TY - CONF A1 - Marotzke, Christian A1 - Kalinka, Gerhard ED - Zachariev, G. T1 - Microscopical Failure Processes in Fiber Reinforced Polymers - Mechanical Aspects of the Adhesion between Fiber and Matrix T2 - 11th International Conference on Mechanics and Technology of Composite Materials CY - Sofia, Bulgaria DA - 2006-10-02 KW - Composite materials KW - Failure process KW - Adhesion PY - 2006 SP - 37 EP - 42 PB - Bulgarian Academy of Sciences CY - Sofia AN - OPUS4-14027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, K.K.C. A1 - Kalinka, Gerhard A1 - Tran, M.Q. A1 - Polyakova, N.V. A1 - Bismarck, A. T1 - Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers N2 - The interaction between direct fluorinated carbon fibres and various fluoropolymers (ethylene-chlorotrifluoroethylene, poly vinylidene fluoride, fluorinated ethylene propylene copolymer and tetrafluoroethylene-perfluoro alkoxy vinyl ether copolymer) was studied by means of direct wetting measurements between fibres and the polymer melts and single fibre pull-out tests. The results of both techniques allow the adhesion behaviour between the fibres and the matrices to be predicted. The results obtained show that a low degree of surface fluorination of carbon fibres leads to an improved wettability between the fibres and fluoropolymer melts and this is an indicator for an improved thermodynamic work of adhesion. The apparent interfacial shear strength as measure of practical adhesion, determined by the single fibre pull-out test, increases with increasing degree of surface fluorine content up to a maximum, which depends on the degree of fluorination of the matrix used. The improved interaction between the fibre and the matrix is due to an enhanced compatibility at the fibre/matrix interface. KW - Adhesion KW - A. Carbon fibres KW - B. Debonding KW - B. Interfacial strength PY - 2007 U6 - https://doi.org/10.1016/j.compscitech.2007.02.012 SN - 0266-3538 VL - 67 IS - 13 SP - 2699 EP - 2706 PB - Elsevier CY - Barking AN - OPUS4-15814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, K.K.C. A1 - Lamoriniere, S. A1 - Kalinka, Gerhard A1 - Schulz, Eckhard A1 - Bismarck, A. T1 - Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride) N2 - Atmospheric-plasma fluorination was used to introduce fluorine functionalities onto the surface of carbon fibers without affecting their bulk properties. The interfacial adhesion between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride) (PVDF) was studied by means of direct wetting measurements and single fiber pullout tests. Measured contact angles of PVDF melt droplets on modified carbon fibers show that short exposure times of carbon fibers to atmospheric-plasma fluorination (corresponding to a degree of surface fluorination of F/C = 0.01 (1.1%)) leads to improved wettability of the fibers by PVDF melts. The apparent interfacial shear strength as a measure of practical adhesion, determined by the single-fiber pullout test, increases by 65% under optimal treatment conditions. The improved practical adhesion is not due to the formation of transcrystalline regions around the fibers or a change of the bulk matrix crystallinity or to an increased surface roughness; it seems to be due to the compatibilization of the interface caused of the atmospheric-plasma fluorination of the carbon fibers. KW - Carbon fibers KW - Fluorination KW - Contact angle KW - Interface KW - Adhesion KW - Surface area KW - Fiber properties PY - 2007 U6 - https://doi.org/10.1016/j.jcis.2007.04.076 SN - 0021-9797 SN - 1095-7103 VL - 313 IS - 2 SP - 476 EP - 484 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-16026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radl, S. A1 - Kreimer, M. A1 - Manhart, J. A1 - Griesser, T. A1 - Moser, A. A1 - Pinter, G. A1 - Kalinka, Gerhard A1 - Kern, W. A1 - Schlögl, S. T1 - Photocleavable epoxy based materials N2 - The present study aims at the development of photodegradable epoxy based materials comprising o-nitrobenzyl ester links that undergo well defined bond cleavage in response to UV irradiation. New bi-functional epoxy based monomers bearing o-nitrobenzyl ester groups are synthesized and thermally cured with an anhydride hardener to yield photosensitive polymers and duromers. The UV induced changes in solubility are exploited for the preparation of positive-type photoresists. Thin patterned films are obtained by photolithographic processes and characterized by microscopic techniques. The results evidence that sensitive resist materials with good resolution and high contrast behavior can be accomplished. Along with resist technology, the applicability of o-nitrobenzyl chemistry in the design of recyclable polymer materials with thicknesses in the millimeter range is evaluated. By monitoring the thermo-mechanical properties upon UV illumination, a distinctive depletion of storage modulus and glass transition temperature is observed with increasing exposure dose. Additionally, single fiber pull-out tests are carried out revealing a significant decrease of the interfacial adhesion at the fiber-matrix interface due to the phototriggered cleavage reaction. KW - Epoxy based network KW - Photocleavage KW - o-Nitrobenzyl ester KW - Adhesion KW - Mechanical properties KW - Interfacial shear strength PY - 2015 U6 - https://doi.org/10.1016/j.polymer.2015.05.055 SN - 0032-3861 SN - 1873-2291 VL - 69 SP - 159 EP - 168 PB - Elsevier Ltd. AN - OPUS4-34566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marotzke, Christian T1 - Strength of composite structural parts - role of the fiber/matrix interface N2 - The strength of laminates distinctly depends on the transverse strength of the laminas. The transverse failure is dominated by the adhesion between fiber and matrix. Usual strength criteria however do not take into account the adhesive strength explicitly. The determination of the interface strength is performed on the micromechanical scale using single fiber specimens. The fibers are loaded under off-axis loading while the debonding is monitored under a microscope. The stresses acting in the Interface are calculated by finite element analyses. It is found that for off-axial angles up to 35° interfacial debonding is the dominant failure mode while fiber breakage takes place at lower angles. The occurrence of fiber breakage and debonding under off-axis loading shows that the restriction to two potential failure planes - perpendicular or parallel to the fibers - as applied in common failure criteria has to be put in question. T2 - SEICO 11 - SAMPE Europe - 32nd International technical conference CY - Paris, France DA - 28.03.2011 KW - Composites KW - Strength KW - Adhesion PY - 2011 SN - 978-3-9523565-3-1 IS - Session 3B SP - 250 EP - 257 AN - OPUS4-23680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -