - Reimann, H.-A. A1 - Schartel, Bernhard T1 - Valorization of Natural Fibers in Flame Retarded Poly(lactic acid) N2 - Extensive research has explored natural fiber reinforced composites, typically focusing on a single fiber within a polymer matrix. Comprehensive comparisons across different natural fibers in the same polymer, which are critical for industrial material selection, remain limited. This work presents a systematic comparison of untreated hemp, flax, and sisal fibers incorporated at varying fiber lengths and loadings into flame retarded poly(lactic acid) (PLA). Fire behavior, thermal, and mechanical responses were investigated through thermogravimetry, UL 94, and cone calorimetry, alongside crystallinity, molecular weight (MW), and microstructural analysis. Fiber incorporation reduced the peak heat release rate (pHRR) by up to 30 % in 30 wt% hemp, attributed to protective layer formation, but increased flammability in UL 94. A phytic acid melamine salt combined with expandable graphite and 20 wt% hemp produced incomplete combustion at 50 kW/m², raising char residue from 4 to 24 wt% and halving pHRR. Petrella plots revealed that fiber addition alone lowered fire load and flashover propensity as effectively as phytic acid melamine; with hemp, phytic acid and expendable graphite, the flashover hazard and fire load were halved. MW was preserved while crystallinity and modulus increased with fiber content. Hemp delivered the most consistent reinforcement, while optimized processing enabled flax and sisal to improve stiffness. Performance gains were strongest when individual fibers were dispersed via optimized processing, preventing bundle fracture under load. Plasma modification of the fibers improved the maximum tensile strength in the composites. A practical guide is provided for valorizing natural fibers in PLA composites, demonstrating routes to bio-based, compostable materials with improved fire safety and mechanical performance suitable for industrial processing. KW - Poly(lactic acid) KW - Hemp KW - Sisal KW - Flax KW - Flame retardant KW - Phytic acid PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653038 DO - https://doi.org/10.1016/j.mtcomm.2025.114575 SN - 2352-4928 VL - 50 SP - 1 EP - 41 PB - Elsevier Ltd. AN - OPUS4-65303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentini, Martino A1 - De Almeida, Olivier A1 - Kakkonen, Markus A1 - Kalinka, Gerhard A1 - Dorigato, Andrea A1 - Kallio, Pasi A1 - Fredi, Giulia T1 - Effect of fiber surface state on the thermomechanical and interfacial properties of in situ polymerized polyamide 6/basalt fiber composites N2 - This study investigates the thermomechanical properties and interfacial adhesion of novel in-situ polymerized anionic polyamide 6 (aPA6) composites reinforced with basalt fibers (BF). The impact of different BF surface states - as-received (BFa), ethanol-washed (BFw), and thermally desized (BFu) on composite performance is examined through a comprehensive approach. For the first time, anionic PA6/BF composites with very low residual monomer content were successfully produced via thermoplastic resin transfer molding (tRTM). The PA6/BFw composites exhibited the highest interlaminar/interfacial shear strength in short beam shear test (52 ±8 MPa) and fiber push out test (34 ± 11 MPa) tests. Fiber microdebonding test, performed only on PA6/BFw, yielded a low interfacial shear strength (12 ± 4 MPa), which was attributed to droplet porosity resulting from concurrent polymerization and crystallization. Thermal desizing significantly deteriorated interfacial strength (19.6 ± 1.2 MPa in short beam shear test). This multi-technique characterization provides insights into optimizing the fiber–matrix adhesion in these advanced thermoplastic composites. KW - Anionic Polyamide 6 KW - Reactive thermoplastics KW - Basalt fibers KW - Microdebonding KW - Fiber push out KW - Short beam shear test PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623596 DO - https://doi.org/10.1016/j.compositesa.2024.108681 SN - 1878-5840 VL - 190 SP - 1 EP - 15 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-62359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rodricks, Carol T1 - Recyclable or One-Way Composites? Evaluating the Durability of Elium vs. Epoxy Glass Fibre Composites N2 - Fibre-reinforced polymers are widely used, particularly in lightweight construction, due to their high strength-to-weight ratio and versatility. The expansion of wind turbines calls for ever-lighter materials, and polymer matrix composites are well-positioned to meet this need, offering the necessary strength and long-term durability with reduced weight. However, conventional thermoset composites, such as epoxy-based systems, pose significant recycling challenges as they cannot be easily reprocessed or remoulded. A promising alternative is Elium, a novel thermoplastic resin that offers mechanical properties similar to thermoset polymers while providing the added benefit of chemical recyclability through solvolysis in acetone. This raises an important question: can a recyclable Elium composite match or even surpass the durability of a conventional epoxy composite, particularly in demanding structural applications? In our study, we compare the fatigue performance of Elium (191SA, 151-XO) glass fibre composites to conventional epoxy (RIMR 135, RIMH 137) glass fibre composites. Results indicate that Elium composites demonstrate superior fatigue resistance compared to their epoxy counterparts. The combination of enhanced fatigue durability and chemical recyclability highlights the potential of Elium composites as a sustainable alternative to conventional epoxy-based systems for long-term structural applications. T2 - Materials Week 2025 CY - Frankfurt am Main, Germany DA - 02.04.2025 KW - Polymer matrix composites KW - Recycling KW - Elium KW - Fatigue performance PY - 2025 AN - OPUS4-62936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rodricks, Carol T1 - Advancing Sustainable Composites: Challenges and innovations N2 - With the increased use of carbon fibre polymer matrix composites comes the important question of their management at the end of their life cycle. Given the high costs associated with carbon fibre production, recycling carbon fibres from composite waste is a desirable source of reinforcing fibres for new applications. However, current recycling methods result in recycled carbon fibres that are short with little to no orientation which can only be used in applications requiring intermediate strength at a fraction of the potential of the continuous, aligned virgin fibres. Thus, a method to recycle fibres with their original length and orientation intact is vital to truly realising a circular economy for carbon fibre polymer composites. Our research introduces a novel hierarchical composite aimed at preserving the length and orientation of carbon fibres on recycling. Virgin carbon fibres are encapsulated in an insoluble epoxy matrix to form tapes that serve as the primary units of the hierarchical structure. The primary epoxy matrix protects the fibres from chemical and environmental elements while maintaining their permanent orientation. The primary tape units are subsequently embedded in a secondary recyclable matrix polymer to make larger composite structures. Elium, a thermoplastic that dissolves in acetone and has mechanical properties comparable to epoxy, was chosen as the secondary matrix of choice in this study. This approach aims to achieve a composite that is mechanical equivalent to thermoset composites while facilitating easy recycling with minimal impact on the fibres in the primary unit. T2 - Materials Week 2025 CY - Frankfurt am Main, Germany DA - 02.04.25 KW - Recycling KW - Carbon fibres KW - Mechanical testing KW - Polymer-matrix composites (PMCs), micromechanics KW - Elium PY - 2025 AN - OPUS4-63004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schraa, Lucas A1 - Rodricks, Carol A1 - Kalinka, Gerhard A1 - Roetsch, Karl A1 - Scheffler, Christina A1 - Sambale, Anna A1 - Uhlig, Kai A1 - Stommel, Markus A1 - Trappe, Volker T1 - Characterisation and Modelling of the Fibre-Matrix Interface of Short Fibre Reinforced Thermoplastics using the Push-Out Technique N2 - This study investigates the suitability of the single fibre push-out (SFPO) test for the determination of the interfacial shear strength (IFSS) of injection moulded short fibre reinforced thermoplastics. It includes a detailed description of the required sample preparation steps and the boundary conditions of the SFPO setup. Experimental SFPO tests were carried out on PA66 GF, PPA GF35 and PA6 GF50 materials. Furthermore, a finite element model was set up to simulate the behaviour of these materials during this test. The numerical results showed that the inhomogeneous stress distribution in the fibre-matrix interphase during the test causes the measured apparent IFSS to underestimate the true strength of the interphase. The simulations put the experimental results into perspective and provide valuable information for the further development of the test setup. This study therefore not only provides new insights into the interphase strength of injection moulded short fibre reinforced thermoplastics, but also an insight into local load conditions during testing and thus an indication of the true IFSS. KW - GFRP KW - Interface KW - fibre matrix bond KW - single fibre push-out PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626087 DO - https://doi.org/10.1016/j.compositesb.2025.112317 SN - 1879-1069 VL - 297 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-62608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Colombo, Marta A1 - Mostoni, Silvia A1 - Fredi, Giulia A1 - Rodricks, Carol A1 - Kalinka, Gerhard A1 - Riva, Massimiliano A1 - Vassallo, Andrea A1 - Di Credico, Barbara A1 - Scotti, Roberto A1 - Zappalorto, Michele A1 - D'Arienzo, Massimiliano T1 - Interfacial Chemistry Behind Damage Monitoring in Glass Fiber‐Reinforced Composites: Attempts and Perspectives N2 - Glass Fiber Reinforced Polymers (GFRPs) are widely used in structural applications but degrade over time due to internal damage. Structural Health Monitoring (SHM) enables early damage detection, improving reliability and reducing maintenance costs. Traditional SHM methods are often invasive and expensive. An emerging solution involves the embedding of carbon‐based filler like carbon nanotubes and reduced graphene oxide into GFRPs, forming conductive networks that detect damage through resistance changes. However, poor adhesion among GF, filler, and matrix can reduce mechanical performance. Therefore, tailoring GF and filler surface chemistry is essential to enhance durability and enable effective self‐sensing properties. This review summarizes the most recent efforts in modifying GF with carbon‐based filler to design GFRP with improved sensing ability and mechanical performance. After a brief introduction on the role of SHM solutions in early damage detection, an overview of the common GF and filler used in GFRPs will be provided. Then, the most relevant GF modification strategies exploited to incorporate carbon‐based filler in GFRPs will be described, focusing on the chemical grafting approach, which allows a careful optimization of the fiber/matrix interface. Last, a concise summary of the key mechanical and electrical tests to evaluate interfacial adhesion and self‐sensing will be supplied. KW - Review KW - Interface KW - Micromechanics KW - Polymer matrix composites KW - Glass fibre reinforced composites PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639934 DO - https://doi.org/10.1002/pc.70332 SN - 0272-8397 SP - 1 EP - 30 PB - Wiley AN - OPUS4-63993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavasarytė, Lina A1 - Azevedo do Nascimento, Allana A1 - Cysne Barbosa, Ana Paula A1 - Trappe, Volker A1 - Melo, Daniel T1 - Effects of particle size and particle concentration of poly (ethylene-co-methacrylic acid) on properties of epoxy resin N2 - Self-healing polymers have been developed to improve durability and reduce costs associated with maintenance during service. The addition of thermoplastics to thermosets to produce mendable polymers appears as a promising selfhealing technique. In this study, poly (ethylene-co-methacrylic acid) (EMAA) was added to epoxy resin and the effects of EMAA addition on epoxy properties were evaluated. Specimens with two different contents of thermoplastic and particles sizes were manufactured. A two-level full factorial experimental design was used to evaluate the effect of particle size and particle content on properties of epoxy modified with addition of EMAA. Tensile tests and dynamic mechanical analysis (DMA) were used and the evaluated responses were tensile strength, modulus of elasticity, and glass transition temperature (Tg). X-ray computed tomography (XCT) was used to investigate particle size and concentration after manufacturing. It was found that the particle concentration has greater effects on stress–strain behavior of epoxy while Tg was not significantly affected by neither of the analyzed entrance variables. KW - Fracture KW - Self-healing KW - Epoxy KW - Thermoplastic PY - 2024 DO - https://doi.org/10.1002/app.55677 SN - 0021-8995 SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-60205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Advanced lightweight applications – recycling versus reliability and fossil energy footprint N2 - Advanced light weight applications like aircrafts and wind turbine blades are made of fibre reinforced plastics (FRP) with continuous fibre reinforcement and must withstand a high thermo-mechanical cyclic loading. The quality of the fibre matrix interface has a high impact on the fatigue life and was continuously improved over the years since the 50th. The fatigue life of glass fibre reinforced plastics (GFRP) used in aircraft industry is 10 to 100 times higher compared to glass fibre non crimp fabrics used for wind turbine blades. To assure a constant and reliable high quality and strength of reinforcement fibres, synthetic fibre production is state of the art (CF, GF). There is a need for recycling GFRP and CFRP waste due to the upcoming use. Pyrolysis and solvolysis are more expensive than the mechanical route however enable a more sustainable recycling. Natural fibres and recycled synthetic fibres have a high scatter in quality and strength. Hence it is a challenge to optimize the production / recycling processes to get a reliable quality for any demanding (second life) application. Chemical routes for using renewables resources and recycling, is going to be a good approach especially for polymer-matrix systems to get 100% quality (back) compared to the state of the art. Finally, a proper design, life-time extension and repair is preferable to recycling to keep the carbon footprint as low as possible. T2 - 27. INTERNATIONALES DRESDNER LEICHTBAUSYMPOSIUM CY - Dresden, Germany DA - 13.06.2024 KW - Polymer Matrix Composites KW - Carbon Fibre KW - Recycling KW - Circular Economy PY - 2024 UR - https://leichtbausymposium.de/deu/ AN - OPUS4-60683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian Richard A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Manufacturing KW - Mechanical properties KW - Microstructure KW - Plasticity KW - Zirconia: yttria stabilized PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605176 DO - https://doi.org/10.1111/jace.19849 SN - 1551-2916 VL - 107 IS - 10 SP - 6636 EP - 6645 PB - Wiley CY - Oxford AN - OPUS4-60517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Carbon fibre composites exemplarily research at BAM N2 - Lightweighting as a cross-cutting technology contributes significantly to achieve the European Green Deal goals. Based on, but not limited to, advanced materials and production technologies, the demand for natural resources and CO2 emmissions are reduced by lightweighting during production, as well as use phase. Therefore, lightweighting is a crucial transformation technology assisting in decoupling economic growth from resource consumption. In this manner, lightweighting contributes significantly as a key technology of relevance for many industrial sectors such as energy, mobility, and infrastructure, towards resource efficiency, climate action and economic strength, as well as a resilient Europe. To strengthen international partnerships, addressing global issues of today at the edge of science with high performance lightweight material based on carbon fibers, an overview about the BAM expertise in carbon fiber reinforced materials is given. T2 - Meeting KCarbon CY - Berlin, Germany DA - 15.06.2023 KW - Lightweighting KW - Carbon Fibers KW - Recycling KW - Push-out Test KW - multi scale testing PY - 2023 AN - OPUS4-58094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sigrüner, M. A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Herz, J. A1 - Muscat, D. A1 - Strübbe, N. T1 - Pull-out behavior of polymer fibers in concrete N2 - The bond between polymer fibers and the surrounding cementitious matrix is essential for the development of concrete reinforcement. The single fiber pull-out test (SFPT) is the standard characterization technique for testing the bond strength. However, the different phases of debonding cannot be distinguished by the SFPT. This study investigates the debonding of different polymer fibers from the surrounding cementitious matrix with a modified SFPT and proposes methods to change the SFPT setup to generate more valuable information on the debonding mechanism. The SFPT was equipped with linear variable differential transformers (LVDT), digital image correlation (DIC) and acoustic emission (AE) analysis. The results demonstrate that the modified SFPT allows a better understanding of the different phases of debonding during fiber pull-out. Furthermore, bond strength values calculated by different methods reveal that the chemical bond of the investigated polymers is not different as reported by previous studies. Deformation measurements performed using LVDTs and DIC are suitable measuring techniques to characterize the debonding mechanism in SFPT. A correlation between recorded AE and debonding phases was not found. KW - Polymer Fibres KW - Concrete KW - Pull-Out Behaviour KW - Debonding Mechanism PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582918 DO - https://doi.org/10.1002/pol.20230264 SN - 2642-4169 SP - 1 EP - 13 PB - Wiley Periodicals, LLC. AN - OPUS4-58291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalinka, Gerhard T1 - Testing the fibre matrix interface of short glass fibre reinforced PMCs with using the push out technique N2 - With this presentation, the push-out technique is explained. The focus of the experimental work is on the characterization of the fiber-matrix interface of short fiber reinforced composites. The reinforcing component was glass fibers and the matrix polymer was PA6.6 and PPA. It is demonstrated for the first time that the push-out technique ca be applied on injection molded short fiber PMC and is sensitive to the mechanical interface properties. Further studies are planned on the influence of multiple processing, the temperature and humidity. T2 - Composirtes United Workshop „Fiber Matrix Interphases“ CY - Online meeting DA - 09.11.2023 KW - Polymer Matrix Composite KW - Glass Fibres KW - PA6.6 KW - PPA KW - Push-out Test KW - Interface Strength PY - 2023 AN - OPUS4-59053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krauklis, A. E. A1 - Starovka, O. A1 - Gibhardt, D. A1 - Aouissi, H. A. A1 - Burlakovs, J. A1 - Sabalina, A. A1 - Fiedler, Bodo A1 - Kalinka, Gerhard T1 - Reversible and irreversible effects on the epoxy GFRP fiber-matrix interphase due to hydrothermal aging N2 - Epoxy R-Glass Fiber-Reinforced Polymer (GFRP) composite plates were hydrothermally aged at 60 ◦C for 23, 75, and 133 days. The water content reached 0.97 wt%, 1.45 wt% and 1.63 wt%, respectively. The studied GFRP matrix was inert to hydrolysis or chain scission, allowing for investigation of irreversible changes in the fiber-matrix interphase due to hydrothermal aging upon re-drying. During each period, a subset of the specimens was removed from the water bath and dried in a chamber. The weight loss upon drying was explained with epoxy leaching (impurities), sizing-rich interphase hydrolysis, glass fiber surface hydrolysis, accumulated degradation products escaping, and water changing state from bound to free. The influence of hydrothermal aging on the fiber-matrix interfacial properties was investigated. Lower interfacial strength of hydrothermally aged (wet) samples was attributed to plasticization of the epoxy, plasticization and degradation of the sizing-rich interphase (including formation of hydrolytic flaws), and hydrolytic degradation of the glass fiber surface. The kinetics of epoxy-compatible epoxysilane W2020 sizing-rich interphase hydrolysis provided an estimate of ca. 1.49%, 4.80%, and 8.49% of the total composite interphase degraded after 23, 75, and 133 days, respectively. At these conditions, the interface lost 39%, 48%, and 51% of its strength. Upon re-drying the specimens, a significant part of the interfacial strength was regained. Furthermore, an upward trend was observed, being 13%, 10% and 3% strength, respectively; thus, indicating a possibility of partial recovery of properties. KW - GFRP KW - Hydrothermal Ageging KW - Interphase KW - Water Diffusion KW - Desorption KW - Interfacial Strength PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581554 DO - https://doi.org/10.1016/j.jcomc.2023.100395 SN - 2666-6820 VL - 12 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-58155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, T. A1 - Kalinka, Gerhard A1 - Mieller, Björn T1 - Manufacturing and deformation behavior of alumina and zirconia helical springs at room temperature N2 - Ceramic helical springs with identical dimensions were produced by hard machining from alumina, alumina toughened zirconia (ATZ), and tetragonal zirconia polycrystals (TZP) stabilized with different oxides. According to the results of the spring constant determination under deformation rates of 3 mm/min, the deformation behavior of all ceramic springs obeys to Hook’s law. However, variation of the deformation rate, tests under constant load, and spring recovery behavior revealed differences in the deformation behavior of alumina, TZP, and ATZ springs. Alumina springs exhibited time-independent deformation in all tests. In contrast, anelastic deformation at room temperature was demonstrated in all springs containing TZP. This deformation is completely reversible over a period of several days. Anelastic behavior is particularly pronounced in Y-TZP springs, whereas Ce-TZP springs exhibit comparatively very low but still reliably detectable anelasticity. Oxygen vacancies in the TZP ceramic are considered the most likely explanation for the anelastic behavior of TZP springs at room temperature. KW - Alumina KW - Creep KW - Elastic properties KW - Zirconia PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571858 DO - https://doi.org/10.1111/jace.19085 SN - 0002-7820 SP - 1 EP - 14 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-57185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamoriniere, S. A1 - Mitchell, P. J. A1 - Ho, K. A1 - Kalinka, Gerhard A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites N2 - Poly (ether ether ketone) (PEEK) has a high continuous service temperature, excellent mechanical properties, and good solvent and abrasion resistance, which can be further improved through the addition of carbon nanotubes (CNTs). CNT-PEEK nanocomposites are promising matrices for continuous carbon fibre composites; powder processing can mitigate the high melt viscosities in these systems. In this study, model single fibre (hierarchical) composites were produced by embedding sized and desized carbon fibres in nanocomposite CNTPEEK powders followed by single fibre pull-out tests to assess interfacial characteristics. Carbon fibre-PEEK interfacial shear strength is typically 40–45 MPa. Increasing CNT loadings increased fibre-matrix interfacial shear strength linearly up to ~70 MPa at 5.0 wt%, which was attributed to the CNT-based mechanical modification of the PEEK matrix. Apparent interfacial shear strength was inversely correlated with the embedded fibre length irrespective of carbon fibre sizing or CNT loading, indicating brittle fracture of the fibre-matrix interface. Pulled out carbon fibres were still coated with the matrix, which indicated strong adhesion at the interface in all samples, likely related to a transcrystalline region. Adhesion was, however, negatively affected by the presence of epoxy sizings. Frictional shear strength was independent of embedded fibre length and CNT content for all samples. KW - Keywords: Poly(ether ether ketone) KW - Carbon fibres KW - Carbon nanotubes KW - Interfacial strength KW - Debonding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550052 DO - https://doi.org/10.1016/j.compscitech.2022.109327 SN - 0266-3538 VL - 221 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-55005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, E. S. S. A1 - Silva, B. L. A1 - Melo, J. D. D. A1 - Kalinka, Gerhard A1 - Barbosa, A. P. C. T1 - Microscale evaluation of epoxy matrix composites containing thermoplastic healing agent N2 - Among the strategies to produce healable thermosetting systems is their modification by the addition of thermoplastic particles. This work investigates the influence of poly(ethylene-co-methacrylic acid) (EMAA) on fibermatrix interfacial properties of a glass fiber reinforced epoxy matrix composite. Epoxy-EMAA interactions were evaluated using differential scanning calorimetry (DSC) and infrared spectroscopy. The effects of EMAA on the epoxy network formation were evidenced by changes in glass transition temperature, cure kinetics and alteration of chemical groups during cure. Interfacial shear strength (IFSS) measurements obtained by single fiber pull-out tests indicate similar interfacial properties for pure and EMAA modified epoxy. Additionally, the potential for self-healing ability of an EMAA modified epoxy was demonstrated. However, IFSS after a healing cycle for the EMAA modified epoxy was lower as compared to the pure epoxy, because of the lower fiber-EMAA interfacial shear strength. So, thermoplastic healing agents has not only to fill cracks in the matrix material, but also have to be optimized regarding its interface properties to the reinforcing fibers. KW - Interfacial strength KW - Fiber/matrix bond KW - Self-healing KW - Polymer-matrix composites (PMC) PY - 2022 DO - https://doi.org/10.1016/j.compscitech.2022.109843 SN - 0266-3538 VL - 232 SP - 1 EP - 9 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-56379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M. A1 - Malolakis, I. A1 - Kalinka, Gerhard A1 - Deubener, J. A1 - Chakraborty, S. A1 - Meiners, D. T1 - Re-use potential of carbon fibre fabric recovered from infusible thermoplastic CFRPs in 2nd generation thermosetting-matrix composites N2 - The research presented here attempts to assess the potential for re-using carbon fibre (CF) fabrics recovered from recycling infusible acrylic thermoplastic carbon fibre reinforced polymer composites (CFRPs) in a universal manner, i.e. by combining with a wide variety of matrices to manufacture 2nd generation composite laminates by resin infusion. The 2nd generation composites have been compared in terms of bulk and interfacial properties against counteparts processed with virgin carbon fibre fabric infused with the same matrices. Generally, an increase in damping (tanδ) was observed in all 2nd generation composites, which can be attributed to a residual thin thermoplastic layer present on the recovered fibres. The interfacial adhesion of the 2nd generation Composites was investigated by shear tests and scanning electron micsoscopy, and also appears to be less influenced by the type of matrix. KW - Composite recycling KW - Thermoplastic matrix KW - Thermosetting resin KW - Fibre/matrix bonding PY - 2021 DO - https://doi.org/10.1016/j.coco.2021.100974 VL - 28 SP - 100974 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-53639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plichta, T. A1 - Sirjovona, V. A1 - Zvonek, M. A1 - Kalinka, Gerhard A1 - Cech, V. T1 - The Adhesion of Plasma Nanocoatings Controls the Shear Properties of GF/Polyester Composite N2 - High-performance fibre-reinforced polymer composites are important construction materials based not only on the specific properties of the reinforcing fibres and the flexible polymer Matrix but also on the compatible properties of the composite interphase. First, oxygen-free (a-CSi:H) and oxygen-binding (a-CSiO:H) plasma nanocoatings of different mechanical and tribological properties were deposited on planar silicon dioxide substrates that closely mimic E-glass. The nanoscratch test was used to characterize the nanocoating adhesion expressed in terms of critical normal load and work of adhesion. Next, the same nanocoatings were deposited on E-glass fibres, which were used as reinforcements in the polyester composite to affect its interphase properties. The shear properties of the polymer composite were characterized by macro- and micromechanical tests, namely a short beam shear test to determine the short-beam strength and a single fibre push-out test to determine the interfacial shear strength. The results of the polymer composites showed a strong correlation between the short-beam strength and the interfacial shear strength, proving that both tests are sensitive to changes in fibre-matrix adhesion due to different surface modifications of glass fibres (GF). Finally, a strong correlation between the shear properties of the GF/polyester composite and the adhesion of the plasma nanocoating expressed through the work of adhesion was demonstrated. Thus, increasing the work of adhesion of plasma nanocoatings from 0.8 to 1.5 mJ·m−2 increased the short-beam strength from 23.1 to 45.2 MPa. The results confirmed that the work of adhesion is a more suitable parameter in characterising the level of nanocoating adhesion in comparison with the critical normal load. KW - Mechanical properties KW - Plasma nanocoatings KW - Glass fibre KW - Polymer composite KW - Short-beam strength KW - Interfacial shear strength KW - Work of adhesion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521844 DO - https://doi.org/10.3390/polym13040593 VL - 13 IS - 4 SP - 593 PB - MDPI CY - Basel,Schweiz AN - OPUS4-52184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Current and future technological advancement in polymer matrix composites enabled through fundamental discoveries N2 - This presentation is a summary of the work from the past 20 years’ development of PMC-testing at the BAM-FB 5.3 with respect to safety-relevant design of advanced light weight structures in aircraft, wind turbine and automotive applications. The talk begins with wood as an example from nature, and emphasizes that load case, fiber architectural design and the production process and quality have to go hand in hand to generate an advanced light weight structure. Since PMC-relevant basic findings of mankind span across hundreds of years, high-performance composite applications today are based more on long term experiences than on breakthrough inventions of modern days. In the second part of the talk, future plans and projects of FB-5.3 are presented, specifically addressing H2-safety, circular economy, recycling by design and digitalization of PMC-technologies. T2 - Abteilungsseminar CY - Online meeting DA - 07.09.2021 KW - Polymer Matrix Composites KW - Thermo mechanical fatigue PY - 2021 AN - OPUS4-54150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M. A1 - Manolakis, I. A1 - Chatterjee, A. A1 - Kalinka, Gerhard A1 - Deubener, J. A1 - Pfnür, H. A1 - Chakraborty, S. A1 - Meiners, D. T1 - Reducing the raw material usage for room temperature infusible and polymerisable thermoplastic CFRPs through reuse of recycled waste matrix material N2 - In this work, a closed loop recycling process is investigated, which allows polymerised bulk thermoplastic matrix (Elium 150) from production waste (also referred to as recyclate) to be reused as additive in composite manufacturing by vacuum assisted resin infusion (VARI) of virgin Elium 150 monomer. It is shown that this process can save up to 7.5 wt% of virgin material usage in each processing cycle. At the same time, the thermal stability and stiffness of the composite increases with the proportion of recyclate introduced. Contemporarily, the shear and bending properties have also been observed to improve. Gel permeation chromatography (GPC) showed that the changes observed are due to an increase in molecular weight with the recyclate content. In particular, a correlation between the molecular weight and the shear properties of the composite was discovered using single fibre push-out tests. KW - Mechanical properties KW - Recycling KW - Carbon fibres KW - Fibre/matrix bond PY - 2021 DO - https://doi.org/10.1016/j.compositesb.2021.108877 SN - 1359-8368 VL - 216 SP - 108877 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-52711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taketa, I. A1 - Kalinka, Gerhard A1 - Gorbatikh, L. A1 - Lomov, S. A1 - Verpoest, I. T1 - Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices N2 - The longitudinal and transverse strength of three unidirectional thermoplastic prepreg systems: carbon fiber/polypropylene (CF/PP), polyamide 6 (CF/PA6), and polyphenylene sulfide (CF/PPS) are studied and analytical formulas are proposed for the estimation of matrix and fiber/matrix interface properties from composites properties. Since the matrices are semi-crystalline thermoplastics, the influence of cooling rate on the strength is statistically evaluated. While the 0° tensile strength is found to be independent of the cooling rate, the 90° tensile strength is strongly influenced by the matrix type and cooling rate. The matrix modulus increases as the cooling rate is decreased; the degree of crystallinity also increases. The matrix residual stress, interfacial shear strength, and mode II interlaminar fracture toughness are also found to depend on the cooling rate, with the trends different for different matrices. KW - Matrix residual stress KW - Thermoplastic prepreg KW - Unidirectional composites KW - Cooling rate KW - Interfacial strength PY - 2020 DO - https://doi.org/10.1080/09243046.2019.1651083 SN - 0924-3046 SN - 1568-5519 N1 - Die originale japanische Version des Artikels erschien in: Journal of the Japan Society for Composite Materials, Jg. 44, Nr. 4 (2018), S. 123-128. - The original Japanese version of the article was published in: Journal of the Japan Society for Composite Materials, vol. 44, no. 4 (2018), pp. 123-128. VL - 29 IS - 1 SP - 101 EP - 113 PB - Taylor & Francis CY - London AN - OPUS4-45433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüders, C. A1 - Kalinka, Gerhard A1 - Li, Wei A1 - Sinapius, M. A1 - Wille, T. T1 - Experimental and numerical multiscale approach to thermally cycled FRP N2 - Due to the different thermal expansion of the constituent materials, cyclic thermal loading of FRP induces alternating stresses in the material at two scales: at the micro scale (level of fibre–matrix-interaction) and at the macro scale (level of the multidirectional laminate). Especially the micro scale effect is not comprehensively investigated yet. Additionally, computational investigations mostly neglect this effect due to the homogenous modelling of the composite material. As this effect is assumed to significantly contribute to the fatigue of FRP at thermal loads, the present paper suggests an experimental and numerical multiscale approach including Experiments at the different involved material scales to separately observe the effects acting at these scales. The approach also includes numerical modelling for each scale to complement the knowledge gained from the Experiments and to create a basis for the consideration of the micro effect even in macroscopic fatigue models treating homogeneous modelled composites. The main focus of the contribution is to bring the overall Approach up for discussion, rather than to present the multiscale modelling details. KW - Fatigue KW - Thermal cycling KW - Fibre reinforced plastic KW - Cryogenic KW - Carbon Fibre KW - Epoxy Resin PY - 2020 DO - https://doi.org/10.1016/j.compstruct.2020.112303 SN - 0263-8223 VL - 244 SP - 112303 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-50844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten T1 - Deformation behavior of alumina and zirconia springs at room temperature N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic springs and allow for innovative solutions. A recently proposed application involves ceramic springs with metallized surfaces as capacitive force sensor. A strictly linear stress-strain characteristic of the spring is a precondition for such a sensor. Helical ceramic springs with rectangular cross-section have been produced from sintered hollow cylinders. Alumina, ATZ, Y-TZP, and Ce-TZP springs with identical dimensions were characterized and compared regarding deformation behavior. Spring deformation was investigated under various load scenarios. Dynamic compression was performed with deformation speeds from 0.3 to 30 mm/min. Spring constants of alumina springs are strain rate independent. By contrast, Y-TZP spring constant increases by approximately 3 % within the experimental framework. A high-precision test facility was developed to characterize spring displacement in nm range under static tensile load over long periods of time. Spring elongation with asymptotic course was observed for zirconia containing materials at room temperature. This effect is particularly strong in the case of Y-TZP. Up to 0.3 % time-dependent elongation was measured after 24 h under constant load. Deformation is completely reversible after unloading. Alumina springs do not show any time-dependent deformation under identical test conditions. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs at room temperature was proved in both test series. It is supposed, that pseudo-elasticity caused by stress-induced phase transformation from tetragonal to monoclinic is responsible for this special behavior of TZP springs. T2 - D-A-CH Keramiktagung CY - Leoben, Austria DA - 06.05.2019 KW - Phase transformation KW - Ceramic spring KW - Force-distance diagram KW - Deformation behavior PY - 2019 AN - OPUS4-48026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreier, Andy T1 - Distributed Brillouin sensing in polymer optical fibers N2 - A brief overview about the results obtained within the BAM PhD framwork. T2 - Meeting of the Terahertz-Photonics-Group at IHF, Technische Universität Braunschweig CY - Braunschweig, Germany DA - 17.07.2019 KW - Brillouin KW - Distributed sensing KW - Polymer optical fibre PY - 2019 AN - OPUS4-48501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palantöken, Sinam A1 - Bethke, K. A1 - Zivanovic, V. A1 - Kneipp, Janina A1 - Rademann, Klaus A1 - Kalinka, Gerhard T1 - Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties N2 - Biopolymers are very efficient for significant applications ranging from tissue engineering, biological devices to water purification. There is a tremendous potential value of cellulose because of ist being the most abundant biopolymer on earth, swellability, and functional groups to be modified. A novel, highly efficient route for the fabrication of mechanically stable and natural hydrogels is described in which cellulose and glycine are dissolved in an alkaline solution of NaOH and neutralized in an acidic solution. The dissolving temperature and the glycine amount are essential parameters for the self-assembly of cellulose chains and for Tuning the morphology and the aggregate structures of the resulting hydrogels. Glycine plays the role of a physical crosslinker based on the Information obtained from FTIR and Raman spectra. Among the prepared set of hydrogels, CL5Gly30 hydrogels have the highest capacity to absorb water. The prepared CL5Gly30 gels can absorb up to seven times their dry weight due to its porous 3-D network structure. CL5Gly10 hydrogel exhibits 80% deformation under 21 N force executed. The method developed in this article can contribute to the application of heavy metal adsorption in aqueous solutions for water purification and waste management. KW - Biopolymer KW - Cellulose KW - Hydrogel KW - Natural KW - Synthesis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486845 DO - https://doi.org/10.1002/APP.48380 SN - 1097-4628 SN - 0021-8995 VL - 136 SP - 48380, 1 EP - 11 PB - Wiley CY - USA AN - OPUS4-48684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited talk (Dr. Jean-Francois Lutz) Institut Charles Sadron CY - Strasbourg, France DA - 26.01.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Deutsche Physikalische Gesellschaft (DPG)-Frühjahrtagung 2018 CY - Berlin, Germany DA - 11.03.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Dendritic Amphiphiles as Macromolecular Mimetics of Cellular Constituents N2 - One of the holy grails in chemistry is to reconstruct some of life’s functions within synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) - Dpt. des Matériaux Organiques (DMO), invited talk by Prof. Laurent Douce CY - Strasbourg, France DA - 09.02.2018 KW - Dendritic amphiphile KW - Antibacterial properties KW - Vesicles KW - Microfluidic PY - 2018 AN - OPUS4-44146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Controlled self-assembly of Janus dendrimers via microfluidics N2 - Vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) -5 as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of end groups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over self assembly/mixing and thus over size, morphology and size distribution of the vesicles. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous production of soft nanoparticles. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - Invited talk Leibniz Institute of Polymer Research Dresden (IPF) CY - Dresden, Germany DA - 08.03.2018 KW - Vesicles KW - Janus dendrimers KW - Microfluidics PY - 2018 AN - OPUS4-44441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Building macromolecular mimetics of cell constituents N2 - One of the holy grails in chemistry is to reconstitute some of life’s functions with or within synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Chemiedozententagung 2018 CY - Jena, Germany DA - 05.03.2018 KW - UCST-type polymers KW - Bioinspiration KW - Thermoresponsive polymers PY - 2018 AN - OPUS4-44442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Building macromolecular mimetics of cell constituents N2 - One of the holy grails in chemistry is to reconstruct some of life’s functions with synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Makromolekulares Kolloquium Freiburg 2018 CY - Freiburg in Breisgau, Germany DA - 21.02.2018 KW - Thermoresponsive polymers KW - Cytoskeleton mimic PY - 2018 AN - OPUS4-44296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Camp, N. V. A1 - Kalinka, Gerhard A1 - Bergeler, J. T1 - Light-cured polymer electrodes for non-invasive EEG recordings N2 - We invented the first non-metallic, self-adhesive and dry biosignalling electrode. The PEDOT polymer electrode changes its aggregate state and conductivity by a light curing procedure. The electrode can be applied as a gel underneath hair without shaving. With the aid of blue light, the electrode can be hardened within a few seconds at the desired location on the scalp. The cured polymer electrode is highly conductive and can be applied on a very small location. Unlike other EEG electrodes, our electrode does not lose conductivity upon drying. Furthermore, our electrode strongly bonds to Skin and does not require any additional adhesive. Short circuits due to an outflow of gel are prevented with this technique. Therefore, the PEDOT polymer electrode is extremely well suited for applications that, up to now, have been challenging, such as non-invasive EEG recordings from awake and freely moving animals, EEG recordings from preterm babies in the neonatal intensive care unit or long-term recordings in the case of sleep monitoring or epilepsy diagnostics. We addressed two technical questions in this work. First, is the EEG recorded with polymer electrodes comparable to a standard EEG? Second, is it possible to record full-band EEGs with our electrodes? KW - Light curing KW - Polymer KW - Electric conductivity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459803 UR - https://rdcu.be/7aPD DO - https://doi.org/10.1038/s41598-018-32304-6 SN - 2045-2322 VL - 8 IS - 14041 SP - 1 EP - 9 PB - Nature Publishing Group CY - London AN - OPUS4-45980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhandarov, S. A1 - Mäder, E. A1 - Kalinka, Gerhard A1 - Scheffler, C. A1 - Poitzsch, C. A1 - Fliescher, S. T1 - Investigation of interfacial strength parameters in polymer matrix composites: Compatibility and reproducibility N2 - Effects of various geometrical and physical factors, as well as the method of data reduction (analysis of experimental forceedisplacement curves) on the values of local interfacial strength parameters (local IFSS, td, and critical energy release rate, Gic) determined by means of a single fiber pull-out test are discussed. Experimental results of our pull-out tests on several fiberepolymer matrix systems showed that td and Gic weakly depended on geometrical factors. However, the pull-out test appeared to be sensitive to the conditions of specimen formation and testing, such as changing the nature of the contacting surfaces (fiber sizing) and the fiber pull-out rate. Of several methods of td and Gic Determination from a forceedisplacement curve, the most reliable and reproducible one is the approach based on the values of the maximum force recorded in a pull-out test and the interfacial frictional force immediately after fiber debonding. KW - Interface KW - Interfacial shear strength KW - Pull-out composite materials KW - Polymer matrix composites KW - Critical energy release rate KW - Geometrical factors PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-460918 DO - https://doi.org/10.1016/j.aiepr.2018.06.002 SN - 2542-5048 VL - 1 IS - 1 SP - 82 EP - 92 PB - Elsevier CY - Amsterdam AN - OPUS4-46091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalinka, Gerhard A1 - Sahin, M. A1 - Schlögl, S. A1 - Wang, J. A1 - Kaynak, B. A1 - Mühlbacher, I. A1 - Ziegler, W. A1 - Kern, W. A1 - Grützmacher, H. T1 - Tailoring the interfaces in glass fiber-reinforced photopolymer composites N2 - The present work provides a comparative study on the interface and adhesion properties of surface modified single glass fibers embedded in an acrylate matrix. To facilitate a covalent bonding at the fibermatrix interface, the fibers are functionalized with selected organosilanes that comprise either passive (unsaturated C¼C bonds of methacrylate moieties) or photoactive functionalities (photocleavable bis(acyl)phosphane oxide groups). Immobilization of the functional silanes is carried out by a classic silanization reaction involving a condensation reaction across the surface hydroxyl groups of the inorganic glass fibers. The change of the physico-chemical properties of the fibers due to desizing and subsequent surface modification is monitored by X-ray photoelectron spectroscopy and zeta potential measurements. In addition, scanning electron microscopy is used to follow the changes in surface morphology. After the modification step, the desized and modified single fibers are embedded in a photocurable acrylate resin formulation. By performing single fiber pull-out tests, maximum pull-out force, friction strength and apparent interfacial shear strength are determined as a function of the coupled silanes. The results reveal that the attached organosilanes lead to a significant increase in adhesion strength, whilst the performance of the photo-cleavable organosilane is superior to the passive methacryl-functional derivative. KW - Photocleavable organosilanes KW - Fiber-matrix interface KW - Photopolymer composites KW - Single fiber pull-out test KW - Surface modification PY - 2018 DO - https://doi.org/10.1016/j.polymer.2018.03.020 SN - 0032-3861 VL - 141 SP - 221 EP - 231 PB - Elsevier Ltd. CY - New York AN - OPUS4-44784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten T1 - Helical zirconia (TZP) springs manufacturing and testing under mechanical and thermal load N2 - Helical springs with a rectangular cross-section have been machined from sintered and grinded hollow cylinders with high geometrical precision and good reproducibility. Such springs made from tetragonal zirconia polycrystal (TZP) ceramic show excellent edge quality because of high fracture toughness and bending strength of the starting material. Hence, springs with desired geometric dimension and tailored spring constant can be manufactured for highly demanding applications at high temperatures and in harsh environments. Prior to any practical use, application limits of springs under mechanical and thermal load have to be analyzed. Therefore, different displacement experiments were carried out on the helical TZP springs. - Dynamic displacement tests at various temperatures from -15°C to +60°C using a piezo actor to load/unload springs with frequencies between 1 and 40 Hz: Springs remained undamaged and the spring constants were not altered, even after more than one million cycles of compression loading. - Long-time displacement measurements under static tensile loading at room temperature with a high-precision interferometer test facility: Significant spring elongation under constant strain was surprisingly proved over a period of many hours already at room temperature. - Creeping experiments for 48 h under static compression load at different temperatures up to 1000 °C: After cooling down and load removing no permanent length reduction of springs was observed for test temperatures up to 700 °C. However, reshaping of TZP springs by plastic deformation is possible at higher temperatures and opens up additional possibilities for spring design and manufacturing. T2 - German Ceramic Society, Annual Meeting 2018 CY - München, Germany DA - 09.04.2018 KW - Ceramic springs KW - Manufacturing KW - Mechanical and thermal testing PY - 2018 AN - OPUS4-44728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, T. M. A1 - Braune, C. A1 - Kalinka, Gerhard A1 - Schulz-Kornas, E. T1 - Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies N2 - Tooth wear induced by abrasive particles is a key process affecting dental function and life expectancy in mammals. Abrasive particles may be plant endogenous opal phytoliths, exogene wind-blown quartz dust or rain borne mineral particles ingested by mammals. Nano-indentation hardness of abrasive particles and dental tissues is a significant yet not fully established parameter of this tribological system. We provide consistent nano-indentation hardness data for some of the major antagonists in the dental tribosystem (tooth enamel, tooth dentine and opaline phytoliths from silica controlled cultivation). All indentation data were gathered from native tissues under stable and controlled conditions and thus maximize comparability to natural systems. Here we show that native (hydrated) wild boar enamel exceeds any hardness measures known for dry herbivore tooth enamel by at least 3 GPa. The native tooth enamel is not necessarily softer then environmental quartz grit, although there is little overlap. The native hardness of the tooth enamel exceeds that of any silica phytolith hardness recently published. Further, we find that native reed phytoliths equal native suine dentine in hardness, but does not exceed native suine enamel. We also find that native suine enamel is significantly harder than dry enamel and dry phytoliths are harder than native phytoliths. Our data challenge the claim that the culprit of tooth wear may be the food we chew, but suggest instead that wear may relates more to exogenous than endogenous abrasives. KW - Phytolith KW - Indentation hardness KW - Enamel KW - Dentine KW - Tooth wear PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451417 UR - http://zoobank.org/5C7DBB2B-B27D-4CE6-9656-33C4A0DA0F39 DO - https://doi.org/10.3897/evolsyst.2.22678 VL - 2 SP - 55 EP - 63 PB - PENSOFT CY - USA AN - OPUS4-45141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper Critical Solution Temperature (UCST)-type Thermoresponsive Polymers from Hydrogen-Bonding Monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications,but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or Ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Bordeaux Polymer Conference BPC 2018 CY - Bodeaux, France DA - 28.05.2018 KW - Acrylamide KW - Thermoresponsive polymer KW - UCST-type polymer KW - H-bonds KW - Diaminopyridine PY - 2018 AN - OPUS4-45155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from monomers with hydrogen-bonding interactions N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and/or 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited Talk (Prof. Christine Papadakis) Technische Universität München - Soft Matter Physics CY - Munich, Germany DA - 03.07.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-45423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Séminaire Laboratoire de Chimie des Polymères (LCP), UPMC, Paris CY - Paris, France DA - 28.09.2017 KW - UCST-type polymers KW - H-bonding monomers PY - 2017 AN - OPUS4-42478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Controlled self-assembly of Janus dendrimers via microfluidics N2 - Vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) -5 as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of end groups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of the supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over mixing and thus over size, morphology and size distribution. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous synthesis. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - 11th Young Scientists' Workshop, Fraunhofer ICT-IMM CY - Mainz, Germany DA - 27.09.2017 KW - Vesicles KW - Dendrimersomes KW - Micromixer PY - 2017 AN - OPUS4-42479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - UCT&IOCB Theoretical Chemistry Seminars CY - University of Chemistry and Technology, Department of Physical Chemistry, Prague, Czech Republic DA - 24.11.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - 2,6-diaminopyridine PY - 2017 AN - OPUS4-43129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Luman A1 - de Greef, Nils A1 - Kalinka, Gerhard A1 - Van Bilzen, Bart A1 - Locquet, Jean-Pierre A1 - Verpoest, Ignaas A1 - Won Seo, Jin T1 - Carbon nanotube-grafted carbon fiber polymer composites: Damage characterization on the micro scale N2 - Multiwall carbon nanotubes (CNTs) e carbon fibers (CFs)hybrid materials were produced by directly growing CNTs on CFs by means of chemical vapor deposition. For the latter, the oxidative dehydrogenation reaction of C2H2 and CO2 was applied, which allows growing CNTs without damaging the CF surface. Uni-directional nano-engineered carbon fiber reinforced composites (nFRCs) were fabricated by impregnating these hybrid materials with epoxy. The nFRCs subjected to single fiber push-out tests revealed a decrease of the interfacial shear strength (IFSS) of about 36% compared to the carbon fiber composites without CNTs. By means of transverse three-point bending tests performed on pre-notched composite beams inside a scanning electron microscope, the fracturing behavior parallel to the fibers was studied in-situ. The nFRCs showed significantly reduced fiber/matrix debonding while CNTs pull-out, CNTs bridging as well as matrix failure occurred. These results demonstrate that the presence of CNTs in nFRCs affects the stress distribution and consequently the damage Initiation as well as the damage propagation. The presence of CNTs suppresses the stress concentration at the fiber/Matrix interface and reduces the debonding of CFs from the matrix. However, our results indicate that the stress concentration shifts towards the CNTs' ends/matrix interface and causes promoted matrix failure leading to lower IFSS. KW - Carbon fibres nanotubes interface PY - 2017 DO - https://doi.org/10.1016/j.compositesb.2017.06.004 SN - 1359-8368 SN - 1879-1069 VL - 126 SP - 202 EP - 210 PB - Elsevier CY - Niederlande AN - OPUS4-42202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Bioorganik 2017 – 26th Symposium "Bioorganic Chemistry" for young researchers CY - Berlin, Germany DA - 20.09.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - 2,6-diaminopyridine KW - Acrylamide PY - 2017 AN - OPUS4-42007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Wachtendorf, Volker T1 - Self-healing silicone rubber for fluorescent partial discharge POF sensors in high-voltage cable accessories N2 - To avoid a catastrophic failure of insulation in high-voltage (HV) applications, a monitoring of partial discharges (PDs) is necessary. Fluorescently labelled polymer optical fibers (F-POF) offer an electrically passive method for PD detection in HV facilities. F-POFs could be embedded in HV cable accessories, which are usually made of silicone rubber. Herein they detect the light emitted by the PD and convert it into an electrical signal that can be monitored. Due to the difficult accessibility of HV cable accessories, a self-healing silicone rubber with prolonged service life after PD detection represents an attractive material design for HV accessories. With this contribution, we would like to present and discuss the possibilities of combining self-healing materials with POF-based sensors for PD detection in HV applications. T2 - 26th International Conference on Plastic Optical Fibres CY - Aveiro, Portugal DA - 13.09.2017 KW - Fluorescent polymer optical fibres KW - Partial discharge detection KW - High voltage cable accessories KW - Self-healing KW - Silicone rubber PY - 2017 SN - 978-989-97345-2-4 SP - paper 16, 1 EP - 5 AN - OPUS4-42510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena T1 - Self-healing silicone rubber for F-POF partial discharge sensors in HV cable accessories N2 - To avoid a catastrophic failure of insulation in high-voltage (HV) applications, a monitoring of partial discharges (PD) is necessary. Fluorescently labelled polymer optical fibres (F-POF) offer an electrically passive method for PD detection in HV facilities. F-POF could be embedded into HV cable insulation material, which are usually made of silicone rubber. Due to the difficult accessibility of HV cable accessories, a self-healing silicone rubber, based on incorporated capsules, with prolonged service life after PD detection represents an attractive material design for HV electrical insulation. T2 - 26th International Conference on Plastic Optical Fibres CY - Aveiro, Portugal DA - 13.09.2017 KW - Fluorescent polymer optical fibres KW - Partial discharge detection KW - High voltage cable accessories KW - Self-healing KW - Silicone rubber PY - 2017 AN - OPUS4-42511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz T1 - Improving polymer matrix additives for composite structures: a focus on boehmite N2 - The aims of the Research Unit „Acting Principles of Nano-Scaled Matrix Additives for Composite Structures“ (DFG FOR 2021) are based on different synergetic pathways. Challenges are to achieve an improved damage tolerance combined with unchanged processability and a proof of the nano-based effect from molecular scale up to structural level. First of all, a comprehensive understanding of the acting mechanisms of nano-scaled ceramic additives onto polymer matrices of continuous fibre reinforced polymer composites with respect to improved matrix dominated properties is in focus. To proof of the nanoscopic and microscopic effects up to structural level; experimental investigations start on the functional correlation between the particle properties and the resulting properties of the epoxy as suspension and in the solid state. This includes tests for the resulting composite structures as well. Along the entire process chain different multi-scale simulations are performed from molecular modelling up to the macroscopic, structural level. The combination of experimental investigations and simulation methods enables a holistic understanding of the acting principles and basic mechanisms. Specialized techniques based on Scanning Force Microscopy are the basis of our analysis of physicochemical properties of the boehmite nanoparticles and their polymer environment. A surface map of mechanical properties as an input for simulations facilitate a deeper understanding of such composites across all scales. This enables us to understand the macroscopic structure-property relationship and to predict failure mechanisms as well as routes for optimization. T2 - 92nd DKG annual meeting and symposium on high performance ceramics CY - Berlin, Germany DA - 19.03.2017 KW - Boehmite nanoparticle KW - Intermodulation AFM KW - Composite structures KW - Pull-out test KW - Thermoset KW - Crack propagation energy PY - 2017 AN - OPUS4-39519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Upper Critical Solution Temperature (UCST)-type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers that phase separate from solution upon cooling present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We want to present our latest results on the copolymer poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) that present a UCST in water as well as on two homopolymers based on an acrylamide derivative of 2,6-diaminopyridine, namely poly(N-(6-aminopyridin-2-yl)acrylamide) (PNAPAAm) and poly(N-(6-acetamidopyridin-2-yl)acrylamide) (PNAcAPAAm) that show UCST-type thermoresponsiveness in water/alcohol mixtures. Our focus for P(AAm-co-AN)) is its aggregation behaviour above and below its phase transition temperature as the size of thermoresponsive polymeric systems is of prime importance for biomedical applications (as size dependent processes take place in the body) and is linked to the optical properties of a material that matter in materials science. In the case of PNAPAAm and PNAcAPAAm, we focused on the co-solvency/co-non solvency effect on the phase transition temperature in water/alcohol mixture. Indeed, polymers with UCST behavior below 60°C in water/alcohol mixtures are extremely promising for the preparation of “smart” materials for sensing. T2 - Soft smart responsive materials workshop: Fundamentals and applications (SmartCECAM) CY - Mainz, Germany DA - 11.05.2017 KW - Thermoresponsive polymers KW - UCST-type polymers KW - poly(acrylamide-co-acrylonitrile) KW - 2,6-diaminopyridine-based polymers KW - co-solvency in water/acohol mixture PY - 2017 AN - OPUS4-40211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalinka, Gerhard A1 - ElAbshihy, K. T1 - Circumventing boundary effects while characterizing epoxy/copper interphases using nanoindentation N2 - Characterization of the size and mechanical properties of interphases is essential when designing multicomponent materials. When nanoindentation is used to investigate the size and mechanical properties of an interphase, a common challenge is that the indenter or the stress zone formed around it are often restricted by the reinforcement, making it difficult to distinguish the mechanical property variations caused by the interphase itself from those caused by the boundary effect. In this work, a testing system was developed that allows determining the indent affected zone and accounting for it in the interphase measurements of an epoxy/Cu system. Using finite element analysis, we confirmed the validity of the proposed system. Nanoindentation was used to investigate the Interphase between copper and two different epoxy systems; amine-cured and anhydride-cured. Nanoindentation results showed that a copper layer that is only 10 nm thick still exhibits a constriction effect on the indentations in its vicinity. The amine-cured epoxy did not show any sign of interphase existence using the introduced method. However, a soft interphase with a thickness of ~1.7 μm was measured on theanhydride-cured epoxy. Furthermore, we show that the proposed system can be used to determine the interphase thickness as well as its relative mechanical properties regardless of the indentation depth. This system can be further used for investigating other polymer/metal interphases to better understand the factors influencing them, thus helping engineer the interphase size and properties to enhance composite performance. KW - Interphase KW - Polymer-metal KW - Epoxy KW - Copper KW - Composites KW - Nanoindentation PY - 2017 DO - https://doi.org/10.1080/09276440.2017.1286878 SN - 0927-6440 SN - 1568-5543 VL - 24 IS - 9 SP - 833 EP - 848 PB - Taylor & Francis CY - UK AN - OPUS4-39128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Bioinspired hybrid organic-inorganic copolymers N2 - The demand for high-performance materials has strongly increased over the last decade. One way to improve their performance is to introduce material gradients as found in Nature (for example squid beaks, spider fangs, mussel byssal threads). One path towards the achievement of such material gradients is the synthesis of hybrid (gradient) copolymers, for instance based on silane and organic monomers. Since not all gradient copolymers can be synthesized by utilising the reactivity ratios of the monomers, forced gradients have to be used. However, in order to obtain gradient copolymers at high conversions, living or pseudo-living copolymerizations have to be performed and so far only few hybrid (organic / inorganic) gradient copolymers have been reported. In this contribution we will present the synthesis of a novel organic / inorganic hybrid copolymer via controlled radical polymerization. T2 - 5th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Lisbon, Portugal DA - 06.03.2017 KW - Hybrid organic-inorganic copolymers KW - RAFT polymerization KW - ATRP polymerization PY - 2017 AN - OPUS4-39464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Controlled Self-Assembly of Janus Dendrimers via Microfluidics N2 - Unilamellar vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of endgroups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of the supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over mixing and thus over size, morphology and size distribution. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous synthesis. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - 10th International Dendrimer Symposium CY - Weihai, China DA - 05.08.2017 KW - Micromixers KW - Janus dendrimers KW - Vesicles KW - Self-assembly PY - 2017 AN - OPUS4-41464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -