TY - RPRT A1 - Grunewald, Thomas A1 - Grätz, Rainer T1 - Ermittlung der Zündwahrscheinlichkeit mechanisch erzeugter Schlagfunken in explosionsfähigen Brenngas/Luft-Gemischen - Untersuchung der Werkstoffkombination Stahl/Stahl T1 - Determination of the ignition probability of mechanically generated impact sparks in explosive combustible gas/air mixtures - Investigation of the material combination steel/steel N2 - Geräte für den bestimmungsgemäßen Einsatz in explosionsgefährdeten Bereichen müssen die Anforderungen der europäischen Richtlinie 94/9/EG (Explosionsschutzrichtlinie) erfüllen. Die Erfüllung dieser Anforderungen wird in der EG-Konformitätserklärung des Herstellers dokumentiert. Grundlage für die Bewertung der Konformität ist die Zündgefahrenbewertung, die im Wesentlichen die Identifizierung und Bewertung möglicher Zündquellen beinhaltet. In den der Richtlinie 94/9/EG nach geordneten einschlägigen Normen, z. B. EN 1127-1 und EN 13463-1 ff., sowie in der BGR 104 (Regeln für das Vermeiden der Gefahren durch explosionsfähige Atmosphäre mit Beispielsammlung (Explosionsschutz-Regeln - EX-RL) sind die 13 möglichen Zündquellenarten aufgelistet. Die mechanisch erzeugten Funken stellen hierbei eine von diesen möglichen Zündquellenarten dar. Aussagen über die Zündwirksamkeit und insbesondere Zündwahrscheinlichkeit von mechanisch erzeugten Schlagfunken in Abhängigkeit von der jeweiligen Brenngas/Luft- Atmosphäre bei bekannter kinetischer Schlagenergie lassen sich nach dem bisherigen Kenntnisstand nur sehr vage formulieren. Eine umfangreiche Literaturrecherche auf diesem Gebiet bestätigte diesen Mangel, der sowohl bei der Zündgefahrenbewertung als auch bei der Erstellung und Novellierung des für den Explosionsschutz einschlägigen Regelwerkes problematisch ist. Im Maschinenbau und in der Verfahrenstechnik werden zum Bau u. a. von nichtelektrischen Geräten und Schutzsystemen zur bestimmungsgemäßen Verwendung in explosions-gefährdeten Bereichen häufig Baustähle verwendet. Daher war es das Ziel der Forschungsarbeit, statistisch gesicherte Werte für die Zündwahrscheinlichkeit von Stahl-Schlagfunken in Abhängigkeit von der kinetischen Schlagenergie und der Mindestzündenergie der verwendeten Brenngas/Luft-Gemische zu ermitteln. Die Untersuchungen zur Entstehung mechanisch erzeugter zündfähiger Schlagfunken erfolgten mit Hilfe von Schlagfunkenmaschinen bei drei kinetischen Schlagenergiewerten. Folgende Ergebnisse wurden für die Referenzbrenngase der IEC-Explosionsgruppen bei unterschiedlichen Gemischzusammensetzungen mit Luft erzielt: 1. Unterhalb der kinetischen Schlagenergie von 3 Nm konnten mit der im Rahmen dieser Untersuchung angewendeten Schlagkinematik und Schlaggeometrie keine zündfähigen mechanisch erzeugten Stahl-Schlagfunken erzeugt werden. 2. Bereits mit einer kinetischen Schlagenergie von 10 Nm konnten einzelne mechanisch erzeugte Stahl-Schlagfunken durch Oxidationsvorgänge des abgetrennten Teilchens zur gefährlichen Zündquelle werden. Die Versuche haben weiterhin gezeigt, dass dies für Brenngasgemische der IEC-Explosionsgruppe IIC (z. B. Acetylen und Wasserstoff) mit Luft mit einer Zündwahrscheinlichkeit im einstelligen Prozentbereich zutrifft. Literaturangaben zufolge können Explosionen aber auch für Brenngasgemische der Explosionsgruppe IIB (z. B. Ethylen) mit Luft nicht sicher ausgeschlossen werden. 3. Mit der vergleichsweise hohen kinetischen Schlagenergie von 190 Nm wurden alle Brenngas/Luft-Gemische unabhängig von einer stattfindenden Oxidation des Teilchens durch einen einzigen Schlagvorgang zur Explosion gebracht. Dabei lag die Zündwahrscheinlichkeit bei 100 % für Brenngasgemische der IEC-Explosionsgruppe IIC mit Luft. Für Brenngasgemische der IEC-Explosionsgruppen IIA (z. B. Propan und Benzindampf) und I (z. B. Methan) mit Luft fiel die Zündwahrscheinlichkeit bis in den einstelligen Prozentbereich ab. Die experimentellen Untersuchungen haben weiter gezeigt, dass die Zündfähigkeit mechanisch erzeugter Funken grundsätzlich von einer Vielzahl von Einflussgrößen abhängig ist. Eine Interpolation der Ergebnisse zwischen den kinetischen Schlagenergien von 10 Nm und 190 Nm ist daher nicht möglich. Für zukünftige Untersuchungen ist deshalb eine Fortführung der Arbeiten u. a. mit weiteren kinetischen Schlagenergien vorgesehen. Diese Ergebnisse können ferner zur Validierung von numerischen Simulationen herangezogen werden. N2 - Equipment intended for use in potentially explosive atmospheres must meet the requirements of the European directive 94/9/EC. The declaration of conformity of the manufacturer testifies that they meet the requirements. The conformity assessment is based on the risk (ignition) assessment which identifies and estimates the ignition sources. The European standards in the area of the directive 94/9/EC (like EN 1127-1, EN 13463-1) describe 13 possible ignition sources. Mechanically generated sparks are one of them. Statements to the ignition effectiveness and especially the ignition probability in case of mechanically generated sparks for a given kinetic impact energy and given explosive gas/air-mixtures are not possible. An extensive literature looking confirms this state. This was and is a problem in making and revising standards. Simple ferritic steel is a common material for the construction of equipment also for non electrical applications intended for use in potentially explosive atmospheres for chemical and mechanical engineering and manufacturing technology. Therefore it was the objective of this study to get some statistical ignition probabilities depending on the kinetic impact energy and the minimum ignition energy of the explosive gas/air-mixture. This study was made with impact testing machines of BAM (Federal Institute of Materials Research and Testing) at three kinetic impact energies. The following results were obtained for all the reference gas/air-mixtures of the IEC-explosion groups (I methane, IIA propane, IIB ethylene, IIC acetylene, hydrogen): 1. It was not possible to generate ignitable mechanically sparks for kinetic impact energies below 3 Nm for the test conditions in this study respectively the impact kinetics and impact geometry of the impact machines. 2. Single mechanically generated particles were able to be a dangerous ignition source through oxidation process at kinetic impact energies of 10 Nm. Furthermore the tests have shown that the ignition probability for explosive gas/air-mixtures of the IEC-explosion group IIC is below 10 %. The literature shows that ignitions of gas/air-mixtures of the IEC-explosion group IIB can not be excluded. 3. By using the relatively high kinetic impact energy of 190 Nm the tests have shown that it is possible to ignite all explosive gas/air-mixtures of the IEC-explosion groups by a single impact independent of an oxidation process. The ignition probability is 100 % in case of explosive gas/air-mixtures of the IEC-explosion group IIC. In case of the group IIA and I the ignition probability drops to below 10 %. The tests have further shown that the ignition probability depends on a multitude of parameters. An interpolation of the results between the kinetic impact energies of 10 Nm and 190 Nm is not possible. Future studies will include more tests with other kinetic impact energies. The results of the tests can be used for the validation of numeric simulations. T3 - BAM Forschungsberichtreihe - 279 KW - Nichtelektrische Funken KW - Mechanisch erzeugte Funken KW - Schlagfunken KW - Funken KW - Partikel KW - Schlagenergie KW - Kinetische Schlagenergie KW - Schlagfunkenmaschine KW - Reibfunken KW - Heiße Oberflächen KW - Reibwärme KW - Zündwahrscheinlichkeit KW - Zündgefahrenbewertung KW - Zündwirksamkeit KW - Mechanically generated sparks KW - Non electrical sparks KW - Impact sparks KW - Sparks KW - Particle KW - Impact energy KW - Kinetic energy KW - Impact test machine KW - Grinding sparks KW - Hot surface KW - Grinding energy KW - Ignition probability KW - Risk assessment KW - Ignition effectiveness PY - 2007 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1727 SN - 978-3-9811655-1-7 SN - 0938-5533 VL - 279 SP - 1 EP - 54 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-172 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grunewald, Thomas T1 - Nichtelektrischer Explosionsschutz - Zündgefahren durch Funken - Grundlagen und Maßnahmen zum Explosionsschutz N2 - Hersteller von Geräten für den bestimmungsgemäßen Gebrauch in explosionsfähigen Bereichen müssen, wenn sie unter die Richtlinie 2014/34/EU fallen, für das Inverkehrbringen in EU-Mitgliedsstaaten eine Konformitätsbewertung durchführen. Dazu gehört eine Zündgefahrenbewertung, bei der auch nichtelektrische Zündquellen betrachtet werden müssen, zu denen die mechanischen Schlagvorgänge gehören. Bei dieser Zündquellenart kommt es infolge eines Schlages und/oder Reibens eines Bauteils auf ein anderes zu einer Energieumwandlung. Dadurch kommt es zu einer Temperaturerhöhung an der Kontaktstelle sowie unter Umständen zu einem Abtrennvorgang kleiner Partikel erhöhter Temperatur. Sowohl die heißen Reibflächen als auch die abgetrennten Partikel stellen potentielle Zündquellen explosionsfähiger Atmosphären dar. Edelstahl ist für Geräte für die Verwendung zum bestimmungsgemäßen Gebrauch im explosionsgefährdeten Bereich insbesondere in der Chemie ein wichtiger Konstruktionswerkstoff. Die Ergebnisse des Forschungsprojektes "Entwicklung normativer Anforderungen an explosionsgeschützte nichtelektrische Geräte resultierend aus der Zündfähigkeit mechanisch erzeugter Schlagfunken (NAMES)" zeigen, dass Schlagvorgänge mit Edelstählen eine erhebliche Zündgefahr von explosionsfähigen Brenngasgemischen darstellen können. Dabei bestehen jedoch mitunter deutliche Unterschiede zwischen den verschiedenen Brenngasgemischen. Besonders hohe Zündwahrscheinlichkeiten konnten bei Brenngasgemischen mit Brenngasen der IEC-Explosionsgruppe IIC beobachtet werden, die Acetylen bzw. Wasserstoff als Brenngas enthielten. Schläge im Wasserstoff/Luft-Gemisch waren dabei jedoch bedeutend zündwirksamer. In diesem Gasgemisch konnte bei niedrigen maximalen Schlagenergien bis 60 J sogar eine mitunter höhere relative Zündhäufigkeit beobachtet werden als bei Versuchen mit unlegiertem Baustahl. T2 - Ausbildung zum Explosionsschutzbeauftragten CY - Essen, Germany DA - 21.06.2022 KW - Mechanisch erzeugte Funken KW - Nichtelektrische Funken KW - Nichtelektrischer Explosionsschutz KW - Mechanischer Explosionsschutz KW - Schlagfunken KW - Schleiffunken KW - Reibfunken KW - Zündgefahrenbewertung KW - Funkenarme Werkzeuge KW - Funkenfreie Werkzeuge PY - 2022 AN - OPUS4-55098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grätz, Rainer T1 - Normung im Bereich des Explosionsschutzes - nicht-elektrisch - T2 - Grundlagen und rechtliche Anforderungen des Explosionsschutzes N2 - Geräte zur Verwendung in explosionsgefährdeten Bereichen fallen unter die europäische Richtlinie 2014/34/EU /1/. Diese ist eine Richtlinie zur Harmonisierung des Handels (Beschaffenheitsrichtlinien) nach Artikel 114 des Vertrages über die Arbeitsweise der Europäischen Union /2/ (früher Artikel 95 EG-Vertrag) und regelt grundlegende Anforderungen an die Sicherheit der entsprechenden Geräte. Die Forderungen der Richtlinien nach Artikel 114 werden durch harmonisierte europäische Normen konkretisiert. Hinsichtlich der grundlegenden Struktur der Normen im nicht-elektrischen Bereich unterscheidet man dabei: A-Normen • Normen zu Grundprinzipien des Explosionsschutzes, wie Gefährdungsbeurteilung und Zündgefahrenbewertung B-Normen • Normen zur Bestimmung sicherheitstechnischer Kenngrößen • Normen für nicht-elektrische Geräte in explosionsgefährdeten Bereichen • Normen zu konstruktiven Explosionsschutzmaßnahmen C-Normen • Normen für spezielle Geräte oder Schutzsysteme, wie Flammendurchschlagsicherungen oder Ventilatoren Von besonderer Bedeutung für nicht-elektrische Geräte sind die Normenreihe DIN EN 13463ff/3/ und die DIN EN ISO 80079-36 /4/ und DIN EN ISO 80079-37 /5/. T2 - DECHEMA-Weiterbildungskurs "Grundlagen und rechtliche Anforderungen des Explosiosschutzes" CY - Frankfurt am Main, Germany DA - 22.11.2017 KW - Normen KW - Explosionsschutz KW - ATEX KW - Konformitätsbewertung KW - Zündgefahrenbewertung PY - 2017 SP - Paper 6, 1 PB - DECHEMA-Forschungsinstitut CY - Frankfurt am Main AN - OPUS4-43226 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grätz, Rainer T1 - Normung im Bereich des Explosionsschutzes - nicht-elektrisch - N2 - Geräte zur Verwendung in explosionsgefährdeten Bereichen fallen unter die europäische Richtlinie 2014/34/EU /1/. Diese ist eine Richtlinie zur Harmonisierung des Handels (Beschaffenheitsrichtlinien) nach Artikel 114 des Vertrages über die Arbeitsweise der Europäischen Union /2/ (früher Artikel 95 EG-Vertrag) und regelt grundlegende Anforderungen an die Sicherheit der entsprechenden Geräte. Die Forderungen der Richtlinien nach Artikel 114 werden durch harmonisierte europäische Normen konkretisiert. Hinsichtlich der grundlegenden Struktur der Normen im nicht-elektrischen Bereich unterscheidet man dabei: • A-Normen o Normen zu Grundprinzipien des Explosionsschutzes, wie Gefährdungsbeurteilung und Zündgefahrenbewertung • B-Normen o Normen zur Bestimmung sicherheitstechnischer Kenngrößen o Normen für nicht-elektrische Geräte in explosionsgefährdeten Bereichen o Normen zu konstruktiven Explosionsschutzmaßnahmen • C-Normen o Normen für spezielle Geräte oder Schutzsysteme, wie Flammendurchschlagsicherungen oder Ventilatoren Von besonderer Bedeutung für nicht-elektrische Geräte sind die Normenreihe DIN EN 13463ff /3/ und die DIN EN ISO 80079-36 /4/ und DIN EN ISO 80079-37 /5/. T2 - DECHEMA-Weiterbildungskurs "Grundlagen und rechtliche Anforderungen des Explosiosschutzes" CY - Frankfurt am Main, Germany DA - 22.11.2017 KW - Explosionsschutz KW - ATEX KW - Konformitätsbewertung KW - Zündgefahrenbewertung KW - Normen PY - 2017 AN - OPUS4-43227 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grätz, Rainer T1 - Grundlagen für die Konformitätsbewertung nichtelektrischer Produkte T2 - 42. Heilbronner Ex-Schutz-Seminar Planen, Errichten und Betreiben von Anlagen in explosionsgefährdeten Betriebsstätten N2 - Beschaffenheitsanforderungen an Produkte, die Explosionsschutzanforderungen zu erfüllen haben, werden in Deutschland durch die 9. Verordnung zum Produktsicherheitsgesetz (9. ProdSV, Maschinenverordnung) /2/ und speziell für atmosphärische Bedingungen in der 11. Verordnung zum Produktsicherheitsgesetz (11. ProdSV, Explosionsschutzverordnung /3/ bis 19.4.2016 bzw. Explosionsschutzprodukteverordnung /4/ ab 20.04.2016) geregelt.Wesentlicher Inhalt dieser Verordnungen und der Europäischen Richtlinie 2014/34/EU sind die Begriffsdefinitionen für Geräte, Schutzsysteme und Komponenten, das System der Konformitätsbewertung und die Konformitätserklärung, sowie die grundlegenden Sicherheits- und Gesundheitsanforderungen. Es gilt dabei das Prinzip der Herstellerverantwortung. Der Hersteller eines Produktes dokumentiert die Erfüllung der Richtlinienanforderungen mit seiner Konformitätserklärung und der Kennzeichnung des Produktes mit dem CE-Zeichen. T2 - 42. Heilbronner Ex-Schutz-Seminar Planen, Errichten und Betreiben von Anlagen in explosionsgefährdeten Betriebsstätten Ex-Schutz mechanischer Geräte CY - Heilbronn, Germany DA - 22.02.2017 KW - Explosionsschutz KW - Konformitätsbewertung KW - ATEX KW - Richtlinie 2014/34/EU KW - Zündgefahrenbewertung PY - 2017 SP - 5-1 EP - 5-63 PB - Technische Akademie Heilbronn e.V. CY - Heilbronn AN - OPUS4-39262 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grätz, Rainer T1 - Grundlagen für die Konformitätsbewertung nichtelektrischer Produkte T2 - 43. Heilbronner Ex-Schutz-Seminar Planen, Errichten und Betreiben von Anlagen in explosionsgefährdeten Betriebsstätten N2 - Beschaffenheitsanforderungen an Produkte, die Explosionsschutzanforderungen zu erfüllen haben, werden in Deutschland durch die 9. Verordnung zum Produktsicherheitsgesetz (9. ProdSV, Maschinenverordnung) und speziell für atmosphärische Bedingungen in der 11. Verordnung zum Produktsicherheitsgesetz (11. ProdSV, Explosionsschutzverordnung bis 19.4.2016 bzw. Explosionsschutzprodukteverordnung ab 20.04.2016) geregelt. Wesentlicher Inhalt dieser Verordnungen und der Europäischen Richtlinie 2014/34/EU sind die Begriffsdefinitionen für Geräte, Schutzsysteme und Komponenten, das System der Konformitätsbewertung und die Konformitätserklärung, sowie die grundlegenden Sicherheits- und Gesundheitsanforderungen. Es gilt dabei das Prinzip der Herstellerverantwortung. Der Hersteller eines Produktes dokumentiert die Erfüllung der Richtlinienanforderungen mit seiner Konformitätserklärung und der Kennzeichnung des Produktes mit dem CE-Zeichen. T2 - 43. Heilbronner Ex-Schutz-Seminare Planen, Errichten und Betreiben elektrischer Anlagen in explosionsgefährdeten Betriebsstätten CY - Heilbronn, Germany DA - 20.02.2018 KW - Explosionsschutz KW - Konformitätsbewertung KW - ATEX KW - Richtlinie 2014/34/EU KW - Zündgefahrenbewertung PY - 2018 SP - Paper M05, 1 EP - 58 AN - OPUS4-44287 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -